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Abstract—In most existing trust evaluation studies, a single value is computed based on the ratings given to a service provider to

indicate the current trust level. This is useful but may not represent the trust features well under certain circumstances. Alternatively, a

complete set of trust ratings can be transferred to a service client for local trust calculation. But this obviously creates a big overhead in

communication as the data set usually has a large size covering a long service history. In this paper, we present a novel two-

dimensional aggregation approach consisting of both vertical and horizontal aggregations of trust ratings. The vertical aggregation

calculates the aggregated rating representing the trust level for the services delivered in a small time period. The horizontal

aggregation applies our proposed optimal algorithm to determine the minimal number of time intervals, within each of which a trust

vector with three values can be calculated to represent all the ratings in that time interval and retain the trust features well. Hence, a

small set of trust vectors can represent a large set of trust ratings. This is significant for large-scale trust rating transmission and trust

evaluation. Experiments have been conducted to illustrate the properties of our proposed approach.

Index Terms—Service trust, reputation-based trust, trust evaluation, trust rating aggregation, trust vector.
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1 INTRODUCTION

IN recent years, Service-Oriented Computing (SOC) has
emerged to be an increasingly important research area

attracting attention from both the research and industry
communities [23]. In SOC applications, various services are
provided to clients by different providers in a loosely
coupled environment. In such context, a service can refer to
a transaction, such as selling a product online (i.e., the
traditional online services), or a functional component
implemented by web service technologies [3]. However,
when a client looks for a service out of a large pool of
services provided by different service providers, in addition
to functionality, the trust of service is also a key factor for
service selection [26].

Conceptually, trust is the measure taken by one party
on the willingness and ability of another party to act in the
interest of the former party in a certain situation [17]. If
the trust value is in the range of [0, 1], it can be taken as
the subjective probability by which, one party expects that
another party can perform a given action [13].

In SOC environments, the trust issue is very important.
An effective and efficient trust management system is
highly desirable and critical for service clients to identify
potential risks, providing objective trust results, and
preventing huge financial loss [28].

In general, in a trust management enabled system, service
clients can provide feedback and trust ratings after com-
pleted transactions. A good reputation results from the high
quality of delivered services in a certain time period. Based

on the ratings, the trust management system can calculate
the reputation-based trust value of a service provider to
reflect the quality of services in a certain time period, with
more weights assigned to later transactions [30], [33].

In most existing trust evaluation models [4], [16], [22],
[25], [26], [27], [29], [30], [31], [32], [33], a single trust value
(e.g., a value in the range of [0, 1]) is computed to reflect
the global trust level of a target accumulated in a certain
time period (e.g., in the latest six months). The calculation
of the final trust value is based on either all the ratings
given for the latest time period [16], [22], [31] or the current
trust value for previous transactions and the rating for the
latest transaction [27], [30].

Single trust value systems are easy to use in trust-
oriented service comparison and selection. However, a
single trust value computed by a service management
authority cannot depict the real trust level very well under
certain circumstances. For example, if there are two service
providers A and B with their final trust values TA � 0:7 and
TB � 0:7 (each of them is in the range of [0, 1]), does it mean
that both A and B have the same trust level? It is not true if
A’s trust values are turning worse with an accumulated
value of 0.7 while B’s trust values are becoming better. In
this case, B is better than A in terms of predicting the trust
level of a forthcoming transaction. In order to observe the
trend of trust changes, the complete set of trust ratings for a
certain time period would be required. However, service
clients are usually interested in a long service history (e.g.,
recent one month, three months, six months, or one year).
Therefore, in such a situation, transferring a complete set of
trust ratings to a client will be too costly in terms of
communication overhead.

In our approach, a trust vector is computed [19],1 which
consists of three values: final trust level (FTL), service trust
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trend (STT), and service performance consistency level (SPCL).
The final trust level is represented by a value in ½0; 1�. The
service trust trend is computed as a numerical value in
ð�1;þ1Þ representing the trend of service trust changes
in a given time interval that can be interpreted as coherent,
upgoing, dropping, or uncertain. The service performance
consistency level is represented by a numerical value in
[0, 1] measuring the extent to which the computed service
trust trend fits the given set of trust ratings. With trust
vectors, two service providers with the similar final trust
values can be compared.

In the above-mentioned situations, a computed service
trust vector is meaningful only if the service performance
consistency level is high. This is because only in such a
situation can the service trust trend represent the trend of
service trust changes very well. Assuming there is a two-
dimensional diagram with time t as the x-axis and rating
value R as the y-axis, RðtiÞ represents the trust rating at ti.
Given a large set of trust ratings fRðtiÞg, if the trust trend
changes greatly in the whole time interval ½tstart; tend�
(ti 2 ½tstart; tend�), ½tstart; tend� should be divided into multiple
time intervals (MTIs), each of which corresponds to a subset
of ratings that can be represented by one trust vector with a
high service performance consistency level. Thus, as all the
service trust vectors cross multiple time intervals from tstart
to tend, we term the trust vector computation process and
the multiple time interval analysis as the horizontal aggrega-
tion of trust ratings. In addition, in order to minimize the
number of trust vectors, we propose an optimal multiple
time interval algorithm.

Furthermore, we assume that there are a large amount of
transactions for each service provider in the whole time
interval ½tstart; tend�. Thus, if we process the ratings of all
transactions occurring at different time separately, it will
lead to too many trust vectors. Hence, in this paper, we take
ti as a small time period (e.g., a day) and propose a vertical
rating aggregation approach to aggregate all the ratings
frðtiÞj g for the services delivered during the same small time
period ti. We use RðtiÞ to denote the aggregated rating at ti.
As time t is the horizontal axis and all ratings frðtiÞj g
vertically distribute at the same small time period ti, this
computation process is termed as the vertical aggregation of
trust ratings. With all the vertically aggregated ratings
fRðtiÞjRðtiÞ is the vertical aggregation of all ratings at time ti,
ti 2 ½tstart; tend�g, we then apply the horizontal aggregation
of trust ratings and obtain multiple trust vectors. Conse-
quently, with both vertical and horizontal rating aggrega-
tions, a small set of trust vectors can represent a large set of
trust ratings for a long service transaction history while the
trust features can be highly retained.

In this paper, our contributions can be briefly summar-
ized as follows:

1. For the vertical aggregation of trust ratings, we
propose a Gaussian distribution-based analysis
method and a clustering-based analysis method.
The former applies to the case that all ratings conform
to the Gaussian distribution, whereas the latter
applies if the condition does not hold. In addition,
we also propose an approach to evaluate service
rating reputation (SRR) that can be incorporated with

the above two methods to generate more objective
results.

2. A trust vector with three values can depict a set of
ratings better. It provides the indication of trust
trend that is particularly useful in service provider
comparison and selection.

3. For the horizontal aggregation of trust ratings, we
propose a greedy algorithm and an optimal algo-
rithm for generating multiple trust vectors (i.e.,
multiple time intervals) from a large set of trust
ratings. While the greedy algorithm is usually faster,
the optimal algorithm can output the minimal set of
trust vectors.

4. With our proposed vertical aggregation approach
and horizontal aggregation approach, a small set of
values can represent a large set of trust ratings well
with the trust features well retained. This is
significant for large-scale trust rating transmission
and trust evaluation.

This paper is organized as follows: Section 2 reviews
some existing trust evaluation approaches. Section 3 pre-
sents the vertical rating aggregation approach. Section 4
introduces the service trust vector approach. In Section 5,
two multiple time interval analysis algorithms are proposed.
Section 6 presents our experimental studies to illustrate the
properties of our proposed approach. Finally, Section 7
concludes our work.

