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Abstract

Graph Pattern based Subgraph Matching (GPSM) is used to identify all the matching

subgraphs of a pattern graph GP in a data graph GD. The existing GPSM solutions are

based on subgraph isomorphism or Bounded Graph Simulation (BGS), which aims to

find the entire matching subgraphs in GD. However, in some real applications, such as

group finding and expert recommendation, people are more interested in identifying

some nodes based on a specified structure between them, leading to the Graph Pattern

based Node Matching (GPNM) problem. GPNM aims to find all the matches of the

nodes in a data graph GD based on a given pattern graph GP .

Firstly, in real scenarios, both GP and GD are updated frequently. However, the

existing GPNM methods must perform a new GPNM procedure from scratch to deliver

the node matching results based on the updated GP and updated GD, which consumes

significant time. Therefore, there is a pressing need for a method to efficiently deliver

the node matching results on the updated graphs. To address this problem, in this the-

sis, we propose a novel incremental GPNM method called INC-GPNM, where we first

build an index to incrementally record the shortest path length range between differ-

ent label types in GD, and then identify the affected parts of GD in GPNM including

nodes and edges with respect to the updates of GP and GD. Based on the index struc-

ture and our novel search strategies, INC-GPNM can efficiently deliver node matching

results taking the updates of GP and GD as inputs, and can greatly reduce the query

processing time with improved time complexity.

Secondly, in some real applications (e.g., social graph searches on Facebook),

many typical pattern graphs frequently and repeatedly appear in users’ queries in a

short period of time. In this situation, it is still time-consuming to apply the incremen-

tal GPNM procedure for each of the updates in data graph. To address this problem,
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in this thesis, we first analyze the updates in the data graph and find that not all the

updates in the data graph essentially affect the GPNM results. Then, we propose the

notion of elimination relationships and analyze the elimination relationships between

multiple updates in the data graph. In addition, if one update Ua can eliminate the

other update Ub, and Ub can eliminate update Uc, there exists the hierarchical structure

between these elimination relationships. We further generate an Elimination Hierar-

chy Tree (EH-Tree) to index the elimination relationships. Based on the EH-Tree, we

propose a GPNM method called EH-GPNM, that considers the elimination relation-

ships between multiple updates in the data graph. EH-GPNM can efficiently deliver

node matching results when facing frequent and repeated pattern graphs with multiple

updates in the data graph.

Thirdly, inspired by EH-GPNM, we noted that the elimination relationships not

only exist among the updates in the data graph, but are also present among the updates

in the pattern graph and even in the cross updates fromGP andGD. To further improve

the GPNM efficiency when both GP and GD are updated frequently, in this thesis, we

propose a more efficient GPNM method, called UA-GPNM. UA-GPNM first detects

the elimination relationships between multiple independent updates in GP and GD,

and also the cross elimination relationships between the updates from GP and GD,

then UA-GPNM generates an EH-Tree to index all the elimination relationships. In

addition, we also propose a graph partition strategy in UA-GPNM to accelerate the G-

PNM procedure. The experiments show that UA-GPNM can achieve better efficiency

compared with INC-GPNM and EH-GPNM when facing the updates of GP and GD.

All the methods proposed above in this thesis have been validated and evaluated

through sufficient experiments and theoretical analysis. The results have demonstrated

that the proposed methods significantly outperform the existing work of GPNM.
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Chapter 1

Introduction

As a popular data model for representing the relations of different data, graphs have

been widely used in various fields, such as social networks, social securities, and biolo-

gy [30, 21, 108, 102, 93]. Graph Pattern based Subgraph Matching (GPSM) is a funda-

mental problem in graph analysis. GPSM aims to identify all the matching subgraphs

of a pattern graph GP in a data graph GD. It has been increasingly used in knowledge

discovery, traffic network analysis, intelligence analysis, and social network analysis,

among other applications [17, 23, 27, 110, 35]. Conventional subgraph matching so-

lutions are based on the subgraph isomorphism problem [114, 32], in which matches

are strictly based on graph structure. The following example illustrates the subgraph

isomorphism problem.

Example 1.1 (Subgraph Isomorphism Problem): Fig. 1.1(a) depicts a data graph

GD, where each node denotes a person, labeled with their job title, e.g., Project

Manager (PM ), Database Developer (DB), Software Engineer (SE), Test Engineer

(TE), or Secretary (S). Each edge indicates a collaboration relationship. A pattern

graph GP is given in Fig. 1.1(b), where a database project requires three types of peo-

ple, namely: PM , DB and S respectively. A PM needs to connect with an S and a

DB, while a DB needs to connect with an S. Based on subgraph isomorphism, the

matching subgraph GM is shown in Fig. 1.1(c) because GM includes the same types

of nodes and same structure as GP .

However, the subgraph isomorphism problem is an NP-Complete problem [46],

1
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Figure 1.1: Subgraph Isomorphism Problem

which makes it computationally expensive to identify the exact matching subgraphs e-

specially in large graphs. To address this problem, Fan et al., proposed Bounded Graph

Simulation (BGS) [39], which has fewer restrictions but more capacity to extract more

useful subgraphs with better efficiency because it supports simulation relations instead

of an exact match of edges and nodes. In BGS, each edge in GP is labeled with either

a positive integer k or a symbol “*”. k is the constraint of the maximal shortest path

length of a match in GD and “*” indicates that there are no path length constraints.

Then, the match of an edge could be a path if the start node and the end node of the

path in the data graph have the same labels as the corresponding nodes of the edge in

the pattern graph. In social networks, according to the theory of “six degrees of separa-

tion” [88], on average, any two people can be connected in about six hops. Therefore,

k is usually set as a small integer in social networks [39]. The following example il-

lustrates the BGS problem.

Example 1.2 (BGS Problem): Fig. 1.2(a) depicts a data graph GD, which has the

same meaning as that in Fig. 1.1(a). A pattern graph GP is given in Fig. 1.2(b), where

an IT project requires three types of people: namely, PM , SE and S. Compared with

subgraph isomorphism, in BGS, an edge in pattern graph can be associated with an

integer to show the constraint of the maximum path length between two nodes. For
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Figure 1.2: BGS Problem

example, in Fig. 1.2(b), a PM must connect with an SE within three hops, and an SE

needs to connect with an S within two hops. Based on BGS, the matching subgraph

GM is shown in Fig. 1.2(c).

The subgraph isomorphism-based and BGS-based subgraph matching methods

discussed above aim to find the entire subgraphs in GD. However, in some appli-

cations, such as group finding [70] and expert recommendation [89, 18], people are

more interested in finding some nodes based on a specified structure between them,

leading to the Graph Pattern based Node Matching (GPNM) problem [81]. An exam-

ple of this is discussed below.

Example 1.3 (GPNM Problem): Recall the data graph and pattern graph shown in

Fig. 1.2(a) and Fig. 1.2(b) respectively. Instead of finding the matching subgraphs,

GPNM aims to identify the matching nodes for each node in pattern graph. The GPNM

results of Example 1.2 are shown in Table 1.1.

Table 1.1: The GPNM results of Example 1.2

Nodes in GP Matching nodes in GD

PM PM1

SE SE1

S S2
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The existing subgraph matching methods can be applied to solve the GPNM prob-

lem. However, they must deliver the entire matching subgraphs, rather than match-

ing nodes only, which incurs a high time complexity [39, 38]. Therefore, Fan et al.,

[40] proposed a method to find matching nodes only based on a given pattern graph.

Although their method can reduce query processing time, it does not consider the up-

dates of GP and GD that commonly exist in real scenarios [10]. In addition, not all the

updates in both pattern graph and data graph essentially affect the GPNM matching

results, there may exists elimination relationships among the updates. For example, if

one edge (node) is firstly removed from (or inserted into) GD (GP ) and then inserted

back into (or removed from) GD (GP ), then the effects of the two updates can elim-

inate each other. By analyzing the elimination relationships among the updates, the

efficiency of delivering the GPNM results can be improved. Further, in the GPNM

procedure, we must inspect whether the shortest path length between two nodes can

satisfy the path length constraints on the pattern graph. Since the computation of the

shortest path length between any two nodes is highly time-consuming, especially in

big data graphs (e.g., social networks and traffic networks), if we have a strategy to

partition the graph into subgraph to overcome this bottleneck, the efficiency of GPNM

can be improved further.

This thesis will focus on the three significant challenges of frequently updated

graphs, elimination relationships and graph partition.

1.1 Challenges in GPNM

1.1.1 Frequently updated graphs

The first challenge of this thesis is: when facing frequently updated pattern graph and

data graph, how to efficiently deliver the node matching results rather than performing

a whole GPNM procedure from scratch that consumes much more query processing

time.
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In real scenarios, nodes and edges in both GP and GD are usually frequently up-

dated over time [10]. For example, on Facebook, within each minute, on average of

400 new users join in, 510,000 comments are posted, 317,000 statuses are updated,

and 147,000 photos are uploaded1. In the application of group finding in social graphs

[70], the change of requirements (e.g., constraints or structure) leads to updates of GP

and the joining of new users in online social networks leads to the updates of GD.

However, when facing any update, the existing GPNM methods [82, 40] must per-

form a new GPNM procedure from scratch, leading to much more query processing

time. Although certain existing BGS-based GPSM methods [39, 41] can incremen-

tally deliver GPSM results taking the updates of GD into account, they still need to

deliver the entire matching subgraphs when taking the updates of GP as input, rather

than delivering the matching nodes directly.

In addition, in real applications, althoughGP andGD are updated frequently, these

updates usually account for a small proportion of the entire graph. For example, Face-

book had more than two billion active monthly users in June 2017, and about six

hundred thousand new users joined every month2, which accounted for only 0.03% of

all the users.

1.1.2 Elimination relationships

The second challenge of this thesis is: how to effectively detect the elimination rela-

tionships of the updates.

Although both the pattern graphs and data graphs are updated frequently, not all

the updates in a pattern graph GP or a data graph GD essentially affect the GPNM

matching results. The following example illustrates this.

Example 1.4 (The elimination relationships among the updates): Based on the data

graph and pattern graph shown in Fig. 1.3(a) and Fig. 1.3(c) respectively, the original

1https://sproutsocial.com/insights/facebook-stats-for-marketers/
2https://newsroom.fb.com/company-info/
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Figure 1.3: The elimination relationships among the updates

GPNM matching results are shown in Table 1.2. Suppose that there are two updates

in the pattern graph, where PM needs to be associated with a TE within two hops

(denoted as UP1 in Fig. 1.3(b)), and an S needs to be associated with a TE within four

hops (denoted as UP2 in Fig. 1.3(b)). In addition, there are also two updates in the data

graph, where SE1 establishes the collaboration relationship with TE2 (denoted as UD1

in Fig. 1.3(d)) and DB1 establishes the collaboration relationship with S1 (denoted as

UD2 in Fig. 1.3(d)). The new pattern graph GP new and new data graph GD new are

shown in Fig. 1.3(b) and Fig. 1.3(d), respectively.

Based on these two updated graphs, the state-of-the-art GPNM methods [82, 40]

need to perform a new GPNM procedure from scratch, leading to much more query

processing time. However, in practice, one update can be eliminated by another up-
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Table 1.2: The original GPNM results of Example 1.4

Nodes in GP Matching nodes in GD

PM PM1

SE SE1, SE2

S S1

TE TE1, TE2

date. It is easy to understand that in each single graph (GP or GD), if one edge (node)

is firstly removed from (or inserted into) GD (GP ) and then inserted back to (or re-

moved from) GD (GP ), the effects of the two updates can eliminate each other. There-

fore, there may be elimination relationships among the updates in a single graph of

GP or GD, and we term this kind of elimination relationships of a single graph as

single-graph elimination relationships. More importantly, one update in a graph may

eliminate an update in another graph, we term this kind of elimination relationships as

cross-graph elimination relationships. In Example 1.4, although in update UP1, a PM

needs to be associated with a TE within two hops, it indeed leads to no change in the

GPNM results. This is because in another update UD1, SE1 happens to establish the

collaboration with TE2, making all the PMs in the data graph be connected with a

TE within 2 hops. Therefore, the effects of UP1 and UD1 eliminate each other.

It is non-trivial to identify the elimination relationships among the updates because

there exist both single-graph elimination relationships and cross-graph elimination re-

lationships. In addition, if update Ua eliminates update Ub, and update Ub eliminates

update Uc, there exists a hierarchical structure of them, which applies to all the elim-

ination relationships. As it is computationally expensive to deliver GPNM results by

investigating each of the elimination relationships among the updates, it is beneficial to

build up an index to record the hierarchical structure of all the elimination relationship-

s. Therefore, how to build up an index structure to record the hierarchical structure

of all the elimination relationships, including both single-graph elimination relation-

ships and cross-graph elimination relationships, that supports the development of an

efficient algorithm to deliver the GPNM results by making use of the index. is another
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challenging problem of elimination relationships.

1.1.3 Graph partition

The third challenge of this thesis is how to efficiently compute the shortest path length

between any two nodes to accelerate the GPNM procedure without destroying the

connectivity of the graphs.

In the GPNM procedure, we need to consider whether the shortest path length

between two nodes can satisfy the path length constraints on the pattern graph. The

computation of the shortest path length between any two nodes is very time-consuming

especially in big data graphs (e.g., social networks and traffic networks). In addition, as

we mentioned above, the graphs are updated frequently and it is also time-consuming

to update the shortest path length between any two nodes. In order to overcome this

bottleneck, we aim to propose a strategy to partition the graph into subgraphs to accel-

erate the GPNM procedure.

In the partition strategy, we must ensure that the connectivity of the data graph is

not destroyed and that the shortest path length between any two nodes can be efficiently

updated when the graphs are modified.

1.2 Contributions of the Thesis

Targeting the above significant and challenging problems in the GPNM, this thesis has

the following three major contributions:

1. The first contribution of the thesis is to propose an incremental GPNM method,

called INC-GPNM, which aims to deliver the GPNM results by considering the

updates of both pattern graph and data graph.

(a) In INC-GPNM, we first propose a new index to incrementally record the

shortest path length range between label types in GD, and then propose a
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novel method to incrementally investigate the affected parts of GD based

on the updates of GD and GP .

(b) Based on the index structure and our novel search strategies, INC-GPNM

can efficiently deliver node matching results taking the updates of GP and

GD as input, and can greatly reduce the query processing time with im-

proved time complexity.

(c) The experiments on seven real-world social graphs demonstrate that our

INC-GPNM can significantly outperform the most promising state-of-the-

art static GPNM method [40], and reduces the query processing time by an

average of 40.24%.

2. The second contribution of the thesis is to propose an efficient GPNM method,

called EH-GPNM, to answer repeating GPNM queries with multiple updates

only in data graphs. To the best of our knowledge, EH-GPNM is the first GPNM

solution that takes the elimination relationships between multiple updates in a

data graphGD and the hierarchical structure of the elimination relationships into

consideration.

(a) We first propose an effective method to identify the single-graph elimina-

tion relationships existing among updates in a data graphGD by comparing

the affected nodes for each pair of updates.

(b) We then generate an Elimination Hierarchy Tree (EH-Tree) to record the

hierarchical structure of the single-graph elimination relationships. By us-

ing an EH-Tree, our method can efficiently investigate each of the elimina-

tion relationships between the updates.

(c) The experiments conducted on five real-world social graphs demonstrate

that our EH-GPNM method significantly outperforms the state-of-the-art

GPNM methods [40, 106], by reducing the query processing time by aver-

ages of 51.23% and 22.59% respectively.
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3. The third contribution of the thesis is to propose a more efficient GPNM method,

UA-GPNM, to answer GPNM queries with multiple updates in both pattern

graph and data graph. To the best of our knowledge, UA-GPNM is the first

GPNM solution that considers both the single-graph elimination relationships

and cross-graph elimination relationships. In addition, UA-GPNM also propose

a graph partition method to accelerate the GPNM procedure.

(a) We propose effective methods to detect the single-graph elimination rela-

tionships in a data graph and in a pattern graph, and cross-graph elimina-

tion relationships between a data graph and a pattern graph.

(b) We build up an Elimination Hierarchy Tree (EH-Tree) to index the hierar-

chical structure of all the different types of elimination relationships, which

enhances query processing efficiency.

(c) We propose a graph partition method and, based on the method, the effi-

ciency of GPNM can be further improved.

(d) The experiments conducted on five real-world social graphs demonstrate

that our UA-GPNM with graph partition strategy significantly outperforms

the state-of-the-art GPNM methods [106, 105] by reducing the the query

processing time by an average of 58.60% and 35.29% respectively.

1.3 Roadmap of the Thesis

The thesis is structured as follows:

Chapter 2 starts with a comprehensive literature review on GPSM and GPNM.

Chapter 3 presents an incremental GPNM method, called INC-GPNM, which aims

to deliver the GPNM results considering the updates of both pattern graph and data

graph. This chapter includes our paper published at IEEE ICDE 2018 [106].

Chapter 4 presents an efficient GPNM method, called EH-GPNM, to answer GP-

NM queries with multiple updates in data graphs. It considers the single-graph elimi-



§1.3 Roadmap of the Thesis 11

nation relationships between multiple updates in a data graph GD and the hierarchical

structure of these elimination relationships. This chapter includes our paper published

by IEEE TKDE 2019 [105], which is available online.

Chapter 5 presents a more efficient GPNM method to answer GPNM queries with

multiple updates in both pattern graph and data graph, called UA-GPNM, which con-

siders both the single-graph elimination relationships and cross-graph elimination rela-

tionships. In addition, UA-GPNM also proposes a graph partition method to accelerate

the GPNM procedure. This chapter includes our paper submitted to IEEE ICDE 2019.

Finally, Chapter 6 concludes the work in this thesis and presents directions for

future research opportunities.



Chapter 2

Literature Review

The existing related methods can be classified into two categories based on the match-

ing results they deliver: i.e., (1) Graph Pattern based Subgraph Matching (GPSM),

and (2) Graph Pattern based Node Matching (GPNM). In this section, we review these

two categories respectively. In GPSM, we focus on the existing static and incremen-

tal methods based on the exact and inexact matching results, respectively. To the

best of our knowledge, there is no existing incremental GPNM method. Therefore,

Section 2.2 only reviews the existing static GPNM methods based on the exact and

inexact matching results.

In particular, this chapter is organized as follows:

• Section 2.1 introduces the existing static and incremental GPSM methods based

on the exact and inexact matching results, respectively.

• Section 2.2 introduces the existing static GPNM methods based on the exact and

inexact matching results.