2 RELATED WORK

The issue of trust has been studied in some application
fields.

Trust is an important issue in e-commerce (EC) environ-
ments. At eBay [1], after each transaction, a buyer can give
feedback with a rating of “positive,” “neutral,” or “nega-
tive” to the system according to the service quality of the
seller. eBay calculates the feedback score S ¼ P �N , where
P is the number of positive ratings left by buyers and N is
the number of negative ratings. Then, the positive feedback
rate R ¼ P

PþN (e.g., R ¼ 99:1%) is calculated and displayed
on webpages. This is a simple trust management system
providing valuable reputation information to buyers. In
[33], Sporas system is introduced to evaluate the trust for
EC applications based on the ratings of transactions in a
recent time period. In this method, the ratings of later
transactions are given higher weights as they are more
important in trust evaluation. In [27], Wang and Lim
propose an approach to evaluate the situational transaction
trust, which binds the trust ratings of previous transactions
with a new transaction. Since the situational trust includes
service specific trust, service category trust, transaction
amount category specific trust, and price trust, it can deliver
more accurate trust information to buyers and prevent
some typical attacks.

The trust issue has been actively studied in Peer-to-Peer
(P2P) information sharing networks as a client peer needs to
know prior to download actions which serving peer can
provide complete files. In [4], Damiani et al. propose an
approach for evaluating the reputation of peers through
distributed polling algorithm and the XRep protocol before
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initiating any download action. This approach adopts a
binary rating system and it is based on the Gnutella [2]
query broadcasting method. EigenTrust [16] adopts a
binary rating system as well and aims to collect the local
trust values of all peers to calculate the global trust value of
a given peer. Some other earlier studies also adopted the
binary rating system. In [31], Xiong and Liu propose a
PeerTrust model which has two main features. First, they
introduce three basic trust parameters (i.e., the feedback
that a peer receives from other peers, the total number of
transactions that a peer performs, and the credibility of the
feedback sources) and two adaptive factors in computing
trustworthiness of peers (i.e., transaction context factor and
the community context factor). Second, they define some
general trust metrics and formulas to aggregate these
parameters into a final trust value.

In the literature, the issue of trust has also received much
attention in the field of service-oriented computing. In [26],
Vu et al. present a model to evaluate the service trust by
comparing the advertised service quality and the delivered
service quality. If the advertised service quality is as good
as the delivered service quality, the service is reputable. In
[22], Lin et al. propose a distributed trust evaluation
framework that consists of trust brokers and reputation
authorities, and consider the aggregation of trust values
from different brokers and authorities. In [29], Wang et al.
propose some trust evaluation metrics and a formula for
trust computation, with which a final trust value is
computed. In addition, they propose a fuzzy logic-based
approach for determining reputation ranks that particularly
differentiate the service periods of new service providers
and old (long-existing) ones. The aim is to provide
incentives to new service providers and penalize those old
service providers with poor service quality.

Trust also has drawn much attention in the field of
multiagent systems. In [12], Jøsang describes a framework
for combining and assessing subjective ratings from
different sources based on Dempster-Shafer belief theory.
In [25], Teacy et al. introduce the Trust and Reputation
model for Agent-based Virtual OrganisationS (TRAVOS)
system which calculates an agent’s trust on an interaction
partner using probability theory, taking into account the
past interactions between agents. In [7], Griffiths proposes a
multidimensional trust model which allows agents to
model the trust value of others according to various
criteria. In [11], the proposed model addresses the trust
issue from the perspective of multiagent systems where in
addition to trust evaluation, motivations of agents and the
dependency relationships among them are also taken into
account. In [5], a community-wide trust evaluation method
is proposed where the final trust value is computed by
aggregating the ratings (termed as votes in [5]) and other
aspects (e.g., the rater’s location and connection medium).
In addition, this approach computes the trust level of an
assertion (e.g., trustworthy, untrustworthy) as the aggrega-
tion of multiple fuzzy values representing the trust
resulting from human interactions.

Similar to the taxonomy in [5], we categorize the above
trust aggregation approaches as follows according to their
computation techniques. Some models may correlate to
more than one category. Category 1 adopts the approach to
calculating the summation or weighted average of ratings,

like the models in [5], [7], [27], [29], [31], and [33]. A few
studies address how to compute the final trust value by
considering appropriate metrics. For example, later transac-
tions are more important [33]; the evaluation approach
should provide incentive to consistently good quality
services and punish malicious service providers [29], [31].
Some other studies also consider context factors, e.g., the
new transaction amount and service category [27], the
rater’s profile and location [5], or the relationship between
the rater’s group and the ratee [7]. Category 2 addresses the
subjective property of trust for trust rating aggregation, e.g.,
the work in [12] and [20], where the subjective probability
theory is adopted in trust evaluation. The approaches in
Category 3 (e.g., [25]) adopt Bayesian systems, which take
binary ratings as input and compute reputation scores by
statistically updating beta probability density functions
(PDF). Category 4 uses flow models, e.g., in [33], which
compute the trust of a target through some intermediate
participants and the trust dependency between them. While
each of the above categories calculates a crisp value, the last
category adopts fuzzy models, e.g., in [5] and [29], where
membership functions are used to determine the trust-
worthiness of targets.

The above-mentioned approaches contribute to trust
evaluation by incorporating various aspects and factors.
An aggregated single trust value is computed to reflect the
global trust level and is easy to use in service provider
comparison and selection. Nevertheless, as we have men-
tioned in Section 1, the single trust value may not depict the
trust level well under some circumstances. Different from
existing single value-based trust evaluation models, we
propose a novel two-dimensional approach consisting of
both vertical and horizontal aggregations of trust ratings. It is
based on our previous work on single trust vector evaluation
[19]. In [19], a trust vector consists of three values: Final Trust
Value (FTL), Service Trust Trend (STT), and Service
Performance Consistency Level (SPCL). While the FTL value
is similar to the result of some other single trust value
approaches, together with STT and SPCL, a trust vector can
better depict the trust features of a large set of trust ratings
and is useful for trustworthy service provider selection. In
Section 4, we briefly introduce the single trust vector
approach. In this paper, we extend our previous work in
two major directions. On one hand, a set of ratings in a small
time period (e.g., a day) are aggregated yielding a single
rating representing the trust level for that time period. On the
other hand, multiple trust vectors may have to be generated
for the whole time interval of service history so that each
trust vector can represent the trust ratings in its time interval
precisely. The ultimate purpose of our work is to represent
the large volume of trust ratings with a small data set while
the trust features are well depicted and retained.

In the literature, there exist some other approaches using
trust vectors, but with different focuses. In [24], Ray and
Chakraborty propose a trust vector that consists of experi-
ence, knowledge, and recommendation. The focus is how to
address these three independent aspects of trust, as listed in
a trust vector. Therefore, its goal is different from ours. In
[34], Zhao and Li propose a method using a trust vector to
represent the directed link with a trust value between two
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peers. A trust vector includes a truster, a trustee, and the
trust value between them. Thus, their trust vector is totally
different from our approach.

3 VERTICAL AGGREGATION OF TRUST RATINGS

In this section, we introduce our proposed vertical rating
aggregation approach, which aggregates the ratings frðtiÞj jj ¼
1; . . . ;mg for the services delivered at a small time period ti
(e.g., a day) to a single trust value RðtiÞ.