• Section 2.3 presents a summary of the existing studies.

2.1 Graph Pattern based Subgraph Matching (GPSM)

GPSM aims to identify all the matching subgraphs of a pattern graph GP in a data

graph GD. It has been increasingly applied to knowledge discovery, traffic network

analysis, intelligence analysis, and social network analysis, among other areas [17, 23,

12
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27, 110, 35]. Conventional subgraph matching solutions are based on the subgraph

isomorphism (SI) problem [114, 32], in which the matches are based strictly on graph

structure.

However, the subgraph isomorphism problem is an NP-Complete problem [46],

which makes it computationally expensive to find the exact matching subgraphs, e-

specially in large graphs. In light of the intractability of the problem, approximate

solutions have been studied to find inexact matches (see [45, 100] for surveys), that

have fewer restrictions but more capacity to extract more useful subgraphs with better

efficiency because it supports simulation relations instead of an exact match of edges

and nodes.

In real scenarios, nodes and edges in both GP and GD are usually frequently up-

dated over time [10]. In order to efficiently deliver the GPSM results when graphs are

updated, the incremental GPSM methods have been proposed.

In this section, we will review the existing static and incremental GPSM methods

based on the exact and inexact matching results, respectively.

2.1.1 Static GPSM

Exact static GPSM: One of the earliest and most-cited approaches of subgraph isomorphism-

based static GPSM algorithms was proposed by Ullmann [115]. This algorithm op-

erates on single untyped graphs with directed or undirected edges. If the user wishes

to find matches to the pattern graph GP in the data graph GD (shown in Fig. 2.1),

Ullmann’s basic approach is to enumerate all possible mappings of vertices in GP to

those inGD using a depth-first tree-search algorithm. Each node at level i of the search

tree maps vertex VPi in GP to some vertex in GD (shown in Fig. 2.2). Each path from

root to leaf in the search-tree represents a complete mapping of the vertices in GP to

those in GD. Any such mapping that preserves adjacency in P and G (i.e., vertices that

are neighbors in GP map to vertices that are neighbors in GD) represents an isomor-

phism from GP to a subgraph of GD. If no such mapping preserves adjacency, then
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Figure 2.1: An example pattern graph GP and data graph GD of Ullmann

Figure 2.2: A partial search-tree for Ullmann’s algorithm.
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no isomorphism exists. Since the search-space considered by this approach increas-

es exponentially with the size of the input graphs, Ullmann suggested a refinement

procedure to prune unpromising sub-trees, eliminating the need to search them. This

procedure eliminates vertex mappings from consideration based on three criteria:

• Vertex degree: If the degree of vertex VPi (i.e., the number of edges adjacent to

VPi) is greater than the degree of VGj then VPi cannot map to VGj . For example,

in Fig. 2.1, VP1 cannot map to VG4 since degree(VP1)=2 and degree(VG4)=1;

• One-to-one mapping of vertices: Once decided to map VPi to VGj , along a

particular path through the tree, VPi cannot be mapped with any other vertex in

GD and we cannot map any other vertex in GP to VGj;

• Forward checking: Working the way down the tree, for any possible vertex

mapping that remains, the mapping can be eliminated if it cannot preserve ad-

jacency between GP and GD. For example, suppose that VP1 can be mapped to

VG1 and we are considering the possible mapping from VP2 to VG3. Regardless

of what we do further down the tree, mapping VP2 to VG3 cannot possibly pre-

serve adjacency since VP1 and VP2 are neighbors in GP , but VG1 and VG3 are

not neighbors in GD. So, we can eliminate the mapping from VP2 to VG1 from

further consideration.

As Ullmann’s algorithm expands a particular path in the search-tree, one of two

things happens:

• The algorithm eliminates all possible mappings for some vertex in GP . In this

case, the path cannot yield a match. The matching process can be safely stopped,

without expanding additional nodes along the current path, and backtrack;

• The algorithm reaches a leaf in the tree, having mapped each vertex in GP to a

vertex in GD. In this case, the path represents a match for GP in GD (shown in

Fig. 2.2).
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As noted by Messmer and Bunke, despite the refinement procedure, Ullmann’s algo-

rithm has exponential worst-case time-complexity [87]. Messmer and Bunke proposed

an alternative method for exact subgraph isomorphism that has only quadratic worst-

case time complexity. Their algorithm also operates on multiple untyped graphs with

directed or undirected edges. The approach is to pre-process the graph data set to gen-

erate all possible permutations of the graph adjacency matrices offline and use them

to build a decision tree. At run time the decision tree is used to classify the adjacency

matrix of the pattern graph. The drawback to this approach is that the size of the deci-

sion tree grows exponentially with respect to the size of the data graph. To address this

issue, the authors present pruning techniques, which are effective in reducing decision

tree size. However, the pruned decision trees can no longer guarantee polynomial run

times.

Another backtracking algorithm is the one presented in [97] by Schmidt and Druf-

fel. It uses the information contained in the distance matrix representation of a graph

to establish an initial partition of the graph nodes. This distance matrix information is

then used in a backtracking procedure to reduce the search tree of possible mappings.

A more recent algorithm, known as VF, is based on a depth-first search strategy, with

a set of rules to efficiently prune the search tree. Such rules in case of isomorphism

are shown in [31].

With regards to the graph isomorphism problem, it is also necessary to mention the

McKay’s nauty algorithm [85], which detects isomorphism between untyped graphs

that may be directed or undirected. Nauty uses transformations to reduce graphs to a

canonical form that may be checked relatively quickly for isomorphism [119]. Specif-

ically, the algorithm computes invariants for each vertex in a graph (e.g., degree and

counts of adjacent vertices of various degrees) that are used for candidate selection.

Nauty partitions a graph into non-overlapping sets of vertices based on invariant val-

ues. Sets having the same invariant values can then be compared between graphs. If

all sets are isomorphic between two graphs, then the two graphs must be isomorphic.

Alternatively, if two graphs contain sets with differing invariants, there is no need to
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test isomorphism between the sets directly.

Another possible approach to the isomorphism problem is the one presented in

[19]. Instead of reducing the complexity of matching two graphs, the authors attempt

to reduce the overall computational cost when matching a sample graph against a large

set of prototypes. The method performs the matching in quadratic time with the size

of the input graph and independently on the number of prototypes. It is obviously

convenient in applications requiring the matching of a graph against a database, but

the memory required to store the pre-processed database grows exponentially with the

size of the graphs, making the method suitable only for small graphs. So one of the

authors concludes in [86] that in cases of one-to-one matching other algorithms are

more suitable.

GraphGrep [48] is another popular SI method as well. In GraphGrep, it operates

in the graph-transaction setting on undirected graphs with typed vertices. The algo-

rithm makes implicit use of vertex type information to perform matching. Matching

in GraphGrep relies on the concept of a label path, which is a sequence of type labels

along a path in a graph (e.g., actor-movie director-movie-actor). During index con-

struction, the algorithm computes a “fingerprint” for each graph in the data set. The

fingerprint of a graph is a set of pairs h(labelPath), count , one for each unique label

path in the graph. Here h is a hash function and count is the number of instances of

the specified label path in the graph. During candidate selection, the data set is filtered

based on the fingerprint of the pattern graphGP . Specifically, if a graphGD has a low-

er count value than GP for any labelPath, then GD cannot contain an exact match for

GP and GD is eliminated from consideration. During the subgraph matching phase,

GP is divided into a set of overlapping label paths, which are compared against the

candidate graphs. The label paths of the candidate graphs that match GP ’s label paths

may be combined into matching subgraphs.

Yuan et al., [129] realized that, in real applications, the graph data are often noisy,

incomplete and inaccurate. In other words, there are many uncertain graphs. There-

fore, in [129], Yuan et al., studied pattern matching in a large uncertain graph. Specif-
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ically, they aimed to retrieve all qualified matches of a query pattern in the uncertain

graph. Although pattern matching over an uncertain graph is NP-Complete, they em-

ployed a filtering-and-verification framework to speed up the search. In the filtering

phase, they proposed a probabilistic matching tree, a PM-tree, based on match cuts

obtained by a cut selection process. Based on the PM-tree, they devised a collective

pruning strategy to prune a large number of unqualified matches. During the verifica-

tion phase, they developed an efficient sampling algorithm to validate the remaining

candidates. Furthermore, Yuan et al., [130] proposed a tree index structure that con-

tains the best upper bounds and collective pruning techniques to reduce the search

space for retrieving matches from large uncertain graphs.

In recent years, due to the high time complexity of subgraph isomorphism, some

parallel algorithms have been proposed to improve the matching efficiency. In [20],

Carletti et al., proposed VF3P, a parallel algorithm to solve subgraph isomorphism.

The effectiveness of the proposed algorithm was proved using very large and dense

graphs considering three performance measures: the speed, efficiency and memory us-

age. On the base of the achieved results they demonstrated that the proposed algorithm

is highly efficient and able to scale with respect to the number of used CPUs. Nev-

ertheless, a deeper analysis can be performed to explore other aspects impacting the

performance and further improvements to the efficiency can be achieved by adopting

different communication schemas and agglomerations. In [118], Wang et al., proposed

the StarMR star-decomposition-based query processor for efficiently answering sub-

graph matching queries in large RDF graph data using MapReduce. Moreover, they

also developed two optimization strategies, including RDF property filtering and post-

poning Cartesian product operations, to improve the basic StarMR algorithm. In their

method, query graphs are decomposed into a set of stars that utilize the semantic and

structural information embedded RDF graphs as heuristics. Two optimization tech-

niques are proposed to further improve the efficiency of their algorithms. One tech-

nique, called RDF property filtering, filters out invalid input data to reduce interme-

diate results; the other is to improve the query performance by postponing the Carte-
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sian product operations. In [107], Sun et al., develop an efficient parallel subgraph

enumeration algorithm for a single machine, named LIGHT. Their algorithm reduces

redundant computation in DFS by delaying the materialization of pattern vertices until

necessary and converting the candidate set computation into finding a minimum set

cover. Moreover, they parallelize their algorithm with both SIMD (Single-Instruction-

Multiple-Data) instructions and SMT (Simultaneous Multi-Threading) technologies

in modern CPUs. Lai et al., [69] pointed out that the existing sequential algorithms

for subgraph enumeration fall short in handling large graphs due to the involvement

of computationally intensive subgraph isomorphism operations. Thus, some recen-

t researches focus on solving the problem using MapReduce. Nevertheless, exiting

MapReduce approaches are not scalable to handle very large graphs since they either

produce a huge number of partial results or consume a large amount of memory. Mo-

tivated by this, Lai et al., further proposed a new algorithm TwinTwigJoin based on a

left-deep-join framework in MapReduce, in which the basic join unit is a TwinTwig

(an edge or two incident edges of a node). They showed that in the random graph

model, TwinTwigJoin is instance optimal in the left-deep-join framework under rea-

sonable assumptions, and they devised an algorithm to compute the optimal join plan.

They further discussed how their approach can be adapted to handle the power-law

random graph model. Three optimization strategies were explored to improve their

algorithm. Ultimately, by aggregating equivalent nodes into a compressed node, the

authors constructed the compressed graph, by which the subgraph enumeration was

further improved.

Inexact static GPSM: Early approaches to inexact static GPSM were proposed by

Tsai and Fu [112] and Shapiro and Haralick [99]. Both approaches are based on the

idea of measuring similarity between graphs as the probability that one graph could

result from a random alteration of the other. Both approaches match based on graph

structure and on the attributes of individual graph elements. They are implemented

using search-based algorithms with various pruning strategies. Tsai and Fu require an
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exact structural match, but allow for attribute value differences. They proposed cal-

culating empirical probabilities of attribute deformations based on observations from

data. In addition, they proposed the weighted distance and weighted-square-error dis-

tance measures for cases where such data is unavailable. Shapiro and Haralick support

inexact structural matching by considering graphs to match only if the amount of non-

matching structure falls within some threshold. More important structural elements

are given more weight and the presence or absence of these elements more heavily

influences the determination of a match. Likewise, graphs only match if differences

between attribute values of corresponding graph elements fall within some threshold.

SUBDUE was proposed by Cook and Holder [37], which operates in a single-graph

setting with typed vertices and typed, directed edges. SUBDUE is a graph mining

system, but performs pattern matching as a supporting step in the mining process.

The general approach is similar to Ullmann’s. They constructed a search-tree, where

the nodes at the ith level map the ith vertex from GP to some vertex in GD. A path

through the tree represents a complete mapping of vertices. Since SUBDUE performs

inexact matching, each node in the search-tree has an associated cost that captures

how well GP matches GD. If GP and GD are exactly isomorphic, there will be a

mapping between them with cost zero. The less similar GP and GD are, the higher

the cost will be. These costs are based on graph edit distance [90]. The edit distance

between two graphs is the minimum cost of edit operations required to transform one

graph into another. Edit operations include deletion, insertion, and substitution of

vertices and edges. For inexact matching, the goal state is the final state (i.e., leaf)

with the lowest cost of all final states. Since the search-space is again exponentially

large, SUBDUE applies a branch-and-bound search to the tree. Because branch-and-

bound is guaranteed to find an optimal solution and thus, the search terminates once

any complete mapping is found. The algorithm also allows an upper limit to be placed

on the number of search nodes considered, which can lead to a significant savings in

search time at the expense of solution quality.
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LAW [122] performs inexact pattern matching on typed, directed graphs. Patterns

are represented as graphs with typed vertices and edges. The pattern language al-

so supports the construction of more sophisticated pattern queries through constraints

between vertices, hierarchy (i.e., sub-patterns), disjunction, and cardinality (i.e., the

number occurrences of a vertex or edge). Like SUDBUE, LAW uses graph edit dis-

tance to measure similarity between potential matches. LAW’s graph edit operations

include deletion and replacement of vertices and edges. LAW uses ontological dis-

tance to measure differences between types. The LAW search algorithm is based on

A* and selects tree nodes for expansion based on the minimum worst-case cost. This

cost is calculated as the true cost of the mappings so far plus the cost of deleting all

unexplored vertices and edges in the pattern. Although the worst-case cost heuristic

is not admissible (in fact, it is an upper bound on the actual cost), LAW does find

the lowest-cost matches because, unlike pure A*, LAW uses the heuristic only as a

selection rule and not as its termination condition.

TMODS [29, 52] uses genetic algorithms to find exact and inexact pattern matches

in directed, attributed graphs. Patterns may specify both structural and attribute char-

acteristics. TMODS searches for patterns from the bottom-up, finding sub-patterns

first and then composing them into more complex higher-level patterns. Coffman et

al., did not describe the TMODS pattern matching algorithm in further detail.

TRAKS [2] performs inexact pattern matching in typed, directed graphs. Matches

are ranked by similarity to the original pattern, taking into account ontological distance

between types. Entities in a pattern are processed in ascending order according to the

frequency of their type to rapidly eliminate non-matches. The algorithm searches for

matches in a depth-first fashion by expanding partial matches by one vertex or edge at

a time.

In 2010, Fan et al., proposed Bounded Graph Simulation (BGS) [39], which has

fewer restrictions but more capacity to extract more useful subgraphs with better effi-

ciency because it supports simulation relations instead of an exact match of edges and

nodes. In BGS, each edge in GP is labeled with either a positive integer k or a symbol



§2.1 Graph Pattern based Subgraph Matching (GPSM) 22

“*”. k is the constraint of the maximal shortest path length of a match in GD and “*”

indicates that there are no path length constraints. Then, the match of an edge could

be a path if the start node and the end node of the path in the data graph have the same

labels as the corresponding nodes of the edge in the pattern graph respectively. In so-

cial networks, according to the theory of “six degrees of separation” [88], on average,

any two people can be connected in about six hops. Therefore, k is usually set as a

small integer in social networks [39].

BGS has the disadvantage of capturing the topology of data graphs, i.e., graphs

may have a structure that is drastically different from the pattern graphs they match,

and the matches found are often too large to understand and analyze. As an exten-

sion work of [39], in [84], to rectify these problems, Ma et al., further proposed a

notion of Strong Simulation, a revision of graph simulation, for graph pattern match-

ing. In [84], Ma et al., identified a set of criteria for preserving the topology of graphs

matched. Strong simulation preserves the topology of data graphs and identifies a

bounded number of matches. Their work showed that strong simulation retains the

same complexity as earlier extensions of graph simulation, by providing a cubic-time

algorithm for computing strong simulation. They also presented the locality property

of strong simulation, which allowed us to develop an effective distributed algorithm to

conduct graph pattern matching on distributed graphs.

In recent years, simulation-based methods have been proposed to support many

emerging applications. For instance, in [80], Liu et al., first conceptually extended

Bounded Simulation to Multi-Constrained Simulation (MCS), and proposed a novel

NP-Complete Multi-Constrained Graph Pattern Matching (MC-GPM) problem. Then,

to address the efficiency issue in large-scale MC-GPM, they proposed a new concept

called Strong Social Component (SSC), consisting of participants with strong social

connections. They also proposed an approach to identify SSCs, and propose a nov-

el index method and a graph compression method for SSC. Moreover, they devised

a heuristic algorithm to identify MC-GPM results effectively and efficiently without

decompressing graphs.
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In [131], Yuan et al., discussed the problem of subgraph similarity matching, where

given a pattern graph and a data graph, subgraph similarity matching is to retrieve all

matches of the pattern graph in data graph with the number of missing edges bounded

by a given threshold. A data graph can be extremely large, (e.g., a web-scale graph

containing hundreds of millions of vertices and billions of edges). to address this

problem, the authors investigated subgraph similarity matching for a web-scale graph

deployed in a distributed environment. They proposed distributed algorithms and op-

timization techniques that exploit the properties of subgraph similarity matching, so

that they can well utilize the parallel computing power and lower the communication

cost among the distributed data centers for query processing. Specifically, they first

relaxed and decomposed the pattern graph into a minimum number of sub-queries.

Next, they sent each sub-query to conduct the exact matching in parallel. Finally, they

scheduled and joined the exact matches to obtain final query answers. Moreover, their

workload-balance strategy further accelerated the query processing.

Lyu et al., [83] highlighted that, most of the existing solutions for subgraph search-

es follow the pruning-and-verification framework, which prunes false answers based

on features in the pruning phase and performs subgraph isomorphism testings on the

remaining graphs in the verification phase. However, they are not scalable to handle

large-sized data-graphs and query-graphs due to three drawbacks. First, they rely on a

frequent subgraph mining algorithm to select features which is expensive and cannot

generate large features. Second, they require a costly verification phase. Third, they

process features in a fixed order without considering their relationship to the query-

graph. In this paper, Lyu et al., addressed the three drawbacks and proposed new

indexing and query processing algorithms. In indexing, they selected features directly

from the data-graphs without expensive frequent subgraph mining. The features form a

feature-tree that contains all-sized features and both the cost sharing and pruning pow-

er of the features are considered. In query processing, they proposed a verification-free

algorithm, where the order to process features is query-dependent by considering both

the cost sharing and the pruning power. They explored two optimization strategies to
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further improve the algorithm efficiency. The first strategy applies a lightweight graph

compression technique and the second strategy optimizes the inclusion of answers.

In [127], Yang et al., studied the problem of diversified subgraph querying in a

large graph, which is to find k subgraphs that are isomorphic to a given query graph

with the maximum coverage. They proposed a novel level-based algorithm called

DSQL with an approximation guarantee. DSQL proceeds from low to high levels and

the level number refers to the number of common vertices of a newly selected subgraph

with the collected subgraphs.

2.1.2 Incremental GPSM

Social graphs are frequently updated, and it is computationally expensive to perform

a new procedure from scratch to find matching subgraphs when facing any updates.

Therefore, the incremental GPSM methods have been proposed.

Exact incremental GPSM: An early approach to exact incremental GPSM was pro-

posed in [96]. In this paper, Rudolf et al., proposed a way to represent and solve the

graph matching problem as a CSP. The main benefit of this approach is that they gain

direct access to the rich research findings in the CSP area; instead of inventing new

algorithms for graph matching from scratch, they can now apply well-elaborated CSP

solution algorithms right “out of the box”. Another important advantage is that the

actual solution algorithm becomes independent of the concrete graph model, allowing

to change the model without affecting the algorithm. Users need only to adapt the

translation step from the graph model into the CSP representation.

In [14], Borgwardt et al., extended frequent subgraph mining algorithms to time

series of graphs. In particular, they were looking for subgraphs that are topologically

frequent within a large graph and that show insertions and deletions of edges in the

same temporal order. They first searched for edges whose edge type is frequent within

the dynamic graph (neglecting edge existence strings). Among these, they first ensure
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that embeddings of candidates do not overlap by applying a greedy maximal indepen-

dent set algorithm. Then they count non-overlapping occurrences of each candidate.

Finally, they verify whether these embeddings constitute a frequent dynamic subgraph

(FDS), and if so, they mark these embeddings and rewrite the graph such that each

marked embedding of this FDS is represented by one super-node.

Rather than repeating the search of the template graph at each instance of change,

in [104], Stotz et al., proposed an incremental subgraph isomorphism approach. The

algorithm draws strongly from their previous state space search approach, TruST. They

have shown that the incremental search procedure generates solutions of the same (or

similar) quality in significantly lower computational times.

For the important application of graph pattern matching, community finding, in

[53], Greene et al., have described both a general model for tracking communities in

dynamic networks, and a fast, effective method based on the model that readily scales

to graphs. They have described an approach for bench-marking dynamic communi-

ty finding using synthetic graphs with embedded community events. Evaluations on

these synthetic networks show that the proposed method performs at least as well if not

better than static community finding. Additionally, Greene et al., performed a prelim-

inary evaluation on a real-world mobile call network. Their method uncovered a large

number of dynamic communities with different evolutionary characteristics in this net-

work, while requiring relatively little computational overhead. Their experiments on

the network suggest that the choice of the time step window size is important.

Recently, in [47], Gillani et al., studied the problem of GPSM over graph streams

using event-based and incremental evaluation models. Gillani et al., proposed a query-

based graph pruning technique to enable join-ahead pruning of unnecessary triples.

They used a bidirectional multi-map data structure to materialise a set of pruned ta-

bles. These tables are then processed using fast hash-join, thus further removing the

unnecessary triples. The final pruned set of triples is explored using a graph structure.

They named this technique as join-and-explore and it is index-free. Gillani et al., used

an automata-based model to guide the join and exploration process and extended these
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techniques to enable the incremental evaluation of graph streams, i.e., by joining the

new updates only with the matched triples within a window.

In order to give accurate and timely in manner recommendations for cold-start

users, in [132], Zhang et al., proposed an incremental graph pattern matching based

dynamic cold-start recommendation method (IGPMDCR), which updates similar users

for cold-start users according to the latest social relationship, and provides recommen-

dations based on the latest similar users’ records.

Given the history of a node-labeled graph in the form of graph snapshots, corre-

sponding to the state of the graph at different time instants, Semertzidis et al., in [98]

focused on the problem of efficiently finding the most durable patterns, that is, pat-

terns that persist over time, either continuously or collectively. They have proposed an

approach termed Durable Pattern that is able to identify durable patterns by travers-

ing a compact representation of the graph snapshots. They also introduced time and

neighborhood indexes on labels and nodes that boost the candidate patterns reduction.

In [78], Li et al., studied subgraph isomorphism issues with the timing order con-

straint over high-speed streaming graphs. They proposed an expansion list to effi-

ciently answer subgraph searches and proposed MS-tree to greatly reduce the space

cost. More importantly, they designed effectively concurrency management in their

computation to improve system’s throughput. For this, they first studied concurrency

management on subgraph matching over streaming graphs, then, evaluated their so-

lution on both real and synthetic benchmark datasets. Their extensive experimental

results confirm the superiority of their approach compared with the state-of-the-arts

subgraph match algorithms on streaming graphs.

Inexact incremental GPSM: An inexact algorithms have been studied for incremental

subgraph searching in [117]. In this paper, Wang et al., investigated a new problem in

continuous subgraph pattern searching in the situation where multiple target graphs are

constantly changing in a stream style, namely the subgraph pattern search over graph

streams. The proposed problem is clearly a continuous join between query patterns
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and graph streams where the join predicate is the existence of subgraph isomorphism.

Due to the NP-Complete of subgraph isomorphism checking, to achieve the real-time

monitoring of the existence of certain subgraph patterns, they avoided using subgraph

isomorphism verification to find the exact query stream subgraph isomorphic pairs but

aimed to offer an approximate answer that could report all probable pairs without ex-

cluding any of the actual answer pairs. They proposed a light-weight yet effective fea-

ture structure called Node-Neighbor Tree to filter false candidate query-stream pairs.

To reduce the computational cost, they further projected the feature structures into a

numerical vector space and conducted dominant relationship checking in the project-

ed space. They proposed two methods to efficiently check dominant relationships and

substantiate their methods with extensive experiments.

Based on BGS, Fan et al., [41] proposed an incremental approximate method to

identify the matching subgraphs. They proposed a revision of graph pattern matching

based on a notion of BGS. This yielded a cubic-time method for finding matches, as

opposed to the intractability of its counterpart via subgraph isomorphism. Moreover,

the method is able to capture more sensible matches in emerging applications. Fan

et al., also investigated the incremental pattern matching problem for matching de-

fined in terms of subgraph isomorphism, graph simulation, and BGS, from complexity

(boundedness) analysis to incremental algorithms. They showed that the incremental

matching problem is unbounded for matching based on all the three notions. Nonethe-

less, for graph simulation and BGS, they showed that their incremental matching prob-

lems are semi-bounded, and developed efficient incremental algorithms for (possibly

cyclic) patterns and batch updates. They have also developed incremental algorithms

for maintaining auxiliary data structures, that is, landmark and distance vectors. These

allow users to efficiently identify matches when data graphs are updated, minimizing

unnecessary re-computation. Their experimental results have verified the scalability

and effectiveness of their batch and incremental methods, using real-life and synthetic

data. They further experimented with real-life datasets in various domains, to identify

areas in which the revised matching is most effective. They also investigated opti-



§2.1 Graph Pattern based Subgraph Matching (GPSM) 28

mization techniques, as well as lower bounds for incremental matching by exploring

the usage patterns of real-life networks [120, 92, 68]. Finally, Fan et al., extended their

incremental matching methods to querying distributed graphs, using MapReduce. The

complexity of this method is more accurately characterized in terms of the size of the

area affected by the updates of data graphs, rather than the size of the entire input.

Targeting the labeled graph, in [126], Yang et al., considered the individual needs

of users and proposed a dynamic Top-K interesting subgraph query. This method es-

tablishes a novel graph topology feature index (GTSF index) including a node topology

feature index (NTF index) and an edge feature index (EF index), which can effectively

prune and filter the invalid nodes and edges that do not meet the restricted condition.

The multi-factor candidate set filtering strategy was proposed based on the GTSF in-

dex, which can be further pruned to obtain fewer candidate sets. Yang et al., then

proposed a dynamic Top-K interesting subgraph query method based on the idea of

the sliding window. This allowed them to realize the dynamic modification of the

matching results of the subgraph in the dynamic evolution of the label graph, to ensure

real-time and accurate query results. In addition, considering the factors, including

frequent Input/Output (I/O) and network communication overheads, the optimization

mechanism of the graph changes and an incremental maintenance strategy for the

index are proposed to reduce the significant cost of redundant operation and global

updates. The experimental results showed that the proposed method can effectively

manage a dynamic Top-K interesting subgraph query on a large-scale labeled graph.

Simultaneously, the optimization mechanism of graph changes and the incremental

maintenance strategy of the index can effectively reduce the maintenance overheads.

Kim et al., [66] proposed a fast and continuous subgraph matching system called

TurboFlux, which provides a high throughput over a fast graph update stream. Their

work shows that TurboFlux solved the problems of existing methods and efficiently

processed continuous subgraph matching for each update operation. They first pro-

posed the novel notion of a data-centric graph, which is an efficiently updatable graph

for storing partial solutions. Then, they proposed the edge transition model, which
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efficiently identifies which update operation can affect the current partial solutions

and/or contributes to generating positive/negative matches. They next presented the

detailed algorithms of TurboFlux under the edge transition model and explained how

the re-computation of subgraph matching for each update operation can be minimized.

In the real application of community finding, in [76], Li et al., studied the prob-

lem of finding persistent communities in a temporal network, in which every edge is

associated with a timestamp. They aimed to identify the communities that are persis-

tent over time and thus, proposed a novel persistent community model to capture the

persistence of a community. To solve this problem, they first proposed a near-linear

temporal graph reduction algorithm to prune the original temporal graph substantially,

without loss of accuracy. Then, in the reduced temporal graph, they presented a novel

branch-and-bound algorithm with several carefully designed pruning rules to efficient-

ly find the maximum persistent communities efficiently. In addition, in [74], Li et al.,

further proposed a method to seek cohesive subgraphs in a signed network, in which

each edge can be positive or negative, denoting friendship or conflict, respectively.

2.2 Graph Pattern based Node Matching (GPNM)

Applying the existing GPSM methods to solve the GPNM problem incurs a high time

complexity as they need to deliver the entire matching subgraphs in GD [39, 38].

Therefore, several GPNM methods have been proposed and aim to find some nodes

based on a specified structure between those nodes, such as in the applications of group

finding [70] and expert recommendation [89]. To the best of our knowledge, there is no

existing incremental GPNM method. Therefore, this section only reviews the existing

static GPNM methods based on the exact and inexact matching results respectively.
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2.2.1 Static GPNM

Exact static GPNM: In [111], Tong et al., focused on large graphs where nodes have

attributes, such as a social network where the nodes are labeled with each person’s job

title. In such a setting, they aimed to find subgraphs that match a user query pattern.

For example, an query would be, “find a CEO who has strong interactions with a Man-

ager, a Lawyer, and an Accountant, or another structure as close to that as possible”.

Similarly, a loop query could help detect a money laundering ring. Traditional SQL-

based methods, as well as more recent graph indexing methods, will return no answer

when an exact match does not exist. Their method can find exact matching nodes, and

it will present them to the user in their proposed order.

In [51], Gou et al., proposed two efficient algorithms, DP-B and DP-P, for retriev-

ing top-ranked matching nodes from large graphs. Their first algorithm, DP-B, is able

to retrieve exact top-ranked answer matching nodes from a potentially exponentially

number of matches in time and space linear in the size of the data inputs even in the

worst case. Further, beyond the linear-cost result of DP-B, their second algorithm, DP-

P, could require far less than linear time and space cost in practice. Their algorithms

are the first to have these performance properties.

In [134], Zou et al., proposed a novel pattern match problem over a large graph.

They transformed vertices in graphs into points in a vector space via subgraph iso-

morphism methods, converting a pattern match query into a distance-based multi-way

join problem over vector space. Several pruning techniques are developed to reduce

the search space significantly, such as neighbor area pruning, triangle inequality prun-

ing and hash join. They also designed a cost estimation technique to identify a cheap

query plan (i.e., join order).

Team formation is one of the typical applications of GPNM [135, 8, 25, 121].

Lappas et al. [70] introduced the problem of discovering a team of experts from a

social network, that satisfies all attributed skills required for a given task with low

communication cost. Kargar and An [64] studied the team formation problem with a
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team leader who communicates with each team member to monitor and coordinate the

project. Most of the team formation studies focus on a tree substructure, as opposed

to the densely connected subgraph required by community searches. Gajewar and

Sarma [44] extended the team formation problem to allow for potentially more than

one member possessing each required skill, and use maximum density measure or

minimum diameter as the objective.

Social circle discovery is one special kind of GPNM applications in social net-

works [61], where, for a query user, social circles are communities formed only by

their friends. The induced subgraph of an entire network producted only by their

friends and themselves is called “ego network”. The authors in [73] proposed an un-

supervised community model to automatically detect circles in ego networks. The

discovered circles are disjointed, overlapping and hierarchically nested. Social circles

can affect the process of information diffusion in social contagion [113]. A social

circle represents the distinct social context of a user, and the multiplicity of social

contexts is termed “structural diversity” [113]. Taking one social contagion process

in Facebook as an example, a user is much more likely to join Facebook and become

engaged if he or she has a larger structural diversity. The authors in [56, 57] studied

the problem of finding k users with the highest structural diversity in graphs, which

can be beneficial to political campaigns, promotion of health practices, marketing, and

so on.

Keyword search over a graph aims to find a substructure of the graph containing all

or some of the input keywords. Most of previous methods in this area find connected

minimal trees that cover all the query keywords. In [11], a backward search algorithm

for producing Steiner trees was presented. A dynamic programming approach for find-

ing Steiner trees in graphs was presented in [36]. Although the dynamic programming

approach has exponential time complexity, it is feasible for input queries with small

number of keywords. In [50], the authors proposed algorithms that produce Steiner

trees with polynomial delay. The algorithms follows the Lawlers procedure [71]. Due

to the NP-Complete of the Steiner tree problem, producing trees with distinct roots was
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introduced in [63]. BLINKS improved the work of [63] by using an efficient indexing

structure [55]. Recently, it was shown that finding GPNM results rather than trees can

be more useful and informative for the users. However, the current tree or graph based

methods may produce answers in which some content nodes (i.e., nodes that contain

input keywords) are not very close to each other. In addition, when searching for an-

swers, these methods may explore the whole graph rather than only the content nodes.

This may lead to poor performance in execution time. To address the above problems,

in [65], Kargar et al., proposed the problem of finding r-cliques in graphs. An r-clique

is a group of content nodes that cover all the input keywords and the distance between

each two nodes is less than or equal to r. An exact algorithm was proposed that finds

all r-cliques in the input graph. In addition, an approximation algorithm that produces

r-cliques with 2-approximation in polynomial delay was proposed.

Community search is an important problem in GPNM. Given a graph and a set of

query nodes, the community search problem aims to identify a cohesive subgraph con-

taining the query nodes. Community search has recently attracted significant attention,

fueled by applications such as advertising and viral marketing, content recommenda-

tion, and team formation [34]. A number of criteria to assess the goodness of a commu-

nity have been proposed, such as random-walk-based measures [109, 67], or density-

based measures [33, 58, 75, 123, 72, 49, 22]. Sozio and Gionis [103] introduced

the term “community-search problem”, which they formalized from a combinatorial-

optimization perspective as the problem of finding a connected subgraph that contains

all query vertices and maximizes the minimum degree. Minimum degree has in fact

been shown to be an effective way of measuring the goodness of a community [13, 34].

In [95], Ruan et al., discussed a very simple approach of combining content and

link information in graph structures for the purpose of community discovery, a fun-

damental task in network analysis. Their approach hinges on the basic intuition that

many networks contain noise in the link structure and that content information can

help strengthen the community signal. This enables elimination of the effect of noise

(false positives and false negatives), which is particularly prevalent in online social
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networks and web-scale information networks. Specifically, they introduce a measure

of signal strength between two nodes in the network by fusing their link strength with

content similarity. Link strength is estimated based on whether the link is likely (with

high probability) to reside within a community. Content similarity is estimated through

cosine similarity or the Jaccard coefficient. They discussed a simple mechanism for

fusing content and link similarity, then presented a biased edge sampling procedure

that retains edges that are locally relevant for each graph node. The resulting back-

bone graph can be clustered using standard community discovery algorithms such as

Metis and Markov clustering.

In recent years, local search for communities in real graphs is attracting ever-

increasing research interests [28, 5, 116, 33]. Aaron [28] first proposed the problem

of finding a community with size constraint k for a certain vertex. He used “local

modularity” as the community goodness measure, which characterized the relative

density within the community to outside of the community. According to the new

measure, he proposed a heuristic algorithm with quadratic time complexity regarding

to k. Bagrow [5] further improved the performance by selecting the vertex with largest

“outwardness”, where outwardness of vertex v is the number of v’ neighbors outside

the community minus the number inside. Local search of community is widely used

in existing Sybil defense schemes [116], where the local community around a trusted

node is also considered trustworthy [116]. Cui [33] studied the overlapping structure

of local search. These local search methods [28, 5] find communities with size con-

straint to limit the search space. As a result, they are not guaranteed to find the best

community under a corresponding community goodness measure. Another weakness

is that the size constraint as an input parameter is difficult to select. In general, each

vertex has its own the most appropriate community size. Predefining a global param-

eter or testing different parameters blindly can hardly find meaningful results. To deal

with the limitation of the existing work, in [34], Cui et al., investigated the problem

of finding the best community containing a given query vertex in its neighborhood.

They proposed a local search method for this purpose. Local search is more efficient
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than global search since global search needs to visit all vertices in the network for

community detection. They addressed the local search challenge that arises from the

non-monotonicity of community goodness measure and proposed the CST and the

CSM algorithms to solve a variety of community search problems.