3.1 Vertical Aggregation without Service Rating
Reputation

In order to aggregate the ratings frðtiÞj g vertically, we first

consider the distribution of these ratings given by different

clients. Let�rðtiÞ denote the rating that would ideally represent

the trust level of the service delivered at the time period ti. If

most clients are honest, then their ratings are close to �rðtiÞ.

Raters of these ratings are taken as the main stream. Thus,

each rating with a clear distance to �rðtiÞ is taken as marginal.

As pointed out in cognitive science, in the process of decision

making, the cognitive and personal preference is usually

needed to be taken into account [18]. One of the most

commonly existing cognitive preferences is a willingness to

believe what we have been told most often and by the

greatest number of different sources [18]. Following this

principle of cognitive science, marginal ratings can be

identified and discarded. If we can determine the upper

control limit RðtiÞu and the lower control limit R
ðtiÞ
l properly,

marginal ratings out of the range ½RðtiÞl ; RðtiÞu � can be filtered

out. Then, an aggregated rating RðtiÞ can be derived from the

rest ratings in ½RðtiÞl ; RðtiÞu � and taken as the estimation of �rðtiÞ.
In this section, we propose a Gaussian distribution-based

analysis method and a Clustering-based analysis method to
compute the aggregated rating RðtiÞ in different situations.

3.1.1 Gaussian Distribution-Based Analysis Method

As illustrated in [10], if all service clients give feedback after
transactions, the provided ratings conform to the Gaussian
distribution. A complete set of honest ratings can be
collected based on honest-feedback-incentive mechanisms
[14], [15]. Therefore, the computation method introduced in
this section applies to the case that the ratings given for the
services delivered at ti can approximately conform to the
Gaussian distribution. In order to determine if ratings
conform to the Gaussian distribution, we adopt the formal
goodness-of-fit testing procedure based on the chi-square
distribution [9]. If ratings do not conform to the Gaussian
distribution, we will adopt our clustering-based analysis
method for vertical aggregation.

If ratings conform to the Gaussian distribution, according
to the empirical rule in statistics [9], about 95.45 percent
values in the Gaussian distribution are within ½�� 2�;�þ 2��
where � is the standard deviation and � is the mean. Hence,
based on the control chart in the statistical quality control [9],
we can adopt �þ 2� as the upper control limit RðtiÞu and
adopt �� 2� as the lower control limit R

ðtiÞ
l .

Definition 1. Based on the unbiased estimation [9], the
centerline RðtiÞc , the upper control limit RðtiÞu , and the lower

control limit R
ðtiÞ
l of trust ratings delivered at the small time

period ti are defined in sequence as follows:

RðtiÞc ¼
1

m

Xm
j¼1

r
ðtiÞ
j ; ð1Þ

RðtiÞu ¼ RðtiÞc þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1ðr

ðtiÞ
j �R

ðtiÞ
c Þ2

m� 1

s
; ð2Þ

R
ðtiÞ
l ¼ RðtiÞc � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPm
j¼1ðr

ðtiÞ
j �R

ðtiÞ
c Þ2

m� 1

s
; ð3Þ

where r
ðtiÞ
j 2½0; 1� is the trust rating from client j (j¼ 1; . . . ;m)

for a service delivered at time ti (i ¼ 1; . . . ; n).

So, the trust ratings out of the range ½RðtiÞl ; RðtiÞu � are taken
as marginal ratings.

Definition 2. If there are m0 trust ratings frðtiÞ
0

k g in the range of
½RðtiÞl ; RðtiÞu �, the vertically aggregated rating RðtiÞ can be
calculated by

RðtiÞ ¼ 1

m0

Xm0
k¼1

r
0ðtiÞ
k : ð4Þ

3.1.2 Clustering-Based Analysis Method

If ratings do not conform to the Gaussian distribution, the
clustering-based analysis method will be applied.

In this method, we adopt the hierarchical clustering
method [8], which creates a hierarchical cluster of the given
data set by either clustering from one cluster or nr clusters
(nr is the size of the data set) until all clusters become stable.
In order to determine marginal rating clusters, the divisive
hierarchical clustering approach [8] is selected, which starts the
decomposition from one cluster.

Before presenting the divisive hierarchical clustering
approach, we first introduce some definitions.

The relative rating density from r
ðtiÞ
h to r

ðtiÞ
j at the small

time period ti is

DðtiÞr

�
r
ðtiÞ
h ; r

ðtiÞ
j

�
¼

P
r
ðtiÞ
h
<r
ðtiÞ
k
<r
ðtiÞ
j

freðrðtiÞk Þ

r
ðtiÞ
j � r

ðtiÞ
h

; ð5Þ

where r
ðtiÞ
h and r

ðtiÞ
j (r

ðtiÞ
h < r

ðtiÞ
j ) are ratings, and freðrðtiÞk Þ is

the frequency of r
ðtiÞ
k .

The marginal rating percentage at the small time period ti is

P
ðtiÞ
marginal ¼

n
ðtiÞ
marginal

n
ðtiÞ
total

; ð6Þ

where n
ðtiÞ
marginal is the number of marginal ratings delivered at

the small time period ti and n
ðtiÞ
total is the total number of

ratings for the services delivered at the small time period ti.
The divisive hierarchical clustering approach works as

follows: initially, all the ratings are placed in one cluster,
and the centerline RðtiÞc is calculated with all ratings by (1).
Then, the cluster is split according to relative rating density
in the cluster. This process repeats until DðtiÞr or P

ðtiÞ
marginal

reaches the corresponding threshold (such as DðtiÞr ¼ 0:10
and P

ðtiÞ
marginal ¼ 0:10). All ratings that are not in the centered
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cluster are taken as marginal ratings. In the centered cluster,
the two boundary ratings are used as R

ðtiÞ
l and RðtiÞu . With all

ratings in ½RðtiÞl ; RðtiÞu �, the vertically aggregated rating RðtiÞ

can be computed according to (4).

3.2 Vertical Aggregation with Service Rating
Reputation

The client’s rating reputation is important for estimating
the ideal rating �rðtiÞ. This reputation can be evaluated
with the distance from the client’s rating to RðtiÞ.
Obviously, the smaller the distance, the better the service
rating reputation (SRR). With the SRR of all ratings, RðtiÞ

can be recalculated. This leads to an iterative process
until all computed values become stable.

3.2.1 Service Rating Reputation Evaluation

The calculation of SRR follows a common principle as
follows, which appears in a number of studies [19], [21],
[30], [33].

Principle 1. The reputation value is computed by taking the
service trust value in a recent time period into account with
higher weights given to the ratings of later services.

Definition 3. V
ðtiÞ
SRRj

, the SRR value for client j from t1 to ti, can be

calculated as follows:

V
ðtiÞ
SRRj

¼
Pi

k¼1 wtk � R
ðtkÞ
SRRjPi

k¼1 wtk
; ð7Þ

where R
ðtkÞ
SRRj

is the SRR value for client j at the small time

period tk (k ¼ 1; . . . ; i), and wtk is the weight for R
ðtkÞ
SRRj

, which

can be calculated as the exponential moving average [9]:

wtk ¼ �n�k; 0 < � � 1: ð8Þ

In addition, because the smaller the distance between a
rating for a client and the estimation of �rðtiÞ, the bigger and
better the SRR, and vice versa, a principle about the R

ðtiÞ
SRRj

evaluation is introduced as follows:

Principle 2. R
ðtiÞ
SRRj

, the SRR value for client j at the small time
period ti (i ¼ 1; . . . ; n), is a monotonically decreasing function
of the distance

r
ðtiÞ
jdis
¼
��rðtiÞj �RðtiÞ

0

c

��; ð9Þ

where r
ðtiÞ
j is the trust rating from client j for the service

delivered at the small time period ti, R
ðtiÞ0
c is the weighted

average of r
ðtiÞ
j , and V

ðtiÞ
SRRj

is the weight defined in Definition 3.