In [7], Barbieri et al., focused on the min-degree-based formulation of communi-

ty search and propose a novel method that overcomes the limitations of existing ap-

proaches. They pointed out that the community-search problem based on min-degree

can be solved in linear time in the size of the input graph. Specifically, the algorith-

m by Sozio and Gionis [103] is a global search (GS) method that needs to visit the

entire input graph, thus being computationally expensive on large graphs. A more ef-

ficient solution has been recently proposed by Cui et al [34]. Their local search (LS)

method however works only for single-vertex queries. Then, in their work [7], Barbi-

eri et al., proposed an approach that improves upon the efficiency of those methods,

including the method by Cui et al [34]. on the special case of a single query vertex.

Barbieri et al., did so while still keeping generality, as their method is able to handle

multiple query vertices. In addition, in the approach they proposed in this work they

do not explicitly constrain the size of the communities, rather they aim at finding the

smallest-sized solution among all the optimal ones. Thus, they are able to produce

communities that are on average orders of magnitude more effective, (i.e., smaller and

denser) than global and local search methods. Moreover, unlike a constrained glob-

al search, their approach achieves high efficiency, identifies optimal communities and

requires no parameters.

Community search in attributed graphs aims to identify all densely connected com-

ponents with homogeneous attributes [133, 26, 95]. Zhou et al. [133] modelled the

community detection problem as graph clustering, and combined structural and at-

tribute similarities through a unified distance measure. When high-dimensional at-

tributed communities are difficult to interpret or discover, [59, 54] considered subspace

clustering on high-dimensional attributed graphs. A survey of clustering on attributed

graphs can be found in [15]. Community detection in attributed graphs is to find all
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communities of the entire graph, which is clearly different from the goal of query-

based community search. Moreover, it is practically hard and inefficient to adapt the

above community detection approaches for online attributed community search: com-

munity detection is inherently global and much of the work involved may be irrelevant

to the community being searched.

In [75], Li et al., noted that many previous studies on community search do not

consider the influence of a community; thus, in [75], Li et al., introduced a novel com-

munity model called k-influential community based on the concept of k-core, which

can capture the influence of a community. Based on the new community model, they

proposed a linear-time online search algorithm to find the top-k k-influential commu-

nities in a network. To further speed up the influential community searching algorithm,

they devised a linear-space index structure that supports efficient search of the top-k

k-influential communities in optimal time. They also proposed an efficient algorithm

to maintain the index when the network is frequently updated.

Fang et al., [43] investigated the attributed community query (or ACQ), which

returns an attributed community (AC) for an attributed graph. Due to the recent de-

velopments of gigantic social networks (e.g., Flickr, Facebook, and Twitter), the topic

of attributed graphs has attracted attention from industry and research communities

[124, 11, 36, 55, 63, 128, 65]. An attributed graph is essentially a graph associated

with text strings or keywords. The AC is a subgraph of data graph, which satisfies

both structure cohesiveness (i.e., its vertices are tightly connected) and keyword co-

hesiveness (i.e., its vertices share common keywords). The AC enables a better un-

derstanding of how and why a community is formed (e.g., members of an AC have

a common interest in music, because they all have the same keyword “music”). An

AC can be “personalized”; for example, an ACQ user may specify that an AC re-

turned should be related to some specific keywords like “research” and “sports”. To

enable efficient AC search, they develop the CL-tree structure and three algorithms

based on it. In contrast, the model [60] is based on k-truss in structure with a relaxed

attribute function. They formulated their problem of finding attributed truss commu-
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nities (ATC), as finding all connected and close k-truss subgraphs containing node v,

that are locally maximal and have the largest attribute relevance score among such

subgraphs. They designed a novel attribute relevance score function and establish its

desirable properties. The problem is shown to be NP-hard. However, they developed

an efficient greedy algorithmic framework, which finds a maximal k-truss containing

node v, and then iteratively removes the nodes with the least popular attributes and

shrinks the graph so as to satisfy community constraints. They also built an elegant

index to maintain the known k-truss structure and attribute information, and propose

efficient query processing algorithms.

Recent studies proposed the computation of top-k influential communities, where

each reported community not only is a cohesive subgraph but also has a high influ-

ence value. The existing approaches to the problem of top-k influential community

search can be categorized as index-based algorithms [75] and online search algorithms

without indexes [24]. The index-based algorithms, although being very efficient in

conducting community searches, need to pre-compute a special purpose index and

only work for one built-in vertex weight vector. In [12], Bi et al., investigated online

search approaches and propose an instance-optimal algorithm LocalSearch whose time

complexity is linearly proportional to the size of the smallest subgraph that a correct

algorithm needs to access without indexes. In addition, they also propose techniques

to make LocalSearch progressively compute and report the communities in decreasing

influence value order such that k does not need to be specified. Moreover, they extend-

ed their framework to the general case of top-k influential community search regarding

other cohesiveness measures.

With the rapid development of location-aware mobile devices, many users share

their locations in social networks [4, 77]. The problem of querying geo-social groups

seeks a group of users densely and closely connected in terms of both social and spatial

proximity. Yang et al., [125] proposed a new family of k-core based geo-social group

queries with minimum acquaintance constraint. Li et al., [77] studied a minimum user

group query, in which each user had k neighbors and the users’ joint regions covered
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all query points. Variants of R-tree index structure integrating the social information

are designed for different geo-social query processing. A general framework that of-

fers flexible data management and algorithmic design for geo-social network queries

was proposed in [4, 3].

Inexact static GPNM: To improve efficiency, Tong et al., [111] proposed a “Seed-

Finder” method that identifies approximate matches for certain pattern nodes. This

method only requires cubic time.

In [64], Kargar et al., studied the problem of discovering a team of experts from a

social network. Given a project whose completion requires a set of skills, their goal

is to find a set of experts that together have all of the required skills and also have the

minimal communication cost among them. Kargar et al., proposed two communica-

tion cost functions designed for two types of communication structures and show that

the problem of finding the team of experts that minimizes one of the proposed cost

functions is NP-hard. Thus, an approximation algorithm with an approximation ratio

of two was designed. In addition, they introduced the problem of finding a team of

experts with a leader. The leader is responsible for monitoring and coordinating the

project, and thus a different communication cost function is used in this problem. To

solve this problem, an inexact polynomial algorithm was proposed. They showed that

the total number of teams may be exponential with respect to the number of required

skills. Thus, two procedures that produce top-k teams of experts with or without a

leader in polynomial delay were also proposed.

Recently, there has been significant interest in the study of the community search

problem in social and information networks: given one or more query nodes, users

may aim to find densely connected communities containing the query nodes. How-

ever, most existing studies do not address the “free rider” issue, that is, nodes far

away from query nodes and irrelevant to them are included in the detected community.

Some models have attempted to address this issue, but not only are their formulated

problems NP-hard, but they also do not admit any approximations without restrictive



§2.2 Graph Pattern based Node Matching (GPNM) 38

assumptions, which may not always hold in practice. In [62], given an undirected

graph GD and a set of query nodes Q, Huang et al., studied community search us-

ing the k-truss based community model. They formulated their problem of finding

a closest truss community (CTC), as finding a connected k-truss subgraph with the

largest k that contains Q, and has the minimum diameter among such subgraphs. They

proved this problem is NP-hard. Furthermore, it is NP-hard to approximate the prob-

lem within a factor. However, they developed a greedy algorithmic framework, which

first finds a CTC containing Q, and then iteratively removes the furthest nodes from

Q, from the graph. The method achieves 2-approximation to the optimal solution. To

further improve the efficiency, they used of a compact truss index and developed effi-

cient algorithms for k-truss identification and maintenance as nodes are eliminated. In

addition, using bulk deletion optimization and local exploration strategies, they pro-

posed two more efficient algorithms. One of them trades some approximation quality

for efficiency while the other is a highly efficient heuristic.

Based on BGS, Fan et al., [40] revised graph patterns to support a specific out-

put node. Given data graph and patten graph, they aimed to find those nodes in the

matching graphs that match a specific node v, instead of the subgraphs. They stud-

ied two classes of functions for ranking the matches: relevance functions and distance

functions. They develop two algorithms for computing top-k matches of node v based

on relevance functions, with the early termination property (i.e., they identified top-

k matches without computing the entire graphs). They also studied diversified top-k

matching, a bi-criteria optimization problem based on both relevance functions and

distance functions. Finally, they provided an approximation algorithm with perfor-

mance guarantees and a heuristic algorithm with the early termination property. Mo-

tivated by network analysis applications, Fan et al., further [42] proposed quantified

matching for a specific pattern node, in which they extend traditional graph patterns

with counting quantifiers.

In [91], Namaki et al., studied the problem of event pattern discovery by keywords

in graph streams. Specifically, they proposed a class of event patterns to capture events
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relevant to user-specified keywords, by integrating (approximate) topological and val-

ue bindings from keywords. They also introduced an activeness measure, to balance

the pattern expressiveness and the cost of pattern discovery. In addition, they also de-

veloped both from-scratch algorithm to discover and maintain active events in graph

streams.

In [101], Shi et al., noted that the existing GPNM methods for matching the des-

ignated node v do not consider the multiple constraints of the attributes associated

with each vertex and each edge which commonly exist in real applications (e.g., the

constraints of social contexts for the experts recommendation in contextual social). In

their work, they first proposed the Multi-Constrained Top-K Graph Pattern Matching

problem (MC-Top-K-GPM), which involves the NP-Complete Multiple Constrained

GPNM problem. To address the efficiency and effectiveness issues of MC-TopK-GPM

in large-scale social graphs, they proposed a novel index, called HB-Tree, which in-

dexes the label and degree of nodes in graphs and can get candidates of v efficiently.

Furthermore, they developed a Multi-Constrained Top-K GPNM method, called MTK,

which can identify Top-K matches of v effectively and efficiently.

In [79], Liu et al., analysed a new type of context-aware graph pattern based node

selection problem. Then they proposed two index structures, MA-Tree, and SSC index

to save the important information, such as the categories of nodes, the shortest path

between nodes, the aggregated social contexts, and the predecessors and ancestors of

each node in SSCs, which can greatly improve the efficiency of search. Finally, they

have proposed a probabilistic algorithm based on the Monte Carlo algorithm, called

MC-TAG-K, with the index structures and the proposed early termination strategies.

2.3 Conclusion

The existing methods in the above two categories face the efficiency issue when an-

swering GPNM queries with the updates in both pattern graphs and data graphs. The

existing GPNM methods do not consider any update of a pattern graph or a data graph.
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Therefore, with the updates of a pattern graph and/or a data graph, they have to perfor-

m a new GPNM procedure from scratch to deliver the node matching results, which

consumes much more query processing time. In contrast, the existing incremental G-

PSM methods consider the updates of a data graph but return the matching subgraphs,

rather than the matching nodes. In addition, when the pattern graph is updated, these

existing incremental GPSM methods also have to perform a new GPSM procedure

from scratch to find the matching subgraphs consuming much more query processing

time.



Chapter 3

Incremental Graph Pattern based

Node Matching with Multiple Updates

In real scenarios, nodes and edges in both GP and GD are usually frequently updated

over time. For example, in the application of group finding in social graphs [70],

the change of requirements (e.g., constraints or the structure) leads to the updates of

GP , and the joining of new users in OSNs leads to the updates of GD. However,

when facing with any update, the existing GPNM methods [81, 40] need to perform

a new GPNM procedure from scratch, leading to much more query processing time.

Although some existing BGS based GPSM methods [39, 41] can incrementally deliver

GPSM results taking the updates ofGD into account, they still need to deliver the entire

matching subgraphs when taking the updates of GP as input, rather than delivering the

matching nodes directly.

In addition, in real applications, although GP and GD are updated frequently, such

updates usually account for a small proportion of the entire graphs. For example,

Facebook had more than two billion monthly active users in June 2017, and about six

hundred thousand new users joined every month1, which accounted for only 0.03% of

all the users. This characteristic motivates us to develop an incremental GPNM method

to investigate the affected parts of GD and efficiently deliver the node matching result-

s, rather than performing a whole GPNM procedure from scratch that consumes much

more query processing time. The following example illustrates the incremental GPN-

1https://newsroom.fb.com/company-info/

41
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M procedure.

Example 3.1 (Incremental GPNM): Given a pattern graph GP and a data graph GD

shown in Fig. 3.1(a) and Fig. 3.1(b)) respectively. A new directed edge e(PM, TE)

from a PM to an TE is added intoGP , and the bounded path length (length constraint)

on this edge is 2 (depicted as the red arrow line in Fig. 3.1(b)). In addition, a new edge

e(S1, TE2) is added into GD in Fig. 3.1(c) (depicted as the red arrow line in Fig.

3.1(d)). The new pattern graph GP new and new data graph GD new are shown in Fig.

3.1(b) and Fig. 3.1(d) respectively. In this example, with the updates of GP and GD,

PM2 in GD new is not the matching node of PM in GP new any more because PM2

cannot be connected with TE within 2 hops. The new node matching results are shown

in Fig. 3.1(f). Compared to the original node matching results, we find that the new

node matching results exclude PM2 as the matching node of PM based on GP new

and GD new.

Based on the above explanation, in order to deliver the node matching results, after

e(PM, TE) and e(S1, TE2) are added into GP and GD respectively, we only need to

investigate whether PM2 in GD can still be the matching node of PM and whether

TE2 in GD can be the new matching node of TE based on GP new and GD new. More

specifically, we need to investigate whether the shortest path lengths between PM2

and SE1, and between PM2 and SE2 can satisfy the requirements of the correspond-

ing bounded path length on e(PM,SE). In addition, we also need to investigate

whether the shortest path lengths between SE1 and TE2, and between SE2 and TE2

can satisfy the requirements of the corresponding bounded path length on e(SE, TE).

By considering the affected parts of GD, we only need to investigate the shortest path

length of 4 pairs of nodes. By contrast, the existing GPNM methods [81], [40] need to

perform a new GPNM procedure from scratch, and thus have to investigate the short-

est path length between all the 18 pairs of nodes in total. Therefore, a new efficient

GPNM method is in demand.
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Figure 3.1: Incremental GPNM
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3.1 Problem Definition

Before introducing the detailed steps of the algorithm, we first introduce the related

definitions.

3.1.1 Data Graph, Pattern Graph and BGS

Data Graph. A data graph is a directed graph GD = (VD, ED, fa), where

• VD is a finite set of nodes;

• ED ⊆ VD × VD, in which (u, u′)∈ E denotes a directed edge from node u to u′;

• fa(u) is a function such that for each node u ∈ VD, fa(u) is a set of labels.

Intuitively, fa consists of the attributes of a node, e.g., name, age, job title [70].

Example 3.2: GD in Fig. 3.1(c) depicts a data graph. In GD, each node denotes a

person, together with the labels of a person, e.g., PM means this person is a project

manager. Each edge denotes a relationship between the two connected nodes, e.g.,

e(TE2, S1) means TE2 has a collaboration relationship with S1.

Pattern Graph. A pattern graph is defined as GP = (VP , EP , fv, fe), where

• VP and EP are a set of nodes and a set of directed edges, respectively;

• fv is a function defined on VP such that for each node u ∈ VP , fv(u) is the label

of a node u, e.g., Project Manager;

• fe is a function defined on EP such that for each edge (u, u′), fe(u, u′) is the

bounded path length of (u, u′) that is either a positive integer k or a symbol “*”.

Example 3.3: GP in Fig.3.1 (a) depicts a pattern graph. In addition to the labels, each

edge in GP has an integer as the bounded path length.

Bounded Graph Simulation. Consider a data graphGD = (VD, ED, fa) and a pattern

GP = (VP , EP , fv, fe). The data graph GD matches the pattern graph GP based on
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bounded graph simulation, denoted by GP � GD, if there exists a binary relation

M ⊆ VP × VD such that

• for any u ∈ VP , there exists v ∈ VD, such that (u, v) ∈M ;

• fa(v) of v includes fv(u) of u;

• for each edge (u, u′) in EP , there exists a path ρ = v/.../v′ in GD such that

(u′, v′) ∈M , and len(ρ) ≤ k if fe(u, u′) = k.

Note that there exists a path ρ from u to u′ with len(ρ) ≤ k if the shortest path

length from u to u′ is no longer than k. If GP �GD, the graph pattern matching results

are denoted as M(GP , GD) [39].

Example 3.4: Recall GP and GD given in Fig.3.1 (a) and Fig.3.1 (c) respectively,

and GP � GD. A match M1 is obtained in GD w.r.t. GP by mapping PM to PM1,

SE to SE1, S to S1, and TE to TE1, respectively. Another match M2 is obtained by

mapping PM to PM2, SE to SE2, S to S1, and TE to TE1, respectively. Here TE2

cannot be mapped to TE because the shortest path length from SE1 to TE2 and the

shortest path length from SE2 to TE2 are both longer than the bounded path length.

3.1.2 Incremental GPNM Problem

GPNM. Given a pattern graphGP , a data graphGD, for each node ui inGP , we define

the matching node of ui in GD to be Nui
= {vi|(vi, ui) ∈ M(GP , GD)}. GPNM is

to find Nui
for each ui of GP in GD. If GD has no match of GP based on BGS, then

Nui
= ∅.

Example 3.5: Recall GP and GD given in Fig.3.1 (a) and Fig.3.1 (c) respectively.

Instead of finding the subgraphs which can match GP based on BGS, the GPNM only

aims to find the matching nodes in GD for each node of GP . Taking PM as an exam-

ple, since PM1 and PM2 are in the subgraphs which can match GP based on BGS,

they are the matching nodes of PM . However, TE2 is not the matching node of TE
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as it is not in any subgraph which can match GP . The node matching results of GP in

GD are shown in Fig.3.1 (e).

Incremental GPNM:

• Input: a pattern graph GP , a data graph GD, the original node matching results

Nui
, a list4GD of updates to GD, a list4GP of updates to GP .

• Output: the updated node matching results N ′
ui

of GP new in GD new (GP new

and GD new denote the updated GP and updated GD respectively).

Remark. 4GD includes the insertion of edges, insertion of nodes, deletion of edges

and deletion of nodes, denoted by 4G+
DE

, 4G+
DN

, 4G−DE
and 4G−DN

respectively.

4GP includes the insertion of edges, insertion of nodes, deletion of edges and dele-

tion of nodes, denoted by4G+
PE

,4G+
PN

,4G−PE
and4G−PN

, respectively.

Example 3.6: Recall GP and GD given in Fig.3.1 (a) and Fig.3.1 (c). Suppose

4G+
PE

= {e(PM, TE)} with the bounded path length on e(PM, TE) is 2, and

4G+
DE

= {e(S1, TE2)}. The GP new and GD new are shown in Fig.3.1 (d) and Fig.3.1

(e) respectively. PM2 is not the matching node of PM any more because PM2 can-

not be connected to TE within 2 hops. The new node matching results are shown in

Fig.3.1 (f).