According to Principle 2, R
ðtiÞ
SRRj

can be calculated by the
following formula.

Definition 4. R
ðtiÞ
SRRj

, the SRR value for client j at the small time
period ti (i ¼ 1; . . . ; n), can be evaluated as

R
ðtiÞ
SRRj

¼
1� 22m0�1

r
ðtiÞ
jdis

�

� �2m0

; if 0 � rðtiÞjdis
� �

2 ;

22m0�1
r
ðtiÞ
jdis

� � 1

� �2m0

; if �
2 < r

ðtiÞ
jdis
� �;

8>>><
>>>:

ð10Þ

where � ¼ maxr
ðtiÞ
jdis

, and m0 is the argument to control the
function curve.

When setting m0 ¼ 1; 2, or 3, the changes of the function

curve in (10) are depicted in Fig. 1. It is easy to see that in all

cases, R
ðtiÞ
SRRj

is the monotonically decreasing function of

r
ðtiÞ
jdis

, following Principle 2.

3.2.2 Vertical Aggregation of Trust Ratings

With SRR taken into account, we should refine the Gaussian

distribution-based analysis method and the clustering-

based analysis method.

Definition 5. Based on the weighted unbiased estimation [9], the

centerline RðtiÞ
0

c , the upper control limit RðtiÞ
0

u , and the lower

control limit R
ðtiÞ0
l can be calculated in sequence as follows:

RðtiÞ
0

c ¼
Pn

j¼1 V
ðtiÞ
SRRj

� rðtiÞjPn
j¼1 V

ðtiÞ
SRRj

; ð11Þ

RðtiÞ
0

u ¼ RðtiÞ
0

c þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 V

ðtiÞ
SRRj

� ðrðtiÞj �R
ðtiÞ0
c Þ2Pn

j¼1 V
ðtiÞ
SRRj

� 1

vuuut ; ð12Þ

R
ðtiÞ0
l ¼ RðtiÞ

0

c � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
j¼1 V

ðtiÞ
SRRj

� ðrðtiÞj �R
ðtiÞ0
c Þ2Pn

j¼1 V
ðtiÞ
SRRj

� 1

vuuut ; ð13Þ

where r
ðtiÞ
j is the trust rating from client j for the service

delivered at the small time period ti (i ¼ 1; . . . ; n), and V
ðtiÞ
SRRj

is the service rating reputation value for client j defined in (7).

Definition 6. If there are m00 trust ratings frðtiÞ
00

k g in the range of

½RðtiÞ
0

l ; RðtiÞ
0

u � and R
ðtiÞ
SRRk

> �3, the vertically aggregated rating

RðtiÞ
0

can be defined as

RðtiÞ
0
¼
Pm00

k¼1 V
ðtiÞ
SRRk

� rðtiÞ
00

kPm00

k¼1 V
ðtiÞ
SRRk

; ð14Þ

where RðtiÞ
0

u is the upper control limit defined in (12), R
ðtiÞ0
l is

the lower control limit defined in (13), and �3 (�3 2 ½0; 1�) is a

threshold.
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Fig. 1. R
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function.
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As for the clustering-based analysis method, all the
processes are the same as the method introduced in
Section 3.1.2 except that SRR is added in computation.

In order to evaluate the SRR, the centerline RðtiÞ
0

c should

be known. However, from (11), V
ðtiÞ
SRRj

is necessary for
determining RðtiÞ

0

c . Therefore, it is an iterative process to

compute RðtiÞ
0

c and V
ðtiÞ
SRRj

.

Here, we take the Gaussian distribution-based analysis
method as an example to illustrate the iterative vertical
rating aggregation process in Algorithm 1. Obviously, the
iterative process is similar in the vertical rating aggregation
on top of the clustering-based analysis method.

Algorithm 1. Vertical rating aggregation algorithm

Input: trust ratings r
ðtiÞ
j ,

an arbitrary small positive number � (such as 0.0001).

Output: V
ðtiÞ
SRRj

, RðtiÞ
0
.

1: Initialize R
ðtiÞ
SRRj

by (10)
2: ria1

( 0

3: ria2
( 0

4: while maxjria1
� ria2

j > � do

5: ria2
( ria1

6: compute V
ðtiÞ
SRRj

with R
ðtiÞ
SRRj

by (7)

7: compute ria1
by (11)

8: compute R
ðtiÞ
SRRj

by (10)

9: end while

10: RðtiÞ
0

c ( ria1

11: compute RðtiÞ
0

u by (12)

12: compute R
ðtiÞ0
l by (13)

13: compute RðtiÞ
0

by (14)

In summary, the main difference between the vertically
aggregated rating evaluation introduced in Section 3.1 and
the one in this section is that the latter approach takes SRR
into account, which leads to more objective results.

4 SERVICE TRUST VECTOR

In this section, the trust vector approach is presented. A
trust vector is used to depict the trust level with three values
including Final Trust Level, Service Trust Trend, and Service
Performance Consistency Level. The trust vector approach can
be applied to the set of ratings fRðtiÞg obtained from the
vertical aggregation introduced in Section 3.

4.1 Final Trust Level Evaluation

Based on Principle 1, the Final Trust Level (FTL) value for

the time interval ½tstart; tend� can be calculated as

V
½tstart;tend �
FTL ¼

Pn
i¼1 wti �RðtiÞPn

i¼1 wti
; ð15Þ

where ti 2 ½tstart; tend� and wti is the weight defined in (8).
Actually, any existing single trust value method can be

adopted to compute the FTL value if it is based on all

nonbinary ratings fRðtiÞg, e.g., the methods proposed in [29]

and [33].

4.2 Service Trust Trend Evaluation

Service Trust Trend (STT) aims to illustrate the trend of

service trust value changes in a given time interval.

Some typical cases of STT are depicted in Fig. 2, which

are “coherent,” “upgoing,” “dropping,” and “uncertain” in

sequence.
In order to evaluate the STT of a set of ratings fRðtiÞjti 2

½tstart; tend�g for the time interval ½tstart; tend�, following

Principle 1, we design a weighted least-squares linear regres-

sion method [19], as illustrated in Fig. 3. This method is used

to obtain the best-fit straight line from a set of data points. It

is characterized by the sum of weighted squared residuals

with its least value, where a residual is the distance from a

data point to the regression line (see Fig. 3). Once the

regression line is obtained, its slope is the STT value.

Let ðt1; Rðt1ÞÞ; ðt2; Rðt2ÞÞ; . . . ; ðtn; RðtnÞÞ be the given data

points within time interval ½tstart; tend�, where RðtiÞ 2 ½0; 1� is

the trust rating delivered at the small time period ti (ti < tiþ1,

t1 ¼ tstart, and tn ¼ tend). In general,RðtiÞ can be the rating at ti
aggregated by the vertical aggregation approach introduced

in Sections 3.1 or 3.2.
The sum of squares of the distance from point ðti; RðtiÞÞ to

the regression line R ¼ a0 þ a1t can be calculated as follows:

S ¼
Xn
i¼1

wti
2d2

i ¼
Xn
i¼1

wti
2ðRðtiÞ � a0 � a1tiÞ2

1þ a2
1

: ð16Þ

Now, the task is to minimize the sum of squares of the

distance S with respect to the parameters a0 and a1. Hence,

we differentiate S with respect to a0 and a1, and set the

results to zero, yielding

a2
1 þ

Swr2Sw � S2
wr þ S2

wt � Swt2Sw
SwrSwt �

Pn
i¼1 w

2
ti
tiRðtiÞSw

a1 � 1 ¼ 0; ð17Þ

where Sw ¼
Pn

i¼1 w
2
ti

, Swt ¼
Pn

i¼1 w
2
ti
ti, Swr ¼

Pn
i¼1 w

2
ti
RðtiÞ,

Swt2 ¼
Pn

i¼1 w
2
ti
t2i , and Swr2 ¼

Pn
i¼1 w

2
ti
RðtiÞ

2
. Obviously, it is

easy to obtain the very small real solution of a1 in (17).
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Fig. 2. Several STT cases. (a) Coherent. (b) Upgoing. (c) Dropping.

(d) Uncertain.

Fig. 3. Weighted least-squares linear regression.

Authorized licensed use limited to: Macquarie University. Downloaded on August 17,2020 at 02:01:58 UTC from IEEE Xplore.  Restrictions apply. 



Hence, based on the weighted least-squares linear
regression method, we can obtain the STT value VSTT ¼ a1

from (17). However, in order to determine the four cases of
STT, another factor SPCL should be taken into account.

4.3 Service Performance Consistency Level
Evaluation

The Service Performance Consistency Level (SPCL) value
indicates the consistency level of the service trust values in a
certain time interval. Some typical SPCL cases are depicted
in Fig. 4. In sequence, they are “absolutely consistent,”
“relatively consistent,” and “inconsistent.”

Prior to presenting the detailed SPCL evaluation method,
we first introduce Definition 7.

Definition 7. Following Principle 1, the weighted average
distance for the time interval ½tstart; tend� is

v
½tstart;tend�
tdis

¼
Pn

i¼1 wti jRðtiÞ � ða0 þ a1tiÞjffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2

1

p Pn
i¼1 wti

ð18Þ

for n trust ratings fRðtiÞg delivered in the time interval
½tstart; tend�.

V
½tstart;tend�
SPCL , the SPCL value for the time interval ½tstart; tend�,

is a monotonically decreasing function of the weighted
mean distance v

½tstart;tend�
tdis

.

Definition 8. The SPCL value for the time interval ½tstart; tend� is

V
½tstart;tend�
SPCL ¼ 1� 2v

½tstart;tend�
tdis

¼ 1� 2

Pn
i¼1 wti jRðtiÞ � ða0 þ a1tiÞjffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ a2
1

p Pn
i¼1 wti

:
ð19Þ

With VSPCL and VSTT , the four cases of STT can be
determined.

1. If VSPCL > �4 and jVSTT j < �5 (0 < �5 � 1 is a thresh-
old), STT is coherent (see Fig. 2a), i.e., the service trust
value remains at the same level.

2. If VSPCL > �4 and VSTT > �5, STT is upgoing (see
Fig. 2b), i.e., the service trust value is becoming better.

3. If VSPCL > �4 and VSTT < ��5, STT is dropping (see
Fig. 2c), i.e., the service trust value is turning worse.

4. If VSPCL < �4, STT is uncertain (see Fig. 2d), i.e., the
service trust value is not reliable.

4.4 Service Trust Vector

Based on the above discussions, we can define the service
trust vector as follows:

Definition 9. The service trust vector T
½tstart;tend� is

T
½tstart;tend � ¼ <V ½tstart;tend�FTL ; V

½tstart;tend�
STT ; V

½tstart;tend�
SPCL >; ð20Þ

where V
½tstart;tend �
FTL is defined in (15), V

½tstart;tend�
STT is decided by (17),

and V
½tstart;tend�
SPCL is defined in (19).

With trust vectors, all service providers form a partial
order set. Given two service providers Pj and Pk with their
service trust vectors

T
½tstart;tend�
j ¼ <V ½tstart;tend�FTLj

; V
½tstart;tend�
STTj

; V
½tstart;tend �
SPCLj

>

and

T
½tstart;tend �
k ¼ <V ½tstart;tend�FTLk

; V
½tstart;tend�
STTj

; V
½tstart;tend�
SPCLk

>;

they are comparable in the following cases:

Property 1. If V
½tstart;tend�
STTj

¼ V ½tstart;tend�STTk
, V
½tstart;tend �
SPCLj

¼ V ½tstart;tend�SPCLk
, and

V
½tstart;tend�
FTLj

< V
½tstart;tend�
FTLk

, Pk is more preferable, which is denoted

as Pk > Pj or Pj < Pk.

Property 2. If V
½tstart;tend�
FTLj

¼ V ½tstart;tend�FTLk
, V
½tstart;tend �
SPCLj

¼ V ½tstart;tend�SPCLk
, and

V
½tstart;tend�
STTj

< V
½tstart;tend�
STTk

, then Pj < Pk.

Property 3. If V
½tstart;tend�
FTLj

¼ V ½tstart;tend�FTLk
, V
½tstart;tend �
STTj

¼ V ½tstart;tend�STTk
, and

V
½tstart;tend�
SPCLj

< V
½tstart;tend�
SPCLk

, then Pj < Pk.

In addition, when the two values in a service vector
element are approximately equal, we can compare the two
trust vectors in the following cases:

Property 4. If

jV ½tstart;tend�STTj
� V ½tstart;tend�STTk

j < �6; ð21Þ

jV ½tstart;tend�SPCLj
� V ½tstart;tend�SPCLk

j < �7; ð22Þ
and

jV ½tstart;tend�FTLj
� V ½tstart;tend�FTLk

j < �8; ð23Þ

Pj and Pk are both preferable, which is denoted as Pk ¼ Pj,
where 0 < �6; �7; �8 � 1 are thresholds that can be specified by
service clients or trust management authorities.

Property 5. If

jV ½tstart;tend�STTj
� V ½tstart;tend�STTk

j < �6; ð24Þ

jV ½tstart;tend�SPCLj
� V ½tstart;tend�SPCLk

j < �7; ð25Þ
and

V
½tstart;tend�
FTLj

þ �8 < V
½tstart;tend�
FTLk

; ð26Þ

Pk is more preferable, which is denoted as Pk > Pj or Pj < Pk.

Property 6. If

jV ½tstart;tend�FTLj
� V ½tstart;tend�FTLk

j < �8; ð27Þ

jV ½tstart;tend�SPCLj
� V ½tstart;tend�SPCLk

j < �7; ð28Þ
and

V
½tstart;tend�
STTj

þ �6 < V
½tstart;tend�
STTk

; ð29Þ

then Pj < Pk.
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Fig. 4. Several SPCL cases. (a) Absolutely consistent. (b) Relatively

consistent. (c) Inconsistent.
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Property 7. If

jV ½tstart;tend�FTLj
� V ½tstart;tend �FTLk

j < �8; ð30Þ

jV ½tstart;tend�STTj
� V ½tstart;tend �STTk

j < �6; ð31Þ

and

V
½tstart;tend�
SPCLj

þ �7 < V
½tstart;tend�
SPCLk

; ð32Þ

then Pj < Pk.