3.2 INC-GPNM Algorithm

In this section, we introduce our INCremental Graph Pattern based Node Matching

method called INC-GPNM in detail.

3.2.1 INC-GPNM Overview

When a pattern graph GP is updated, INC-GPNM builds up the shortest path length

matrix, called SLen, to record the length of the shortest path between each pair of n-

odes in GD, and builds up the shortest path length range matrix, called RSLen, to
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record the shortest path length range between each category of nodes in GD. Based

on SLen and RSLen, INC-GPNM can investigate whether the updates of GP satisfy

the following two conditions: (1) N ′
ui

= ∅, and (2) N ′
ui

= Nui
. If both of them are not

satisfied, two procedures PMatch+ and PMatch− are devised to identify the affected

parts of GD and incrementally deliver N ′
ui

respectively. PMatch+ is performed when

new edges and/or nodes are added intoGP , denoted by4G+
PE

and4G+
PN

respectively.

PMatch− is performed when edges and/or nodes are removed from GP , denoted by

4G−PE
and 4G−PN

respectively. The details of the index establishment, 4GP check-

ing process, and the details of PMatch+ and PMatch− are discussed in Section 3.2.2.

When a data graph GD is updated, INC-GPNM builds up the set of affected pairs

of nodes, called AFF , in which the length of the shortest path between each pair of

nodes is changed due to 4GD. Based on AFF , INC-GPNM can investigate whether

the updates of GD have an influence on Nui
. If there is no influence, then N ′

ui
= Nui

.

Otherwise, two methodsDMatch+ andDMatch− are devised to identify the affected

parts of GD and deliver N ′
ui

respectively. DMatch+ is performed when edges and/or

nodes are added into GD, denoted by 4G+
DE

and 4G+
DN

respectively. DMatch− is

performed when edges and/or nodes are removed from GD, denoted by 4G−DE
and

4G−DN
respectively. The details of AFF , 4GD checking process, and the details of

DMatch+ and DMatch− are discussed in Section 3.2.3.

3.2.2 Index Generation and INC-GPNM for4GP

SLen and RSLen: In GPNM, in addition to the matching of labels and the satis-

faction of the requirements of reachability in GP , we need to investigate if the short-

est path length between each pair of nodes in GD can satisfy the requirements of the

bounded path length inGP . Therefore, we build the shortest path length matrix, SLen,

to record the shortest path length between each pair of nodes in GD. In addition, based

on SLen, we build the shortest path length range matrix, RSLen, to record the shortest
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path length range between different label types in GD. When an edge e(u, v) is added

into or removed from GP , based on RSLen, INC-GPNM can investigate if the nodes in

GD that have the same label as u and v can satisfy the bounded path length on e(u, v).

As the updates of GD lead to the change of SLen, we adopt the method proposed in

[94] to incrementally update SLen, and then update RSLen accordingly. The method

proposed in [94] maintains the all-pairs’s shortest path when edges are deleted from

graphs or edges are inserted into graphs, and it is also adopted in some BGS based

GPSM and GPNM methods [2, 7, 9]. In [94], for certain edge-modifications (insertion

of edges or deletion of edges), it is first used to detect the nodes where the shortest

path lengths between them are unchanged. Dijkstra’s algorithm is applied for updat-

ing the shortest path lengths between the affected nodes. After adopting this method,

it is still necessary to check if any change of the shortest path lengths in the data graph

affects the matching results, and if any update in the pattern graph leads to the change

of GPNM results. Otherwise the processing efficiency would be bad. For example,

the most promising state-of-the-art GPNM approach in [7] also adopts the approach

in [26], however, in this approach, any of such updates leads to a new procedure of

finding matching results from scratch consuming much more query processing time

(see details in experiments).

Example 3.7: SLen and RSLen of GD in Fig.3.1 (c) are shown in Table 3.1 and Table

3.2 respectively.

Table 3.1: SLen of GD in Fig. 3.1(c).

PM1 PM2 SE1 SE2 S1 TE1 TE2 DB1

PM1 0 3 2 1 3 2 ∞ 1
PM2 ∞ 0 1 2 2 3 ∞ 3
SE1 ∞ 1 0 1 1 2 ∞ 2
SE2 ∞ 3 2 0 3 1 ∞ 1
S1 ∞ 3 2 3 0 4 ∞ 1
TE1 ∞ 4 3 1 4 0 ∞ 2
TE2 ∞ 4 3 4 1 5 0 2
DB1 ∞ 2 1 2 2 3 ∞ 0
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Table 3.2: RSLen of GD in Fig. 3.1(c).

PM SE S TE DB
PM [0, 0] [1, 2] [2, 3] [2,∞] [1,3]
SE [1,∞] [0, 0] [1, 3] [1,∞] [1, 2]
S [3,∞] [2, 3] [0, 0] [4,∞] [1, 1]
TE [4,∞] [1, 4] [1, 4] [0, 0] [2, 2]
DB [2,∞] [1, 2] [2, 2] [3,∞] [0, 0]

INC-GPNM for 4GP: When a pattern graph is updated, INC-GPNM has different

processes based on the following situations.

(1) For each edge e(u, v) ∈ 4G+
PE

with RSLen(u, v) = [a, b],

• Situation 1: if a > fe(u, v), then set N ′
ui

= ∅;

• Situation 2: if b ≤ fe(u, v), then set N ′
ui

= Nui
;

• Situation 3: if a ≤ fe(u, v) < b, then N ′
ui
⊆ Nui

, and INC-GPNM performs

PMatch+ procedure to incrementally deliver the GPNM results.

(2) For each node e(u, v) ∈ 4G+
PN

, if v is isolated from GP , then N ′
ui

= Nui
∪

{vj}, where vj is the node in GD that has the same label as v. If the newly added node

leads to one or several new edges in GP , the process of these newly added edges is

similar to the above mentioned method for the edges in4G+
PE

. The only difference is

that, when facing Situation 2, INC-GPNM needs to add the node in GD that has the

same label as v into Nui
, i.e., N ′

ui
= Nui

∪ {vj}.

(3) For each edge e(u, v) ∈ 4G−
PE

with RSLen(u, v) = [a, b],

• Situation 4: if b ≤ fe(u, v), then set N ′
ui

= Nui
;

• Situation 5: if b > fe(u, v), thenNui
⊆N ′

ui
, and INC-GPNM performs PMatch−

procedure to incrementally deliver the GPNM results.

(4) For each node e(u, v) ∈ 4G−
PN

, the corresponding edges are removed, where

v is the start node or the end node of the edges. The process of these deleted edges is

similar to the above mentioned method for 4G−PE
. The only difference is that, when
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facing Situation 4, INC-GPNM needs to remove the node from Nui
that has the same

label as v, i.e., N ′
ui

= Nui
\ {vj}.

PMatch+: Given 4G+
PE

and 4G+
PN

, the matching nodes in GD need to satisfy the

new constraint of reachability, the matching of labels and bounded path lengths on

these newly added edges and/or nodes. PMatch+ investigates the affected nodes in

Nui
and removes the nodes that do not satisfy these new constraints from Nui

. The

pseudo-code of PMatch+ is shown in Algorithm 1 and explained below.

For each edge e(u, v) ∈ 4G+
PE

,

• Step 1: For each pair of nodes (ui, vj) that have the same labels as u and v

respectively in Nui
, if SLen(ui, vj) > fe(u, v), then (a) when there is no other

node vn in Nui
, such that SLen(ui, vn) ≤ fe(u, v), we add ui into the candidate

set of deleted nodes, denoted as DeleteSet(); (b) when there is no other node

un in Nui
, such that SLen(un, vj)≤ fe(u, v), we add vj into DeleteSet() (lines

2-9 in Algorithm 1);

• Step 2: For each node vi in DeleteSet(), if there is a pattern edge e(v, u) or

e(u, v) in GP , and vi is the only node such that SLen(vi, uj) ≤ fe(v, u) or

SLen(uj, vi) ≤ fe(u, v), we add uj into DeleteSet() (lines 10-14 in Algorithm

1);

• Step 3: PMatch+ recursively performs Step 2 to identify the nodes that need to

be removed, and terminates when no new node can be added into DeleteSet().

Then, INC-GPNM returns the new GPNM result N ′
ui

(lines 15-17 in Algorithm

1).

For each node v ∈ 4G+
PN

, INC-GPNM first adds the nodes that have the same label

as v into Nui
, and then performs PMatch+ procedure to deliver the node matching

results. The correctness of PMatch+ is proven in Theorem 3.1.
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Algorithm 1: PMatch+

Input: GP , GD, Nui
, e(u, v) ∈ 4G+

PE
, fe(u, v), SLen

Output: N ′
ui

1 Set DeleteSet() = ∅;
2 for each pair of nodes (ui, vj) ∈ Nui

do
3 if SLen(ui, vj) > fe(u, v) then
4 for each vn ∈ Nui

(n 6= j) do
5 if There is no vn such that SLen(ui, vn) ≤ fe(u, v) then
6 Add ui into DeleteSet();

7 for each un ∈ Nui
(n 6= i) do

8 if There is no un such that SLen(un, vj) ≤ fe(u, v) then
9 Add vj into DeleteSet();

10 for each node vi ∈ DeleteSet() do
11 if (v, u) ∈ GP and vi is the only node such that SLen(vi, uj) ≤ fe(v, u)

then
12 Add uj into DeleteSet();

13 if (u, v) ∈ GP and vi is the only node such that SLen(uj, vi) ≤ fe(u, v)
then

14 Add uj into DeleteSet();

15 if There is no newly added node in DeleteSet() then
16 Break;

17 return N ′
ui

= Nui
\ DeleteSet();

Theorem 3.1: Taking4G+
PE

and4G+
PN

as input, PMatch+ can deliver correct N
′
ui

based on GP new and GD new.

The Proof of Theorem 3.1: LetN ′′
ui

denote the correct node matching results based on

GP new and GD new. Suppose N ′
ui
6=N

′′
ui

, then there is at least one node v such that (1)

v ∈ N ′′
ui

and v /∈ N ′
ui

; or (2) v /∈ N ′′
ui

and v ∈ N ′
ui

. If v ∈ N ′′
ui

, since N ′′
ui
⊆ Nui

, then

v ∈ Nui
. Since N ′

ui
= Nui

\ DeleteSet(), if v /∈ N ′
ui

, then v ∈ DeleteSet(), which

means v is not a matching node due to4G+
PE

and/or4G+
PN

. This contradicts v ∈ N ′′
ui

.

If v /∈ N ′′
ui

, since N ′′
ui
⊆ Nui

, then v /∈ Nui
or v ∈ Nui

\N ′′
ui

. If v /∈ Nui
, since N ′

ui
=

Nui
\ DeleteSet(), then v /∈ N ′

ui
. This contradicts v ∈ N ′

ui
. If v ∈ Nui

\ N ′′
ui

, which

means v is not a matching node due to 4G+
PE

and/or 4G+
PN

, then v ∈ DeleteSet(),
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since N ′
ui

= Nui
\ DeleteSet(), thus, v /∈ N ′

ui
. This contradicts v ∈ N ′

ui
. Therefore,

Theorem 3.1 is proven. 2

Example 3.8: Recall GP and GD in Fig. 3.1 (a) and Fig. 3.1 (c). Suppose 4G+
PE

= {e(SE, S)} with fe(SE, S) = 2. (1) For each matching node of SE and S in

Nui
, by checking SLen, we find that SLen(SE1, S1) = 1 and SLen(SE2, S1) = 3.

Then S1 can be kept in Nui
and SE2 should be added into DeleteSet(). (2) After that,

as SLen(PM1, SE1), SLen(PM2, SE1), SLen(TE1, SE1) and SLen(TE1, SE1) all

can satisfy the bounded path length in GD, they are not added into DeleteSet(). Then

the results of N ′
ui

is by matching PM1, PM2 to PM ; SE1 to SE; S1 to S and TE1 to

TE.

Complexity: The time complexity of the establishment and updates of the index is

O(|ND|(|ND| + |ED|) [6]. In the worst case, for each edge e ∈ 4G+
PE

, PMatch+

needs to check SLen for each pair of nodes in Nui
. Since the number of the nodes in

Nui
is bounded in |ND|, the time complexity of PMatch+ isO(|ND|(|ND|+ |ED|)+

|4G+
PE
||ND|2).

PMatch−: Given 4G−PE
and 4G−PN

, the constraint of reachability, the matching of

labels and the bounded path length on these removed nodes and edges can be neglect-

ed. Therefore, the node v ∈ Nui
is still a matching node. PMatch− investigates the

affected parts in GD and adds the nodes that match GP new into Nui
. The pseudo-code

of PMatch− is shown in Algorithm 2 and explained below.

For each edge e(u, v) ∈ 4G−
PE

,

• Step 1: In contrast to PMatch+, if SLen(ui, vj) > fe(u, v), we add ui and vj

into the candidate set of newly added nodes, denoted as AddSet() (lines 2-4 in

Algorithm 2);

• Step 2: If there is a pattern edge e(v, u) in GP , then for each pair of nodes
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in AddSet(), if SLen(vj, ui) ≤ fe(v, u), keep them in AddSet(); otherwise,

remove them from AddSet() (lines 5-7 in Algorithm 2);

• Step 3: For each node vi in AddSet(), if there is a pattern edge e(v, u) or

e(u, v) in GP , and there is a node uj /∈ Nui
such that SLen(vi, uj) ≤ fe(v, u) or

SLen(uj, vi) ≤ fe(u, v), we add uj into AddSet() (lines 8-16 in Algorithm 2);

• Step 4: PMatch− recursively performs Step 3 to identify the new matching n-

odes that need to be added into AddSet(), and terminates when no new node

can be added into AddSet(). Then, INC-GPNM returns the new GPNM result

N
′
ui

(lines 17-19 in Algorithm 2).

For each node v ∈ 4G−
PN

, INC-GPNM first removes the nodes that have the same

label as v fromNui
, and then performs PMatch− procedure to deliver the node match-

ing results. The correctness of PMatch− is proven in Theorem 3.2.

Theorem 3.2: Taking4G−PE
and4G−PN

as input, PMatch− can deliver correct N
′
ui

based on GP new and GD new.

The Proof of Theorem 3.2: Let N ′′
ui

denote the correct node matching results based

on GP new and GD new. Suppose N ′
ui
6= N

′′
ui

, then there is at least one node v such that

(1) v ∈ N ′′
ui

and v /∈ N ′
ui

; or (2) v /∈ N ′′
ui

and v ∈ N ′
ui

. If v /∈ N ′
ui

, since Nui
⊆ N

′
ui

,

then v /∈ Nui
. If v ∈ N ′′

ui
with v /∈ Nui

, since Nui
⊆ N

′′
ui

, then v is a new matching

node due to4G−PE
and/or4G−PN

. Thus, v ∈ AddSet(). Since N ′
ui

= Nui
∪ Addset(),

then v ∈ N ′
ui

. This contradicts v /∈ N ′
ui

. If v /∈ N ′′
ui

, since Nui
⊆ N

′′
ui

, then v /∈ Nui
.

As N ′
ui

= Nui
∪ Addset(), if v ∈ N ′

ui
, then v ∈ AddSet(). Thus v is a new matching

node due to 4G−PE
and/or 4G−PN

. This contradicts v /∈ N ′′
ui

. Therefore, Theorem 3.2

is proven. 2

Example 3.9: Recall GP and GD in Fig.3.1 (a) and Fig.3.1 (c). Suppose 4G−PE
=

{e(SE, TE)}. (1) For each pair of nodes labeled with SE and TE respectively inGD,

we can get SLen(SE1, TE1) = 2, SLen(SE1, TE2) = ∞, SLen(SE2, TE1) = 1
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Algorithm 2: PMatch−

Input: GP , GD, Nui
, e(u, v) ∈ 4G−PE

, SLen
Output: N ′

ui

1 Set AddSet() = ∅ ;
2 for each pair of nodes (ui, vj) ∈ GD do
3 if SLen(ui, vj) > fe(u, v) then
4 Add ui, vj into AddSet();

5 if (v, u) ∈ GP then
6 if SLen(vj, ui) > fe(v, u) then
7 remove ui, vj from AddSet();

8 for each node vi ∈ AddSet() do
9 if (v, u)∈ GP then

10 for each vi /∈ Nui
do

11 if SLen(vi, uj) ≤ fe(v, u) then
12 Add the uj into AddSet();

13 if (u, v)∈ GP then
14 for each uj /∈ Nui

do
15 if SLen(uj, vi) ≤ fe(u, v) then
16 Add the uj into AddSet();

17 if There is no newly added node in AddSet() then
18 Break;

19 return N ′
ui

= Nui
∪ Addset();

and SLen(SE2, TE2) = ∞. Their values are all greater than fe(SE, TE). Thus, we

add SE1, TE2 and SE2 into AddSet(). (2) Since there is a pattern edge e(TE, SE) in

GP , and SLen(TE2, SE1) = 3, SLen(TE2, SE2) = 4. Then, we add TE2 and SE2

into AddSet(). (3) Since PM1, PM2 and TE1 are already in Nui
, no new node can

be added into AddSet(). Then the results of N ′
ui

is by matching PM1, PM2 to PM ;

SE1, SE2 to SE; S1 to S and TE1, TE2 to TE.

Complexity: In the worst case, for each edge e ∈ 4G−PE
, PMatch− needs to check

SLen for each pair of nodes in GD. Since PMatch− and PMatch+ have the same

indices, the time complexity of PMatch− isO(|ND|(|ND|+ |ED|)+ |4G−PE
||ND|2).
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3.2.3 Index Generation and INC-GPNM for4GD

When a data graph is updated, INC-GPNM has different processes based on the fol-

lowing situations.

(1) For each edge e(u, v) ∈ 4G+
DE

,

• Situation 6: for each pair of nodes (ui, vj) ∈ AFF , if there is no pattern edge

e(u, v) ∈ GP , then set N ′
ui

= Nui
;

• Situation 7: if there is one pattern edge e(u, v) ∈ GP , then INC-GPNM per-

forms DMatch+ procedure to incrementally deliver the GPNM results.

(2) For each node v ∈ 4G+
DN

, if v has no links with other nodes in GD, then v

cannot be the matching node if there is no isolated node in GP . Therefore, when the

newly added node v does not affect Nui
, then N ′

ui
= Nui

. If v leads to one or several

new edges in GD, the process of these newly added edges is the same as the above

mentioned method for4G+
DE

.