5 MULTIPLE TIME INTERVAL ANALYSIS

A single trust vector with three values can represent the
ratings in the given interval ½t1; tn� well if its SPCL value is
high (i.e., 0.9 or more). A high SPCL value indicates that all
rating points are very close the obtained regression line.
However, if the trust trend significantly changes in ½t1; tn�,
though a single trust vector can be computed, the SPCL
value will be low indicating that the vector cannot depict all
the ratings precisely. In this case, in order to represent all
trust ratings better, multiple intervals in ½t1; tn� should be
determined, within each of which one trust vector with a
high SPCL value can be obtained to represent all corre-
sponding ratings with a consistent trust trend.

Fig. 5 illustrates three cases. We can notice that these
cases are quite different from each other in terms of trust
trend changes. If only one trust vector is computed in each
case, all three cases will have approximately the same VFTL,
VSTT , and VSPCL. Meanwhile, in each case, most points
have clear distances to the obtained regression line. This
leads to a low SPCL value indicating the obtained single
trust vector cannot represent all the trust ratings well.

In this section, we develop the Multiple Time Interval

(MTI) algorithms to find the set of regression lines from the

staring point ðt1; Rðt1ÞÞ to the ending point ðtn; RðtnÞÞ. A

regression line may exist from ðti; RðtiÞÞ to ðtj; RðtjÞÞði < jÞ
only if the corresponding V

½ti;tj�
SPCL � �9ð0� �9 < 1 is a thresh-

old, e.g., �9 ¼ 0:9). For this purpose, we propose a greedy

algorithm and an optimal algorithm for the MTI analysis. The

latter algorithm can return a set of MTI with the minimal

number of intervals.

5.1 Greedy MTI Algorithm

The greedy algorithm (Algorithm 2) works as follows:

. Step 1. Take ðt1; Rðt1ÞÞas the staring point and ðtn; RðtnÞÞ
as the first ending point. If V

½t1;tn �
SPCL � �9, the regression

line starts from ðt1; Rðt1ÞÞ and ends at ðtn; RðtnÞÞ;
otherwise, ðtn�1; R

ðtn�1ÞÞ is taken as the ending point

for testing if V
½t1;tn�1�
SPCL � �9 and so forth. Thus, the first

ending point ðti; RðtiÞÞði ¼ 2; . . . ; nÞ can be determined

so that V
½t1;ti�
SPCL � �9. By doing so, the obtained regres-

sion line is the longest one staring from ðt1; Rðt1ÞÞ
(lines 5-7 in Algorithm 2).

. Step 2. Taking ðti; RðtiÞÞ as the new staring point, the

same process can repeat so that a regression line can

be drawn from ðti; RðtiÞÞ to ðtj; RðtjÞÞðj ¼ iþ 1; . . . ; nÞ
with V

½ti;tj�
SPCL � �9 (lines 5-12).

. Step 3. The above process repeats until the last

regression line reaches point ðtn; RðtnÞÞ.

Algorithm 2. Greedy MTI algorithm

Input: trust ratings RðtiÞ,

the given interval ½t1; tn�,
the threshold �9 of VSPCL (such as 0.9).

Output: MTI boundary tlbj trbj .

1: j( 1

2: left time boundary tlbj ( t1
3: right time boundary trbj ( tn

4: while V
½tlbj ;tn�
SPCL < �9 do

5: while V
½tlbj ;trbj �
SPCL < �9 do

6: trbj ( trbj � small time period unit

7: end while

8: if trbj 6¼ tn then

9: j( jþ 1

10: tlbj ( trbj�1

11: trbj ( tn
12: end if

13: end while

As the computation of each trust vector element has a

complexity of OðnÞ, the greedy MTI algorithm incurs a

complexity of Oðn3Þ and may not find a set of MTI with the

minimal number of intervals.

5.2 Optimal MTI Algorithm

Now, we introduce an optimal MTI algorithm which can

deliver the minimal number of regression lines. In this

algorithm, each point ðti; RðtiÞÞ is taken as a vertex vi in a

graph. There is a directed edge between vi and vjði < jÞ of

weight 1 if V
½ti;tj�
SPCL � �9. Thus, the task to obtain a set of MTI

with the minimal number of intervals is converted to the

one to find the shortest path from v1 (i.e., point ðt1; Rðt1ÞÞ) to

vn (i.e., point ðtn; RðtnÞÞ). For this task, we extend Dijkstra’s

shortest path algorithm [6]. The shortest path from v1 to vn
corresponds to the set of regression lines from ðt1; Rðt1ÞÞ to

ðtn; RðtnÞÞ with the minimum number of lines.
The optimal algorithm (Algorithm 3) works as follows:

. Step 1. Initialize the adjacent matrix with n vertices
where the weight of the edge between vi and vj is
wi;j(1ði; j¼1; . . . ; nÞ (Oðn2Þ) (line 2 in Algorithm 3).

. Step 2. 8vi; vj ði 6¼ j; i; j¼ 1; . . . ; nÞ, wi;j(1 if V
½ti;tj�
SPCL �

�9 (Oðn3Þ) (lines 3-12).
. Step 3. Find the shortest path from v1 to vn with the

extension of the Dijkstra’s algorithm (OððnþmÞ lognÞ,
where

P
vi

degðviÞ ¼ 2m, degðviÞ is the degree of vi)

(lines 13-27).
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Fig. 5. Several MTI examples.

Authorized licensed use limited to: Macquarie University. Downloaded on August 17,2020 at 02:01:58 UTC from IEEE Xplore.  Restrictions apply. 



Algorithm 3. Optimal MTI algorithm
Input: trust ratings RðtiÞ,

the given interval ½t1; tn�,
the threshold �9 of VSPCL (such as 0.9).

Output: the set of MTI with the minimal number of

intervals in array tb.

1: tdimension ( tn � t1 þ small time period unit

2: initialize the adjacent matrix M (1
3: for all i such that 1 � i � tdimension do

4: for all j such that i � j � tdimension do

5: if i ¼¼ j then

6: Mi;j ( 0

7: else if V
½i;j�
SPCL � �9 then

8: Mi;j ( 1

9: Mj;i ( 1

10: end if

11: end for

12: end for

13: Let path be shortest path from t1, and path( ;.
14: for all ti in ½t1; tn� do

15: let lðtiÞ ¼Mt1;ti

16: end for

17: tb ( ;.
18: while lengthðpathÞ < tdimension do

19: find ti s.t. lðtiÞ ¼ minflðtjÞjtj 2 ½t1; tn� and tj 2 pathg
20: path( path [ ti
21: for all tj 2 path do

22: if lðtiÞ þMti;tj < lðtjÞ then

23: lðtjÞ ( lðtiÞ þMti;tj

24: tb ( tb [ ti
25: end if

26: end for

27: end while

Since n3 dominates m logn, the optimal MTI algorithm

incurs the complexity of Oðn3Þ.

6 EXPERIMENTS

In this section, we introduce the results of our experiments

conducted on both real data sets and synthetic data sets.

The aim of the experiments is to study the effectiveness and

efficiency of our proposed vertical rating aggregation and

horizontal rating aggregation approaches.

In these experiments, we set �1 ¼ 0:06 and �2 ¼ 0:10

which are the thresholds of relative rating density and

marginal rating percentage, and set the service rating

reputation threshold �3 ¼ 0:5. Meanwhile, we set �4 ¼ 0:8

and �5 ¼ 0:0007 which are the thresholds for determining

the coherent, upgoing, dropping, or uncertain case of STT.

6.1 Experiment 1

In this experiment, we aim to illustrate why the service trust

vector is necessary by comparing our method with two

existing approaches in [29] and [33], because they are also

based on nonbinary ratings only and apply to service-

oriented environments. Both the ratings and corresponding

regression lines are plotted in Fig. 6. The computed trust

vectors are listed in Table 1.