(3) For each edge e(u, v) ∈ 4G−
DE

,

• Situation 8: for each pair of nodes (ui, vj) in AFF , if there is no pattern edge

e(u, v) ∈ GP , then set N ′
ui

= Nui
;

• Situation 9: if there is one pattern edge e(u, v) ∈ GP , then INC-GPNM per-

forms DMatch+ procedure to incrementally deliver the GPNM results.

(4) For each node v ∈ 4G−
DN

, the corresponding edges are removed, where v is the

start node or the end node of the edges. The process of these deleted edges is the same

as the above mentioned method for4G−DE
.

DMatch+: If v ∈ Nui
, which means v satisfies the constraints before GD is updated,

given4G−DE
and/or4G−DN

, the shortest path lengths between v and other nodes inGD

keep unchanged or decrease, thus v still satisfies the constraints. Therefore,DMatch+

investigates the affected nodes in GD new and adds the nodes that match the pattern
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graph into Nui
. The pseudo-code of DMatch+ is shown in Algorithm 3 and explained

below.

For each edge e(u, v) ∈ 4G+
DE

,

• Step 1: For each pair of nodes (ui, vj) in AFF with AFF [ui, vj] = [a, b], if a

> fe(u, v) and b ≤ fe(u, v), we add ui and vj into the candidate set of newly

added nodes, denoted as AddSet() (lines 2-4 in Algorithm 3);

• Step 2: If there is a pattern edge e(v, u) in GP , then for each pair of nodes in

AddSet(), if SLennew(vj, ui) ≤ fe(v, u), keep them in AddSet(); otherwise,

remove them from AddSet() (lines 5-7 in Algorithm 3);

• Step 3: For each node vi inAddSet(), if there is a pattern edge e(v, u) or e(u, v)

in GP , and there is a node uj /∈ Nui
such that SLennew(vi, uj) ≤ fe(u, v) or

SLennew(uj, vj) ≤ fe(u, v), we add uj into AddSet() (lines 8-16 in Algorithm

3);

• Step 4: DMatch+ recursively performs Step 3 to identify the new matching

nodes that need to be added into AddSet(), and terminates when no new node

can be added into AddSet(). Then, INC-GPNM returns the new GPNM result

N
′
ui

(lines 17-19 in Algorithm 3).

For each node v ∈ 4G+
DN

, if v has no links with other nodes in GD, then v cannot

be the matching node if there is no isolated node in GP . Therefore, the newly added

node v does not affect Nui
, then N ′

ui
= Nui

. If v leads to one or several new edges

in GD, the procedure of these newly added edges is the same as the above mentioned

method for4G+
DE

. The correctness of DMatch+ is proven in Theorem 3.3.

Theorem 3.3: Taking4G+
DE

and4G+
DN

as input, DMatch+ can deliver correct N
′
ui

based on GP new and GD new.
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Algorithm 3: DMatch+

Input: GP , GD, Nui
, e(u, v) ∈ 4G+

DE
, SLennew, AFF

Output: N ′
ui

1 Set AddSet() = ∅ ;
2 for each pair of node (ui, vj) ∈ AFF with AFF [ui, vj] = [a, b] do
3 if a > fe(u, v) and a ≤ fe(u, v) then
4 Add ui, vj into AddSet();

5 if (v, u) ∈ GP then
6 if SLennew(vj, ui) > fe(v, u) then
7 remove ui, vj from AddSet();

8 for each node vi ∈ AddSet() do
9 if (v, u)∈ GP then

10 for each uj /∈ Nui
do

11 if SLennew(vi, uj) ≤ fe(v, u) then
12 Add the uj into AddSet();

13 if (u, v)∈ GP then
14 for each uj /∈ Nui

do
15 if SLen(uj, vi) ≤ fe(u, v) then
16 Add the uj into AddSet();

17 if There is no newly added node in AddSet() then
18 Break;

19 return N ′
ui

= Nui
∪ Addset();

The Proof of Theorem 3.3: Let N ′′
ui

denote the correct node matching results based

on the updated pattern graph GP new and the updated data graph GD new. Suppose N ′
ui

6= N
′′
ui

, then there is at least one node v such that (1) v ∈ N
′′
ui

and v /∈ N
′
ui

; or (2)

v /∈ N ′′
ui

and v ∈ N ′
ui

. If v /∈ N ′
ui

, since Nui
⊆ N

′
ui

, then v /∈ Nui
. If v ∈ N ′′

ui
with

v /∈ Nui
, since Nui

⊆ N
′′
ui

, then v is the new matching node due to 4G+
DE

and/or

4G+
DN

. Thus, v ∈ AddSet(). Since N ′
ui

= Nui
∪ Addset(), then v ∈ N

′
ui

. This

contradicts v /∈ N ′
ui

. If v /∈ N ′′
ui

, since Nui
⊆ N

′′
ui

, then v /∈ Nui
. Since N ′

ui
= Nui

∪

Addset(), if v ∈ N ′
ui

, then v ∈ AddSet(). Thus v is the new matching node due to

4G+
DE

and/or4G+
DN

. This contradicts v /∈ N ′′
ui

. Therefore, Theorem 3.3 is proven. 2
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Example 3.10: Recall GP and GD in Fig.3.1 (a) and Fig.3.1 (c). Suppose 4G+
DE

= {e(S1, TE2)}. (1) For (SE1, TE2) ∈ AFF , we have AFF [SE1, TE2] = [∞, 2].

Since fe(SE, TE) = 4, we add SE1 and TE2 into AddSet(). (2) Since e(TE, SE)

∈ GP , and we find SLennew(TE2, SE1) ≤ fe(TE, SE), then we keep TE2 and SE2

in AddSet(). (3) Since PM1, PM2 and TE1 are already in Nui
, no new node can

be added into AddSet(). Then the results of N ′
ui

is by matching PM1, PM2 to PM ;

SE1, SE2 to SE; S1 to S and TE1, TE2 to TE.

Complexity: The time complexity of the establishment and updates of the index is

O(|ND|(|ND| + |ED|) [6]. In the worst case, for each edge e ∈ 4G+
DE

, DMatch+

needs to check SLennew for each pair of nodes in AFF . Since the number of nodes

in AFF is bounded in |ND|, the time complexity of DMatch+ is O(|ND|(|ND| +

|ED|) + |4G+
DE
||ND|2).

DMatch−: If v /∈ Nui
, which means v does not satisfy the constraints before GD is

updated, given 4G−DE
and/or 4G−DN

, the shortest path lengths between v and other

nodes in GD keep unchanged or increase, thus, v still does not satisfy the constraints.

Therefore, DMatch− investigates the affected nodes in Nui
and removes the nodes

that do not satisfy the constraints of the pattern graph. The pseudo-code DMatch− is

shown in Algorithm 4 and explained below.

For each edge e(u, v) ∈ 4G−
DE

,

• Step 1: For each pair of node (ui, vj) inAFF , if (ui, vj)∈Nui
and SLennew(ui, vj)

> fe(u, v), then (a) when there is no other node vn inNui
such that SLennew(ui, vn)

≤ fe(u, v), we add ui into the candidate set of newly deleted nodes, denoted as

DeleteSet(); (b) when there is no other node un inNui
such that SLennew(un, vj)

≤ fe(u, v), we add ui into DeleteSet() (lines 2-9 in Algorithm 4);

• Step 2: For each node vi in DeleteSet(), if there is a pattern edge e(v, u) or

e(u, v) in GP , and vi is the only node such that SLennew(vi, uj) ≤ fe(v, u) or
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Algorithm 4: DMatch−

Input: GP , GD, Nui
, e(u, v) ∈ 4G−DE

, SLennew, AFF
Output: N ′

ui

1 Set DeleteSet() = ∅;
2 for each pair of node (ui, vj) ∈ AFF do
3 if (ui, vj) ∈ Nui

and SLennew(ui, vj) > fe(u, v) then
4 for each vn ∈ Nui

(n 6= j) do
5 if There is no vn such that SLennew(ui, vn) ≤ fe(u, v) then
6 Add ui into DeleteSet();

7 for each un ∈ Nui
(n 6= i) do

8 if There is no un such that SLennew(un, vj) ≤ fe(u, v) then
9 Add vj into DeleteSet();

10 for each node vi ∈ DeleteSet() do
11 if (v, u) ∈ GP and vi is the only node such that SLennew(vi, uj) ≤ fe(v, u)

then
12 Add uj into DeleteSet();

13 if (u, v) ∈ GP and vi is the only node such that SLennew(uj, vi) ≤ fe(u, v)
then

14 Add uj into DeleteSet();

15 if There is no newly added node in DeleteSet() then
16 Break;

17 return N ′
ui

= Nui
\ DeleteSet();

SLennew(uj, vi) ≤ fe(u, v), we add uj into DeleteSet() (lines 10-14 in Algo-

rithm 4);

• Step 3: DMatch− recursively performs Step 2 to identify the nodes that need

to be removed, and DMatch− terminates when no new node can be added into

DeleteSet(). Then, INC-GPNM returns the new GPNM result N ′
ui

(lines 15-17

in Algorithm 4).

For each node v ∈ 4G−
DN

, the corresponding edges are removed, where v is the

start node or the end node of the edges. The procedure of these deleted edges is the

same as the above mentioned method for 4G−DE
. The correctness of DMatch− is

proven in Theorem 3.4.
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Theorem 3.4: Taking4G−DE
and4G−DN

as input, DMatch− can deliver correct N
′
ui

based on GP new and GD new.

The Proof of Theorem 3.4: Let N ′′
ui

denote the correct matching results based on the

updated pattern graphGP new and the updated data graphGD new. SupposeN ′
ui
6=N

′′
ui

,

then there is at least one node v such that (1) v ∈ N ′′
ui

and v /∈ N ′
ui

; or (2) v /∈ N ′′
ui

and

v ∈ N ′
ui

. If v ∈ N ′′
ui

, since N ′′
ui
⊆ Nui

, then v ∈ Nui
. As N ′

ui
= Nui

\ DeleteSet(), if

v /∈ N ′
ui

, then v ∈ DeleteSet(), which means the shortest path length between v and

another node u in GD new cannot satisfy the corresponding bounded path length due to

4G−DE
and/or 4G−DN

. This contradicts v ∈ N ′′
ui

. If v /∈ N ′′
ui

, since N ′′
ui
⊆ Nui

, then

v /∈ Nui
or v ∈ Nui

\N ′′
ui

. If v /∈ Nui
, as N ′

ui
= Nui

\DeleteSet(), then v /∈ N ′
ui

. This

contradicts v ∈ N ′
ui

. If v ∈ Nui
\ N ′′

ui
, which means the shortest path length between

v and another node u in GD new cannot satisfy the corresponding bounded path length

due to 4G−DE
and/or 4G−DN

, then v ∈ DeleteSet(). Since N ′
ui

= Nui
\ DeleteSet(),

v /∈ N ′
ui

. This contradicts v ∈ N ′
ui

. Therefore, Theorem 4 is proven. 2

Example 3.11: RecallGP andGD given in Fig.3.1 (a) and Fig.3.1 (c). Suppose4G−DE

= {e(PM2, SE1)}. (1) For (PM2, SE1) ∈ AFF , we find SLennew(PM2, SE1) =∞

which is greater than fe(PM,SE), and there is no other node vj in Nui
that has same

label with vi and SLennew(PM2, vj) ≤ 3. Thus PM2 is added into DeleteSet(). S-

ince SLennew(PM1, SE1) ≤ 3, then SE1 can be kept in Nui
. (3) After PM2 is added

intoDeleteSet(), since SLennew(PM1, SE1), SLennew(PM1, SE2) and SLennew(PM1,

S1) all can satisfy the bounded path length, no new node can be added intoDeleteSet().

Then the results of N ′
ui

is by matching PM1 to PM ; SE1, SE2 to SE; S1 to S and

TE1 to TE.

Complexity: In the worst case, for each edge e ∈ 4G−DE
, DMatch− needs to check

SLennew for each pair of nodes in AFF . Since DMatch− and DMatch+ have
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the same index, the time complexity of DMatch− is O(|ND|(|ND| + |ED|) + |4

G−PE
||ND|2).

3.3 Experiments on INC-GPNM

We have conducted experiments on seven real-world social graphs to evaluate the per-

formance of our INC-GPNM in solving the GPNM problem with the updates of both

pattern graphs and data graphs.

3.3.1 Experimental Setting

Datasets: The seven real-world social graphs are available at snap.stanford.edu. Their

details are shown in Table 3.3.

• CollegeMsg: This dataset is comprised of private messages sent on an online

social network at the University of California, Irvine.

• email-Eu-core: The network was build up using email data from a large Euro-

pean research institution.

• Math Overflow: This is a temporal network of interactions on the stack exchange

web site Math Overflow.

• Ask Ubuntu: This is a temporal network of interactions on the stack exchange

web site Ask Ubuntu.

• Super User: This is a temporal network of interactions on the stack exchange

web site Super User.

• Wiki Talk: This is a temporal network representing Wikipedia users editing each

other’s Talk page.

• LiveJournal: LiveJournal is a free on-line blogging community where users de-

clare friendship each other.
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Table 3.3: The sizes of datasets for INC-GPNM

Name #Nodes #Edges
CollegeMsg 1,899 59,835

email-Eu-core 5,613 151,635
Math Overflow 24,818 506,550

Ask Ubuntu 159,316 964,437
Super User 194,085 1,443,339
Wiki Talk 1,140,149 7,833,140

LiveJournal 4,847,571 68,993,773

To the best of our knowledge, there are no existing real-life dynamic data-sets with the

labels. As there are no fixed patterns for the labels in a social network, and without

loss of generality, the well-known existing works in GPSM [39, 41] and GPNM [40]

randomly set the classes of labels in their datasets for experiments. In our experiments,

we randomly set the labels of the nodes. We found that different numbers of classes of

labels have a negligible impact on the query processing time. Due to page limitations,

we report the results with 20 classes of labels.

Pattern Graph Generation and Parameter Setting: We use a graph generator, soc-

netv2, to generate pattern graphs, controlled by 3 parameters: (1) the number of nodes,

(2) the number of edges, and (3) the bounded path length on each edge. Since the

numbers of nodes and edges in a pattern graph are usually not large [39], the number

of nodes is set between 6 and 10, and the number of edges is set between 6 and 10 as

well. Let (NG, EG) denote the scale of a graph G, where NG is the number of nodes

and EG is the number of edges. Since the bounded path length on each edge is usually

a small integer [39], we randomly set the bounded path length on each edge from 1 to 3.

Updates of GP and GD:

(a) Updates of GP : At each update, we delete mP nodes and nP edges from GP , and

add mP new nodes and nP new edges into GP , where 1 ≤mP ≤ 5, and 1 ≤ nP ≤ 5.

2https://socnetv.org/
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(b) Updates of GD: At each update, we delete mG nodes and nG edges from GD, and

add mG new nodes and nG new edges into GD. mG increases from 20 to 100 with a

step of 20 and nG increases from 200 to 1000 with a step of 200.

Comparison Method: As discussed in Section 2, there is no existing incremental

graph pattern based nodes matching method in the literature. Therefore, in the exper-

iments, we have implemented the most promising state-of-the-art graph pattern based

nodes matching method proposed in [40] as the BaseLine method, and then we com-

pared the query processing time of the BaseLine method with that of our proposed

INC-GPNM in delivering node matching results with the updates of GP and GD.

Implementation: Both the algorithms have been implemented using gcc 4.8.2 run-

ning on a server with Intel Xeon-E5 2630 2.60GHz CPU, 256GB RAM, and Red Hat

4.8.2-16 operating system.

Complexity Comparison of BaseLine and INC-GPNM: The time complexity for

INC-GPNM is O(|ND|(|ND| + |ED|) + (|4 GD| + |4 GP |)|N2
D|). And the time

complexity for BaseLine is O((|NP | + |EP |)(|ND| + |ED|) + (|ND| + |ED|)2). Be-

cause |4GD| and |4GP | usually account for a very small proportion of GD and GP

respectively, thus, INC-GPNM has a complexity of O(|ND|(|ND| + |ED|) + |N2
D|),

and it is better than that of BaseLine. In terms of the space complexity, we use the ma-

trix SLen to record the shortest path length between each pair of nodes in GD, and

thus it is O(|ND|2), which is the same as that of BaseLine. In addition, in real-life so-

cial networks or road networks, many nodes are not connected to other nodes (i.e., no

out-degree or in-degree). Therefore, the shortest path lengths between these nodes are

infinite, which makes our matrix sparse. Then, we will use some techniques to com-

press the sparse matrix of a given network. The Hybrid format [9] is a well-known

technique that can be adopted here. A storage space of size 2|ND||K| is required in

Hybrid format, where |K| is the maximum number of non-infinite values in a row and
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|ND| is the number of nodes in a data graph. Sparse matrices can save the storage

space because |K| is usually much smaller than |ND|.

3.3.2 Experimental Results and Analysis

Figure 3.2: The average query processing time in CollegeMsg on INC-GPNM

Figure 3.3: The average query processing time in email-Eu-core on INC-GPNM

Figure 3.4: The average query processing time in Math Overflow on INC-GPNM

Fig. 3.2 to Fig. 3.8 depict the average query processing time with varying the sizes

of4GD and4GP on different sizes of GP . The results and analysis are as follows.

Results-1: With the increase of the size of the datasets, the average processing time

of INC-GPNM is always less than that of BaseLine in all the cases of experiments.

The detailed results are listed in Table 3.4. On average, INC-GPNM can reduce the

query processing time by 40.24%. The improvement remains consistent when the size
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Figure 3.5: The average query processing time in Ask Ubuntu on INC-GPNM

Figure 3.6: The average query processing time in Super User on INC-GPNM

of datasets has significantly increased.

Analysis-1: The results on the average query processing time for BaseLine and INC-

GPNM are consistent with the complexity analysis.

Table 3.4: The average query processing time based on different scales of datasets

Dataset BaseLine INC-GPNM Comparison with
BaseLine

CollegeMsg 5.11s 2.64s 48.41% less
email-Eu-core 91.52s 54.02 40.97% less
Math Overview 196.94s 129.18s 34.41% less

Ask Ubuntu 411.42s 254.41s 38.16% less
Super User 493.06s 275.30s 44.16% less
Wiki Talk 1115.71s 713.57s 36.04% less

LiveJournal 5004.20s 3005.24s 40.42% less

Results-2: With the increase of the scale of the pattern graph from (6, 6) to (10, 10),

the processing time of BaseLine increases dramatically while the processing time of

INC-GPNM remains stable. The detailed results are listed in Table 3.5.

Analysis-2: With the increase of the scale of GP , since Baseline needs to perform the

whole process of GPNM to find the matching nodes for GP , the scale of GP has a

significant influence on its query processing time. While INC-GPNM only needs to
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Figure 3.7: The average query processing time in Wiki Talk on INC-GPNM

Figure 3.8: The average query processing time in LiveJournal on INC-GPNM

perform GPNM method for the affected parts of GD. Thus, INC-GPNM has better

scalability with the increase of the scale of GP .

Results-3: With the increase of the scale of4GP from (1, 1) to (5, 5) and the increase

of the scale of4GD from (20, 200) to (100, 1000), the processing time of INC-GPNM

increases while the processing time of BaseLine remains stable. However, the process-

ing time of INC-GPNM is still far less than that of BaseLine. The detailed results are

listed in Table 3.6 and Table 3.7.

Analysis-3: When the scales of4GP and4GD increase, INC-GPNM needs to spend

more time to investigate the affected parts, leading to more query processing time. As

discussed in Analysis-1, the proportions of 4GD and 4GP are usually small in GD

Table 3.5: The average query processing time based on different scale of GP

Scale of GP BaseLine INC-GPNM Comparison with
BaseLine

(6, 6) 875.51s 633.75s 27.61% less
(7, 7) 962.91s 633.91s 34.17% less
(8, 8) 1047.79s 630.41s 39.83% less
(9, 9) 1141.46s 639.32s 43.99% less

(10, 10) 1228.15s 630.01s 48.70% less
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and GP respectively. Therefore, although the query processing time of INC-GPNM

increases, it is still far less than that of BaseLine.

Table 3.6: The average query processing time based on different scale of4GP

Scale of 4GP BaseLine INC-GPNM Comparison with
BaseLine

(1, 1) 1051.76s 548.08s 47.89% less
(2, 2) 1050.57s 591.10s 43.74% less
(3, 3) 1051.17s 632.79s 39.80% less
(4, 4) 1050.55s 676.26s 35.63% less
(5, 5) 1051.19s 719.16s 31.59% less

Table 3.7: The average query processing time based on different scale of4GD

Scale of 4GD BaseLine INC-GPNM Comparison with
BaseLine

(20, 200) 1051.26s 616.53s 41.35% less
(40, 400) 1051.09s 625.23s 40.52% less
(60, 600) 1051.47s 633.37s 39.76% less
(80, 800) 1050.95s 641.73s 38.94% less

(100, 1000) 1050.90s 650.53s 38.09% less

Summary: The above experimental results have demonstrated that the proposed in-

cremental GPNM method INC-GPNM is an efficient approach to answering GPNM

queries with the updates of a pattern graph and a data graph. Compared to the Base-

Line method, INC-GPNM can greatly reduce the query processing time by an average

of 40.24%.

3.4 Conclusions

In this chapter, we have proposed an INCremental Graph Pattern node Matching method

INC-GPNM to deliver the GPNM results based on the updates of both pattern graphs

and data graphs. While keeping the space complexity unchanged, INC-GPNM has
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better time complexity than the state-of-the-art GPNM method and can significantly

reduce the query processing time.



Chapter 4

Incremental Graph Pattern based

Node Matching Considering the

Elimination Relationships Among

Updates in Data Graphs

In real-world applications, many typical pattern graphs frequently and repeatedly ap-

pear in users’ queries in a short period of time. For example, on Facebook, some typi-

cal queries like “Find somebody’s friends, and friends of friends who like the movies

Star Wars and Harry Potter” and “Find somebody’s friends, and friends of friends who

took photos at Sydney National Park and study at the University of Sydney” frequent-

ly and repeatedly appear in users’ queries1. In such a situation, when facing the same

subsequent query, some of the prior query answers can be reused. For example, sup-

pose that a user asks a query “find all the users who are one kilometer away from me

on Wechat” for the first time. After returning the initial results, when facing the same

query ten minutes later, we can answer the query based on the initial result by only

considering the changes of the users that occurred in the past ten minutes (i.e., being

newly added or removed).

However, to the best of our knowledge, such a situation has not been considered in

the existing methods. Even INC-GPNM [106], has to perform an incremental GPNM

1http://en.wikipedia.org/wiki/Facebook Graph Search
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procedure for each of the updates in GD, which is still computationally expensive in

a large-scale social graph with high updating frequency. But, not all the updates in

GD essentially affect the GPNM matching results. We analyze this point further in the

following two cases.

Case 1: If one edge (node) is firstly removed from (or inserted into) GD and then

inserted back to (or removed from) GD, the effects of the two updates eliminate each

other.

Case 2: If the set of affected nodes of an update Ua in GD covers the set of affected

nodes of a subsequent update Ub, then Ua eliminates Ub as well.

In both cases, we refer to the relationship between such two updates as an elimina-

tion relationship.

Following the above analysis, when facing typical queries that are frequently and

repeatedly given by users, we can compute the GPNM result for the first incoming

query (termed as the initial query), and then deliver the GPNM result for a subsequent

query by analyzing the elimination relationships of all the updates that occur between

the initial query and a subsequent query, instead of investigating each of the updates

between them separately. Example 4.1 below illustrates the details of our motivations.

Example 4.1 (GPNM with multiple updates): Suppose on Facebook, there is a query

“Find the people, who can connect with me within two hops, and who has been taken

photos at Sydney National Park and study at the University of Sydney (USYD)” given

by Adam (a staff in a travel agency) for the travel lines recommendation. Fig. 4.1(a)

is the pattern graph corresponding to the initial query. The initial data graph is shown

in Fig. 4.1(c), and the matching result for the initial query based on the initial data

graph is shown in Table 4.1. The subsequent query given by another travel agency

staff Bella is shown in Fig. 4.1(b), and three updates occur between the initial query

and the subsequent query, i.e., Update U1 in Fig. 4.1(d), Update U2 in Fig. 4.1(e)

and Update U3 in Fig. 4.1(f). Fig. 4.1(g) depicts the timeline of this process. In the

first update Ua, Fiona takes a new photo in the National Park. In the second update
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U2, David removes the friend relationship with Fiona. In the last update U3, Green is

enrolled at USYD.

In order to solve the problem of computing the GPNM result for the subsequent

query with multiple updates in data graph, INC-GPNM has to apply the incremental

procedure three times for the three updates, leading to low efficiency. However, al-

though Fiona takes a new photo in U1, she still cannot appear in the matching result.

This is because the friend relationship between David and Fiona is removed by David

in U2, and then Fiona cannot connect with Bella within two hops. Thus, the effect of

U1 is eliminated by the effect of U2. The matching result of the subsequent query is

shown in Table 4.1.

Table 4.1: The matching results of the initial query and the subsequent query in Example 4.1

Query Matching nodes
initial query Charles, Ervin

subsequent query Charles, Ervin, David, Green

This example shows the need for a new GPNM solution that considers the multiple

updates inGD that occur between an initial query and a subsequent query to efficiently

answer GPNM queries. Such a solution is significant for social graph searches in large-

scale and frequently updated social networks, such as Facebook and Twitter. In this

new GPNM solution, there are two major challenges.

Firstly, it is non-trivial to identify the elimination relationships between updates

because, as we have analyzed in Case 2, the elimination relationships are not limit-

ed to the insertion and deletion of the same node and the edge. Therefore, the first

challenge of this chapter is (1) how to effectively identify the elimination relationships

of multiple updates. Secondly, if Ua eliminates Ub, and Ub eliminates Uc, there exists

a hierarchical structure of the elimination relationships. As it is computationally ex-

pensive to deliver GPNM results by investigating each of the elimination relationships

between the updates, it is beneficial to generate an index to record the hierarchical

structure of the elimination relationships. This index structure can efficiently help

identify the elimination relationships between each pair of updates. Therefore, the
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second challenge of this chapter is (2) how to generate an index structure to record the

hierarchical structure of the elimination relationships, and then develop an efficient

algorithm to deliver the GPNM results by making use of the index.

4.1 Elimination Relationships in Data Graphs

In this section, we analyze the elimination relationships between the updates in GD

and discuss how they can be detected.

4.1.1 Elimination Relationship Types in Data Graphs

If one edge or node is firstly removed from (or inserted into) a GD and then inserted

back to (or removed from) GD, these two updates eliminate each other (i.e., Case 1).

Moreover, if the set of affected nodes in GD of an update Ua covers the set of affected

nodes of another update Ub, then Ua eliminates Ub as well (i.e., Case 2). Therefore, we

classify the elimination relationships into the following two types.

Remark: When given a series of updates, we identify the affected nodes for each of

the updates sequentially. For example, if Ua is prior to Ub, we first identify the affected

nodes for Ua and update the initial data graph based on Ua. Then, when Ub is applied,

we identify the affected nodes for Ub and update the data graph accordingly.

Elimination Relationship Type I in Data Graphs: In GPNM, we need to investigate

if the shortest path length between each pair of nodes in GD can satisfy the require-

ments of the bounded path length inGP . The insertion and deletion of edges (or nodes)

can have the following two situations: (1) The insertion of edges (or nodes) in GD will

decrease the shortest path length between any two nodes or keep it unchanged, and

(2) the deletion of edges (or nodes) in GD will increase the shortest path length be-

tween any two nodes or keep it unchanged. If one insertion (denoted as update Ua) and

one deletion (denoted as update Ub) keep the shortest path length between any nodes
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unchanged, we say Ua and Ub eliminate each other, denoted as Ua⇔ Ub.

Remark: If a node is isolated from the data graph, then the insertion and deletion of

the node will not affect the shortest path lengths between other nodes. Otherwise, if

the node is deleted, the corresponding edges linking this node are removed as well.

Definition 1 (Elimination Relationship Type I in Data Graphs): Given two updates

Ua ∈ 4G+
D and Ub ∈ 4G−D, with an update Ui (i = a or b), if the shortest path length

between two nodes has changed, we put all such nodes into the set of affected nodes,

denoted as Aff N (Ui). Aff N (Ua ,Ub) denotes the set of nodes where the shortest

path length between a pair of any two nodes has changed caused by updates Ua and

Ub. Ua ⇔ Ub if and only if Aff N (Ua ,Ub) = ∅, which means that Ua and Ub elim-

inate each other if the shortest path length between any pair of nodes in GD remains

unchanged with Ua and Ub.

Example 4.2: Recall the case shown in Fig. 4.1, suppose Ua is to remove edge

e(David, F iona) from GD and Ub is to insert edge e(David, F iona) into GD as de-

picted in Fig. 4.2(a) and Fig. 4.2(b) respectively. In this example, since Aff N (Ua ,Ub)

= ∅, Ua⇔ Ub.

Elimination Relationship Type II in Data Graphs: Given two updates Ua and Ub,

where Ua ∈ 4G+
D (or 4G−D) and Ub ∈ 4G+

D (or 4G−D), if the set of nodes between

which the shortest path lengths are affected by Ua covers the set of nodes between

which the shortest path lengths are affected by Ub, we say Ua eliminates Ub or Ub is

eliminated by Ua, denoted as Ua � Ub or Ub � Ua.

Definition 2 (Elimination Relationship Type II in Data Graphs): Given two up-

dates Ua and Ub, where Ua ∈4G+
DE

(or4G−DE
) and Ub ∈4G+

DE
(or4G−DE

), with an

update Ui (i = a or b), if the shortest path between two nodes has been affected, we put

these affected nodes into Aff N (Ui). Ua � Ub or Ub � Ua if and only if Aff N (Ua)
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⊇ Aff N (Ub). Likewise, Ua � Ub or Ub � Ua if and only if Aff N (Ua)⊆ Aff N (Ub).

Example 4.3: Recall the case shown in Fig. 4.3. With Ua, the shortest path lengths

from Adam to all the other nodes in GD are affected, then Aff N (Ua) = {Adam,

Bella, Charles, David, Ervin, Fiona, Green}. With Ub, the shortest path lengths

from Charles to Ervin are affected, then Aff N (Ub) = {Charles, Ervin}. Since

Aff N (Ua) ⊇ Aff N (Ub), Ua � Ub or Ub � Ua.

Remark: Although the updates in Fig. 4.1 contains the updates in Fig. 4.2, Fig. 4.2

illustrates the Elimination Relationship Type I more directly, while Fig. 4.2 contains

all the queries and updates of data graphs, which is used to illustrate our targeted

problem and the motivation.

4.1.2 Detecting Elimination Relationships in Data Graphs

It is clear that the elimination relationships are not limited to the insertion and deletion

of the same node and the edge. Moreover, the set of affected nodes of each update is

the critical factor in detecting elimination relationships, and it is non-trivial to identify

the set of affected nodes. Therefore, we first generate the shortest path length matrix,

SLen, to record the shortest path length between each pair of nodes in GD. Since the

updates of GD can lead to a change of SLen, and it is very costly to re-compute the

shortest path length matrix, in this paper, we adopt the method proposed in [94] to

incrementally update SLen when GD is updated, which can avoid re-computing the

shortest path length for the whole matrix, thereby reducing time consumption. Below

we introduce the details.

Detect Elimination Relationship Type I in Data Graphs (DER-I): With two updates

Ua ∈ 4G+
D and Ub ∈ 4G−D, we first adopt the method proposed in [94] to obtain

the updated SLen (denoted as SLennew). Specifically, for the pair of nodes where

the shortest path length between them are affected, we adopt Dijkstra’s algorithm to
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Algorithm 5: Detect Elimination Relationship Type I (DER-I)
Input: GP , GD,4GD, SLen
Output: The elimination relationships of the updates

1 for each pair of updates Ua and Ub ∈ 4GD do
2 if the shortest path lengths between the nodes are not affected then
3 Keep the shortest path lengths in SLen new the same as those in SLen;

4 else
5 Apply Dijkstra’s algorithm for updating the shortest path lengths

between the affected nodes in SLennew;
6 if SLen new = SLen then
7 Ua⇔ Ub;

8 Return the elimination relationships of the updates;

update the corresponding shortest path length to obtain SLennew. Then, we compare

SLen with SLennew. If there is no update in SLennew, then Ua ⇔ Ub. The pseudo-

code is shown in Algorithm 5.

Detect Elimination Relationship Type II in Data Graphs (DER-II): With two up-

dates Ua ∈ 4G+
D (or4G−D) and Ub ∈ 4G+

D (or4G−D), we first update SLen for each

update and then compare the updated SLennew with these two updates. If Aff N (Ua)

⊇ Aff N (Ub), then Ua � Ub or Ub � Ua. The pseudo-code is shown in Algorithm 6.

Example 4.4: Recall the case shown in Fig. 4.3. We first compute the shortest

path length matrix SLen for the GD prior to the updates. The results are shown in

Table 4.2. With Ua and Ub, we update the shortest path length matrices as shown

in Table 4.3 and Table 4.4 respectively. Compared with SLen, with Ua, the short-

est path lengths from Adam to all the other nodes are affected, then Aff N (Ua) =

{Adam,Bella, Charles,David, Ervin, F iona,Green}. With Ub, the shortest path

lengths from Charles to Ervin are affected, then Aff N (Ub) = {Charles, Ervin}.

Because Aff N (Ua) ⊇ Aff N (Ub), then Ua � Ub or Ub � Ua.

Theorem 4.1: The order of the updates in4G+
DE

and4G−DE
does not affect the cor-
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Algorithm 6: Detect Elimination Relationship Type II (DER-II)
Input: GP , GD,4GD, SLen
Output: The elimination relationships of the updates

1 for each pair of updates Ua and Ub ∈ 4GD do
2 if the shortest path lengths between the nodes are not affected then
3 Keep the shortest path lengths in SLen new as that in SLen;

4 else
5 Apply Dijkstra’s algorithm for updating the shortest path lengths

between the affected nodes in SLennew;
6 Put the affected nodes into Aff N (Ua);
7 Put the affected nodes into Aff N (Ub);
8 if Aff N (Ua) ⊇ Aff N (Ub) then
9 Ua � Ub;

10 Return the elimination relationships of the updates;

Table 4.2: SLen of GD in Fig. 4.1(c)

Adam Bella Charles David Ervin Fiona Green
Adam 0 2 1 2 2 3 3
Bella ∞ 0 ∞ 1 3 2 2

Charles ∞ 1 0 1 1 2 2
David ∞ ∞ ∞ 0 2 1 1
Ervin ∞ ∞ ∞ ∞ 0 ∞ ∞
Fiona ∞ ∞ ∞ ∞ 1 0 ∞
Green ∞ ∞ ∞ ∞ ∞ ∞ 0

rectness of the detection of elimination relationship Type I.

The Proof of Theorem 4.1: When Ua is applied to GD prior to Ub, suppose Ua ⇔

Ub. Then, according to the definition of an elimination relationship Type I, there is

no affected node with Ua and Ub. When Ub is applied to GD prior to Ua, suppose Ua

and Ub do not have the elimination relationship. Then there exists at least one node

ni such that (1) ni ∈ Aff N (Ub) and ni /∈ Aff N (Ua); or (2) ni ∈ Aff N (Ua) and

ni /∈ Aff N (Ub). If ni ∈ Aff N (Ub) and ni /∈ Aff N (Ua), then ni is not affect-

ed by Ua. However, it contradicts ni ∈ Aff N (Ua) when Ua is applied to GD. If

ni ∈ Aff N (Ua) and ni /∈ Aff N (Ub), then ni is not affected by Ub. However, this

contradicts ni ∈ Aff N (Ub) when Ub is applied to GD. Therefore, Theorem 4.1 is
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Table 4.3: SLennew with Ua in Fig. 4.1(a)

Adam Bella Charles David Ervin Fiona Green
Adam 0 ∞ ∞ ∞ ∞ ∞ ∞
Bella ∞ 0 1 1 2 2 2

Charles ∞ ∞ 0 ∞ 1 1 1
David ∞ ∞ ∞ 0 ∞ ∞ 1
Ervin ∞ ∞ ∞ ∞ 0 ∞ ∞
Fiona ∞ ∞ ∞ ∞ ∞ 0 ∞
Green ∞ ∞ ∞ ∞ ∞ ∞ 0

Table 4.4: SLennew with Ub in Fig. 4.1(b)

Adam Bella Charles David Ervin Fiona Green
Adam 0 2 1 2 ∞ 3 3
Bella ∞ 0 ∞ 1 3 2 2

Charles ∞ 1 0 1 ∞ 2 2
David ∞ ∞ ∞ 0 2 1 1
Ervin ∞ ∞ ∞ ∞ 0 ∞ ∞
Fiona ∞ ∞ ∞ ∞ 1 0 ∞
Green ∞ ∞ ∞ ∞ ∞ ∞ 0

proven. 2

Theorem 4.2: The order of the updates in4G+
DE

and4G−DE
does not affect the cor-

rectness of the detection of elimination relationship Type II.