In the comparison with the Sporas approach in [33], we

evaluate the trust level of six service providers P1 to P6,

with constant � ¼ 5, acceleration factor � ¼ 25, the reputa-

tion of ratee Rother
i ¼ 1, and initial reputation R0 ¼ 0:1.

According to Table 1, all six service providers P1 to P6 (see

Figs. 6a, 6b, 6c, 6d, 6e, and 6f) have almost the same VFTL.

Therefore, they seemingly have the same trust level.

However, they have different VSTT or VSPCL. Based on the

properties introduced in Section 4.3, we can determine the

trust trend as listed in Table 1, with which the six service

providers P1 to P6 can be partially ordered: P1 > P3 > P5,

P2 > P4 > P6, P1 > P2, P3 > P4, and P5 > P6.
Similarly, we compare our method with the approach in

[29] for the trust evaluation of six service providers P7 to

P12 (see Figs. 6g, 6h, 6i, 6j, 6k, and 6l), with the scale

control factor � ¼ 1, parameters � ¼ 2 and 	 ¼ 20. From

Table 1, we can notice that the six service providers P7 to

P12 have almost the same VFTL but different VSTT or VSPCL.

Hence, the six service providers P7 to P12 can be partially

ordered: P7 > P9 > P11, P8 > P10 > P12, P7 > P8, P9 > P10,

and P11 > P12.
From this experiment, we can observe that under some

circumstances, a service trust vector can depict the trust

level more precisely than a single trust value.
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Fig. 6. Experiment 1.
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6.2 Experiment 2

In this experiment, we introduce an example to illustrate our

vertical rating aggregation approach. There are 20 service

providers who obtain the trust ratings for the services

delivered in the time interval ½t1; t30�. The trust ratings

frðtiÞj jr
ðtiÞ
j 2 ½0; 1� is for the service delivered at time ti from

provider jg for 20 service providers are plotted in Fig. 7.

. Case 1. In this case, we apply the vertical rating

aggregation approach introduced in Section 3.1

without considering any service rating reputation

(SRR). For each rating set, we first check if all the

ratings conform to the Gaussian distribution

hypothesis by applying the goodness-of-fit test

procedure [9]. If the Gaussian distribution hypoth-
esis holds, RðtiÞc , RðtiÞu , and R

ðtiÞ
l are computed with

(1), (2), and (3), respectively.

If the Gaussian distribution hypothesis does not

hold, then the clustering-based analysis method is

applied. Taking the rating set at the small time

period t10 (see Fig. 7) as an example, the correspond-

ing histogram of ratings and frequency is plotted

in Fig. 8. With the relative rating density threshold

�1 ¼ 0:06, the centered cluster is ½0:25; 0:75�, whose

P
ðt10Þ
marginal is no more than the marginal rating

percentage threshold �2 ¼ 0:10. Based on this cluster,

we have Rðt10Þ ¼ 0:4526. Thus, the ratings out of

½0:25; 0:75� are identified as marginal ratings.
In Fig. 9, there are 30 small time periods (i.e., for

any ti, 1 � i � 30). For each rating set frðtiÞj g, RðtiÞc ,

RðtiÞu , and R
ðtiÞ
l are computed by either the Gaussian

distribution-based analysis method or the clustering-

based analysis method. These values are plotted by

the error bars in Fig. 9a.
By applying the STT and SPCL evaluations, the

trust vector is computed as listed in Table 2. The

corresponding regression line is plotted in Fig. 9b

together with 30 vertically aggregated ratings.
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TABLE 1
Trust Vectors in Experiment 1

Fig. 7. Service rating values in Experiment 2.

Fig. 8. Rating frequency at t10 in Experiment 2.

Fig. 9. Error bars and STT in Experiment 2.

TABLE 2
Trust Vectors in Experiment 2
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. Case 2. In this case, we study the vertical aggrega-

tion with service rating reputation (SRR) using the

threshold �2 ¼ 0:10. The computed RðtiÞc , RðtiÞu , and

R
ðtiÞ
l are plotted by the error bars in Fig. 9c.

By applying the STT and SPCL evaluations with
the service rating reputation threshold �3 ¼ 0:5, the
trust vector is computed as listed in Table 2. The
corresponding regression line is plotted in Fig. 9d
together with 30 vertically aggregated ratings.

Compared with the curve of the vertically aggregated
ratings fRðtiÞg in Case 1 as plotted in Fig. 9a, the curve of
fRðtiÞg in Case 2 as plotted in Fig. 9c is smoother. This is
because SRR is the accumulated rating reputation and it
glues the ratings in two adjacent small time periods (i.e., ti
and tiþ1). Therefore, VSPCL in Case 2 is greater than that in
Case 1 (see Table 2) indicating that the trust vector in Case 2
can represent the ratings better.

6.3 Experiment 3

In this experiment, with the data of teaching evaluation and
unit evaluation in up to six years collected at Macquarie
University,2 Sydney, Australia, we study both the vertical
aggregation and the horizontal aggregation approaches.

At the end of each semester, the Center for Professional
Development3 at Macquarie University asks students to
provide feedback on a teacher’s teaching quality4 and a
unit’s (a subject’s) quality5 using questionnaires.

In this experiment, we use two rating data sets of
teaching quality (Cases 1 and 2 in Figs. 11 and 12) and two
rating data sets of unit quality (Cases 3 and 4 in Figs. 11 and
12). Each data set of teaching quality consists of the ratings
given to the same question in six years while each data set
of unit quality is for five years.

We first study the vertical aggregation of the ratings
given to a question in the same year. The data sets of four

cases are plotted in Figs. 10a, 10b, 10c, and 10d, respectively.

After vertical aggregation, the centered cluster is ½0:75; 1� in

Case 1 (see Fig. 10a), ½0:5; 1� in Case 2 (see Fig. 10b),

½0:25; 0:75� in Case 3 (see Fig. 10c), and ½0:25; 0:75� in Case 4

(see Fig. 10d), respectively.
In Case 1 (see Fig. 10a), the vertically aggregated rating is

0.8892, which is larger than 0.8775—the average of ratings,

because the rating 0.5 is taken as marginal and it is smaller

than the ratings in the centered cluster. In Case 2 (see

Fig. 10b), the vertically aggregated rating is 0.7725, which is

the same as the average of ratings, because there is no

marginal rating identified. In contrast, the vertically

aggregated rating is 0.5951 in Case 3 (see Fig. 10c), which

is smaller than the rating average 0.6075. This is because

there are more marginal ratings 1 than marginal ratings 0.

In Case 4 (see Fig. 10d), the vertically aggregated rating is

0.6117. It is smaller than the rating average 0.635 because 1
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2. http://www.mq.edu.au.
3. http://www.cpd.mq.edu.au.
4. http://www.mq.edu.au/ltc/eval_teaching/teds.htm.
5. http://www.mq.edu.au/ltc/eval_teaching/leu.htm.

Fig. 10. Rating frequency examples in Experiment 3. (a) t3 in Case 1.

(b) t6 in Case 2. (c) t1 in Case 3. (d) t1 in Case 4.
Fig. 11. Single trust vector in Experiment 3. (a) Case 1 "9 ¼ 0:8.

(b) Case 2 "9 ¼ 0:8. (c) Case 3 "9 ¼ 0:8. (d) Case 4 "9 ¼ 0:8.

Fig. 12. MTI in Experiment 3. (a) Case 1 "9 ¼ 0:9. (b) Case 2 "9 ¼ 0:91.

(c) Case 3 "9 ¼ 0:94. (d) Case 4 "9 ¼ 0:923.
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is the marginal rating and it is larger than the ratings in the
centered cluster.

For horizontal aggregation, if we set the threshold �9 ¼
0:8 for VSPCL, as plotted in Fig. 11, one trust vector is
obtained in each case. In contrast, a higher threshold �9 may
lead to more trust vectors (i.e., more time intervals). As
plotted in Fig. 12, two trust vectors are obtained if �9 ¼ 0:9
in Case 1 (see Fig. 12a), �9 ¼ 0:91 in Case 2 (see Fig. 12b),
�9 ¼ 0:94 in Case 3 (see Fig. 12c), and �9 ¼ 0:923 in Case 4
(see Fig. 12d).

6.4 Experiment 4

In this experiment, we further study the horizontal aggrega-
tion approach with a large set of ratings from eBay [1].

The rating sample from an eBay seller consists of about
12,000 ratings in total about the transactions occurred in
118 days since February 2009. At eBay, a rating can be 1
(“positive”), 0 (“neutral”), or �1 (“negative”). Like the
method used in [31], we calculate the feedback score percentage
as Sp ¼ P�N

PþNeþN , where P , Ne, and N are the number of
positive, neutral, and negative ratings, respectively. We use
each day’s ratings to compute the feedback score rate, which
is taken as the rating RðtiÞ and plotted in Fig. 13a. As a result,
there are 118 time periods in total (i.e., 8ti; 1 � i � 118).

When �9 ¼ 0:9 for VSPCL, as plotted in Fig. 13b, with
either the greedy algorithm or the optimal algorithm, only
one trust vector is obtained covering t1 to t118. With a higher
threshold �9 ¼ 0:93, two time intervals are obtained with
either the greedy algorithm (see Fig. 13c) or the optimal
algorithm (see Fig. 13d).

We also notice that, when �9 ¼ 0:94, the greedy algo-
rithm outputs 11 time intervals (see Fig. 14a). In contrast,
the optimal algorithm outputs eight time intervals only (see
Fig. 14b). Thus, the optimal algorithm may output a smaller
set of MTI.

6.5 Experiment 5

In this experiment, we use large-scale synthetic rating data
sets to compare the efficiency of our proposed greedy MTI
algorithm and the optimal MTI algorithm.

We conducted our experiments on top of Matlab
7.6.0.324 (R2008a) running on a Dell Vostro V1310 laptop

with an Intel Core 2 Duo T5870 2.00 GHz CPU and 3 GB
RAM. Each result of the CPU time is the average of three
independent executions.

In this experiment, we use three sets of ratings. Each set
consists of 50,000 trust ratings distributed in 500 time

periods. In each time period ti, there are 100 trust ratings,
which are vertically aggregated yielding one rating RðtiÞ. All
computed fRðtiÞg for three cases are plotted in Figs. 15a, 16a,
and 17a, respectively.

By applying the optimal algorithm to Case 1 (see
Fig. 15a), if the threshold is set as �9 ¼ 0:85, 0.87, or 0.9, we
can obtain two or three time intervals as plotted in Figs. 15b,
15c, and 15d, respectively. As the trust trend changes more
frequently in Case 2 (see Fig. 16a), when the threshold is set

as �9 ¼ 0:85, 0.87, or 0.9, six to eight time intervals are
obtained (see Figs. 16b, 16c, and 16d). In contrast, in Case 3

268 IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 4, NO. 4, OCTOBER-DECEMBER 2011

Fig. 13. MTI in Experiment 4. (a) Original data. (b) "9 ¼ 0:9. (c) "9 ¼ 0:93

(greedy). (d) "9 ¼ 0:93 (optimal).

Fig. 14. Comparison of greedy and optimal algorithms in Experiment 4.

(a) "9 ¼ 0:94 (greedy). (b) "9 ¼ 0:94 (optimal).

Fig. 15. Case 1 in Experiment 5. (a) Vertically aggregated ratings.

(b) "9 ¼ 0:85. (c) "9 ¼ 0:87. (d) "9 ¼ 0:9.
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(see Fig. 17a), the trust trend changes the most frequently in
all three cases. With the same thresholds �9 ¼ 0:85, 0.87, or
0.9, there are 14 (see Fig. 17b), 18 (see Fig. 17c), or 20 time
intervals (see Fig. 17d) obtained. Thus, in three cases, we can
use 3, 8, or 20 trust vectors to approximately represent 50,000
trust ratings. Namely, a small set of values can represent a
large set of trust ratings with the trust features well retained.

In addition, in three cases with different thresholds, we
compare the CPU time of the greedy algorithm with that of
the optimal algorithm. From the results listed in Table 3, We
can observe the following results:

1. For trust rating aggregation, generally the greedy
algorithm runs faster than the optimal algorithm
though they have the same time complexity.

2. In the optimal algorithm, the generation of the
adjacency matrix (see Steps 1 and 2 in the optimal
algorithm introduced in Section 5.2 and “Steps 1&2”
in Table 3) takes most time as it should check if
VSPCL � �9 for all n2

2 � n possible edges. In contrast,
the Dijkstra’s algorithm-based MTI analysis takes a
little proportion of time as listed in “Step 3 of the
optimal algorithm” in Table 3.

3. We can observe that from Case 1 to Case 3 (see
Figs. 15a, 16a, and 17a), the trust trend changes
more frequently. This leads to more CPU time for
the greedy algorithm to find MTI with the same
threshold. However, the CPU time of the optimal
algorithm is almost unchanged.

4. When the threshold �9 becomes larger, the CPU
time of the greedy algorithm becomes longer while
it changes very little in the optimal algorithm.
When �9 approaches 1, both algorithms consume
similar CPU time.

Thus, incorporating the results in both Experi-
ments 4 and 5, the greedy algorithm is useful and
more efficient when processing rating data with less
frequently changing trust trend. In contrast, the
optimal algorithm can outperform when processing
large-scale rating data with a high VSPCL threshold.

7 CONCLUSIONS

In this paper, we have proposed a novel two-dimensional
aggregation approach that aggregates a large set of trust
ratings both vertically and horizontally. In the vertical
aggregation of trust ratings, we adopt the Gaussian
distribution-based analysis method and the clustering-
based analysis method. For the horizontal aggregation of
trust ratings, we propose the service trust vector approach
and the multiple time interval (MTI) analysis approach
including the greedy MTI algorithm and the optimal MTI
algorithm. The trust vector provides more meaningful
information that can be used for service provider compar-
ison and selection. The proposed optimal MTI analysis
algorithm can ensure the representation of a large set of
trust ratings with the minimal number of values while
highly preserving the trust features. Therefore, our work is
significant for large-scale trust data management, transmis-
sion, and evaluation.

In the optimal MTI algorithm, given a set of ratings and
the same threshold, several minimal sets of MTI may exist.
Thus, in our future work, the optimal algorithm can be
further extended to find the best MTI set with the largest
summation of the SPCL values.
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Fig. 16. Case 2 in Experiment 5. (a) Vertically aggregated ratings.
(b) "9 ¼ 0:85. (c) "9 ¼ 0:87. (d) "9 ¼ 0:9.

Fig. 17. Case 3 in Experiment 5. (a) Vertically aggregated ratings.

(b) "9 ¼ 0:85. (c) "9 ¼ 0:87. (d) "9 ¼ 0:9.

TABLE 3
CPU Time in Seconds in Experiment 5
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APPENDIX

Notations are given in Table 4.
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