The Proof of Theorem 4.2: When Ua is applied to GD prior to Ub, suppose Ua � Ub.

Then, according to the definition of an elimination relationship of Type II, Aff N (Ua)

⊇ Aff N (Ub), namely, for any node ni ∈ Aff N (Ub), ni is also in Aff N (Ua).

When Ub is applied to GD prior to Ua, suppose Ua and Ub do not have the elimina-

tion relationship. Then, there is at least one node ni such that ni ∈ Aff N (Ub) and

ni /∈ Aff N (Ua). However, this contradicts ni ∈ Aff N (Ua) when Ua is applied to

GD. Therefore, Theorem 4.2 is proven. 2

Complexity: The complexity of the generation and the updates of SLen isO(|ND|(|ND|+
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|ED|) [94]. In the worst case, DER-I and DER-II need to check SLennew for each up-

date, then the complexity of either of DER-I and DER-II is O(|ND|(|ND| + |ED|) +

|4GD||ND|2), where |ND| and |ED| are the number of the nodes and the number of

the edges respectively in GD, and |4GD| is the scale of the updates of GD.

Summary: The above methods can detect the elimination relationship between any

pair of updates. However, it is computationally expensive to investigate each of the

elimination relationships for delivering GPNM results. It is worth noting that there ex-

ists a hierarchical structure between these elimination relationships. If we can generate

an index to record the structure of these elimination relationships, the query process-

ing time of subsequent queries can be reduced by investigating the structure. The

following section introduces the details.

4.2 Elimination Hierarchy Tree (EH-Tree) for the Up-

dates in Data Graphs

As introduced in Section 4.1, if the set of affected nodes of update Ua can cover that of

update Ub, then Ua eliminates Ub. In addition, there is a hierarchical structure between

the elimination relationships. Therefore, in our method, we first identify the affect-

ed nodes of each update, based on which, we then identify the hierarchical structure

between the elimination relationships and record the elimination hierarchy by using a

tree structure, which is called EH-Tree.

4.2.1 Identifying the Affected Nodes

To generate the EH-Tree index, we first need to identify the affected nodes of each

update. The steps are as follows:

• Step 1: For each update Ui ∈ 4GD, set Aff N (Ui) = ∅, and then update the

SLen to obtain the SLennew;
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• Step 2: Compare SLennew with SLen. For any pair of nodes between which

the shortest path length has been changed, put the two nodes into Aff N (Ui);

• Step 3: Return Aff N (Ui).

Table 4.5: SLennew with Ua in Example 4.5

Adam Bella Charles David Ervin Fiona Green
Adam 0 ∞ ∞ ∞ ∞ ∞ ∞
Bella ∞ 0 ∞ 1 3 2 2

Charles ∞ 1 0 1 1 2 2
David ∞ ∞ ∞ 0 2 1 1
Ervin ∞ ∞ ∞ ∞ 0 ∞ ∞
Fiona ∞ ∞ ∞ ∞ 1 0 ∞
Green ∞ ∞ ∞ ∞ ∞ ∞ 0

Table 4.6: SLennew with Ub in Example 4.5

Adam Bella Charles David Ervin Fiona Green
Adam 0 2 1 2 2 3 ∞
Bella ∞ 0 ∞ 1 3 2 ∞

Charles ∞ 1 0 1 1 2 ∞
David ∞ ∞ ∞ 0 2 1 ∞
Ervin ∞ ∞ ∞ ∞ 0 ∞ ∞
Fiona ∞ ∞ ∞ ∞ 1 0 ∞
Green ∞ ∞ ∞ ∞ ∞ ∞ 0

Table 4.7: SLennew with Uc in Example 4.5

Adam Bella Charles David Ervin Fiona Green
Adam 0 2 1 2 2 ∞ 3
Bella ∞ 0 ∞ 1 ∞ ∞ 2

Charles ∞ 1 0 1 1 ∞ 2
David ∞ ∞ ∞ 0 ∞ ∞ 1
Ervin ∞ ∞ ∞ ∞ 0 ∞ ∞
Fiona ∞ ∞ ∞ ∞ 1 0 ∞
Green ∞ ∞ ∞ ∞ ∞ ∞ 0

Example 4.5: Recall the case shown in Fig. 4.1. Suppose Ua, Ub, Uc and Ud are to re-

move edge e(Adam,Charles), e(David,Green), e(David, F iona) and e(Charles,
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Table 4.8: SLennew with Ud in Example 4.5

Adam Bella Charles David Ervin Fiona Green
Adam 0 2 1 2 ∞ 3 3
Bella ∞ 0 ∞ 1 3 2 2

Charles ∞ 1 0 1 ∞ 2 2
David ∞ ∞ ∞ 0 2 1 1
Ervin ∞ ∞ ∞ ∞ 0 ∞ ∞
Fiona ∞ ∞ ∞ ∞ 1 0 ∞
Green ∞ ∞ ∞ ∞ ∞ ∞ 0

Table 4.9: The affected nodes of the updates in Example 4.5

Update Affected nodes
Ua Adam, Bella, Charles, David, Ervin, Fiona, Green
Ub Adam, Bella, Charles, David, Green
Uc Adam, Bella, Charles, David, Ervin, Fiona
Ud Adam, Charles, Ervin

Ervin) from GD respectively. The corresponding SLennew are shown in Table 4.5,

Table 4.6, Table 4.7 and Table 4.8 respectively. With Ua, the shortest path lengths

from Adam to other nodes are affected, then Aff N (Ua) = {Adam, Bella, Charles,

David, Ervin, Fiona, Green}; with Ub, the shortest path lengths from Adam, Bella,

Charles, David to Green are affected, then Aff N (Ub) = {Adam, Bella, Charles,

David, Green}; with Uc, the shortest path lengths from Adam, Bella, Charles, David

to Fiona and the shortest path lengths from Bella, David to Ervin are affected, then

Aff N (Uc)={Adam, Bella, Charles, David, Ervin, Fiona}; with Ud, the short-

est path lengths from Adam to Ervin, and from Charles to Ervin are affected, then

Aff N (Ud) = {Adam, Charles, Ervin}. The affected nodes of all the four updates

are listed in Table 4.9.

4.2.2 EH-Tree For the Updates in Data Graphs Establishment

We present the details of the generation of EH-Tree as follows. The pseudo-code is

shown in Algorithm 7.

• Step 1: Firstly, for each update, we use the above-mentioned method to identify
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the affected nodes. Each tree node in EH-Tree denotes one update and stores the

affected nodes of the update.

• Step 2: Based on the affected nodes of each update, EH-Tree adopts the property

of balance tree to improve the query efficiency. Then, we have the following

strategies: (a) the update that has the maximum number of affected nodes is set

as the root of an EH-Tree; (b) if the affected nodes of one update can be covered

by the root, then this update is set as a child tree node of the root; (c) the number

of affected nodes of one update in each tree node must be greater than or equal

to the number of affected nodes of its left tree node, and less than or equal to the

number of affected nodes of its right tree node.

• Step 3: We then recursively insert all the updates into the EH-Tree.

Example 4.6: Recall Ua, Ub, Uc and Ud in Example 4.5. As Ua has the maximum

number of affected nodes in all the updates, it is set as the root of EH-Tree; with Ub, as

the set of affected nodes of Ua covers that of Ub, Ub is set as the left child node of Ua

as shown in Fig. 4.4(a); with Uc, as the set of affected nodes of Ua also covers that of

Uc, and Uc has the larger number of affected nodes than Ub, Uc is set as the right child

node of Ua as shown in Fig. 4.4(b); with Ud, as the set of affected nodes of Uc covers

that of Ud, Ud is set as the left child node of Uc. The completed EH-Tree is shown in

Fig. 4.4(c).

4.2.3 EH-Tree For the Updates in Data Graphs Maintenance

After building an EH-Tree index, next, we introduce how to maintain the existing EH-

Tree when facing new updates.

In an EH-Tree, each tree node represents one update in data graphs. When facing

a new coming update Un, we need to decide where it should be inserted as a new tree

node into the existing EH-Tree. As the elimination relationship is illustrated by the

affected nodes of updates, we compare the set of affected nodes between Un and the
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Algorithm 7: EH-Tree For the Updates in Data Graphs Establishment
Input: GP , GD,4GD, SLen
Output: the address of the root of an EH-Tree

1 for each update Ui ∈ 4GD do
2 if the shortest path lengths between the the nodes are not affected then
3 Keep the shortest path lengths in SLen new as that in SLen;

4 else
5 Apply Dijkstra’s algorithm for updating the shortest path lengths

between the affected nodes in SLennew;
6 Compare SLennew with SLen;
7 Put the affected nodes into Aff N (Ui);
8 if Ui has the maximum number of affected nodes then
9 Ui is set as the root of an EH-Tree;

10 else
11 for each update Uj ∈ 4GD do
12 if the set affected nodes of Ui covers that of Uj then
13 Uj is set as the child node of Ui;
14 if the number of affected nodes of Uj is less than or equal to that

by other child nodes then
15 Uj is set as the left child node;

16 else
17 Uj is set as the right child node;

18 return the address of the root of an EH-Tree;

updates in the existing EH-tree to insert Un. The detailed steps are shown as follows.

The corresponding pseudo-code is shown in Algorithm 8.

(1) Firstly, for each new coming update Un, we identify Aff N(Un) based on the

method proposed in Section 4.2.1.

(2) Let Um denote one of the existing updates, then, we compare Aff N(Un) with

Aff N(Um). Based on the comparison results, we perform the following processes:

(a) LetUroot denote the root in the existing EH-Tree. SetUm =Uroot, ifAff N(Un)

⊇ Aff N(Um), then Un is set as the new root of the EH-Tree, and the existing

root is set as the only child node of Un. Otherwise, go to (b).



§4.2 Elimination Hierarchy Tree (EH-Tree) for the Updates in Data Graphs 85

Algorithm 8: EH-Tree For the Updates in Data Graphs Maintenance
Input: a new coming update Un, EH-Tree
Output: the updated EH-Tree

1 Identify Aff N(Un);
2 let Um denote one of the tree nodes in EH-Tree;
3 let Uroot denote the tree root in EH-Tree;
4 set Um = Uroot;
5 if Aff N(Un) ⊇ Aff N(Um) and Um is the tree root in EH-Tree then
6 Un is set as the new root of EH-Tree;
7 Um is set as the only child node of Un;

8 else
9 if Aff N(Un) ⊂ Aff N(Um) then

10 let Ul denote the one of the left child nodes of Um;
11 let Ur denote the one of the right child nodes of Um;
12 if Aff N(Un) ⊇ Aff N(Ur) and Aff N(Un) ⊇ Aff N(Ul) then
13 Un is set as the only child node of Um;
14 Ur, Ul is set as the right, left child node of Un;

15 else
16 if Aff N(Un) ⊇ Aff N(Ur) and Aff N(Un) + Aff N(Ul) then
17 Ui is set as the right child of Um;
18 Ur is set as the only child node of Un;

19 else
20 if Ur is not the leaf node in EH-Tree and Aff N(Un) ⊂

Aff N(Ur) then
21 INSERT(Un, Ur);

22 if Ul is not the leaf node in EH-Tree and Aff N(Un) ⊂
Aff N(Ul) then

23 INSERT(Un, Ul);

24 if Aff N(Un) + Aff N(Ur) and Aff N(Un) ⊇ Aff N(Ul) then
25 Un is set as the left child node of Um;
26 Ul is set as the only child node of Un;

27 else
28 if Ur is not the leaf node in EH-Tree and Aff N(Un) ⊂

Aff N(Ur) then
29 INSERT(Un, Ur);

30 if Ul is not the leaf node in EH-Tree and Aff N(Un) ⊂
Aff N(Ul) then

31 INSERT(Un, Ul);

32 return the updated EH-Tree;
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Ua

(Adam, Bella, Charles, David, Ervin, 
Fiona, Green)

(Adam, Bella, Charles, David, Green)

(a) (b)

(c)

Ua

(Adam, Bella, Charles, David, Ervin, 
Fiona, Green)

Ub

(Adam, Bella, Charles, 
David, Green)

Uc

(Adam, Bella, Charles, 
David, Ervin, Fiona)

Ua

(Adam, Bella, Charles, David, Ervin, 
Fiona, Green)

Ub

(Adam, Bella, Charles, 
David, Green)

Uc

(Adam, Bella, Charles, 
David, Ervin, Fiona)

Ud

(Adam, Charles, Ervin)

Ub

Figure 4.4: The EH-Tree of Example 4.6

(b) If Aff N(Un) ⊂ Aff N(Um), let Ul denote one of the left children nodes of

Um and let Ur denote one of the right children nodes of Um, if Aff N(Un) ⊇

Aff N(Ur) and Aff N(Un) ⊇ Aff N(Ul), then Un is set as the only child

node of Um, and Ur, Ul are set as the right and left children nodes of Un respec-

tively. Otherwise,

• if Aff N(Un) ⊇ Aff N(Ur) and Aff N(Un) + Aff N(Ul), then Un is

set as the right child of Um and Ur is set as the only child node of Un;

• if Aff N(Un) + Aff N(Ur) and Aff N(Un) ⊇ Aff N(Ul), then Un is

set as the left child node of Um and Ul is set as the only child node of Un.

(c) If Aff N(Un) ⊂ Aff N(Ur), set Ur = Um and go to (a) until reaching one of

the leaf nodes of the EH-Tree; If Aff N(Un) ⊂ Aff N(Ul), set Ul = Um and

go to (a) until reaching one of the leaf nodes of the EH-Tree.

Example 4.7: Recall Ua, Ub, Uc and Ud in Example 4.5. The corresponding EH-Tree

of these updates is shown in Fig. 4.4 (c). Suppose the new coming updateUn is a newly

added edge e(Bella,Green) inGD. AsAff N(Un)⊂Aff N(Ua), we need to com-

pare Aff N(Un) with Aff N(Ub), and Aff N(Uc) respectively. As Aff N(Un) ⊂
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Aff N(Ub) and Ub is a leaf node, then Un is set as the only child node of Ub.

Complexity: Since an EH-Tree is a balanced tree, the time complexity of the tree

establishment and search are O|4GD| log|4GD| and O log|4GD| respectively [1],

where |4GD| is the number of updates in GD. For each update in EH-Tree, we need

to save all the nodes in the data graph maximally, therefore, the space complexity of

EH-Tree is O|4GD||ND|.

4.3 EH-GPNM Algorithm

4.3.1 Algorithm Overview

EH-GPNM contains three major parts, each solving a challenging problem. All of

them demonstrate the novelty and effectiveness of our proposed EH-GPNM. Firstly,

since the elimination relationships are not limited to the insertion and deletion of the

same node and the edge and it is non-trivial to identify the affected nodes of each

update, EH-GPNM has a strategy to identify the affected nodes for each update. Based

on the affected nodes, EH-GPNM can detect the elimination relationships effectively.

Then, since it is computationally expensive to deliver GPNM results by investigating

each of the elimination relationships between the updates, EH-GPNM generates a tree

index (EH-Tree) to record the hierarchical structure of the elimination relationships.

Finally, by searching the EH-Tree, our EH-GPNM algorithm applies an incremental

GPNM procedure for the rest of the updates to identify the GPNM results without any

need to consider the effect of the eliminated updates. This approach can greatly save

query processing time (see details in Section 4.4).

4.3.2 The Process of EH-GPNM

After building the EH-Tree, when facing a subsequent query, EH-GPNM first search-

es the EH-Tree to efficiently detect the elimination relationships between multiple
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Algorithm 9: EH-GPNM
Input: GP , GD, SQuery,4GD

Output: SQuery
1 Generate an EH-Tree;
2 for each Ui ∈ 4GD do
3 Check the EH-Tree;
4 if Ui is the parent node of Uj (i 6= j) then
5 Ui can eliminate Uj;

6 Incrementally identifies the GPNM results for the updates;
7 return SQuery;

updates and then incrementally identifies the GPNM results. The detailed steps of

EH-GPNM are shown below. The pseudo-code is shown in Algorithm 9.

• Step 1: For each update Ui ∈ 4GD, EH-GPNM first searches the EH-Tree to

detect the elimination relationships between the updates.

• Step 2: EH-GPNM then recursively finds the elimination relationship for each

update until all the updates in4GD have been investigated.

• Step 3: After searching the EH-Tree, we do not need to consider the effect of

the eliminated updates. We apply the following incremental GPNM procedure

for the rest of the updates to identify the GPNM results. The details of the

incremental GPNM procedure are introduced in Chapter 3.

Complexity: (1) Time Complexity: Since EH-GPNM first searches the EH-Tree, and

then incrementally identifies the GPNM results for the updates, EH-GPNM achieves

O(|ND|(|ND|+ |ED|) + (|4GD| − |UD|)(|ND|2) + |4GD| log |4GD|) in time com-

plexity, where |UD| is the number of the updates that can be eliminated in GD.

(2) Space Complexity: Since EH-GPNM uses a matrix structure to record the short-

est path length between each pair of nodes and generates a balanced tree structure to

index the elimination relations, its space complexity is O((|ND|2 + |4GD||ND|). In

addition, in real-world social networks, not all the pairs of nodes are reachable (i.e., the

shortest path lengths between these pairs of nodes are taken as infinite), which makes
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the shortest path length matrix SLen sparse. Therefore, we can compress the sparse

matrix of a data graph by using the Hybrid format [9]. Then the space complexity can

be reduced to 2|ND||K|, where |K| is the maximum number of non-infinite values in

a row and |ND| is the number of nodes in a data graph. By this method, we can save

the storage space because |K| is usually much smaller than |ND|.

Example 4.8: Recall the case shown in Fig. 4.1, and suppose there are four updates

between the two queries (i.e., Ua, Ub, Uc and Ud in Example 4.5). The EH-Tree of these

four updates is shown in Fig. 4.4(c), where Ua is the root, that is, Ua eliminates all

the other updates. Therefore, our method only needs to apply the incremental GPNM

procedure for the update Ua, which can greatly save the query processing time.

4.4 Experiments on EH-GPNM

4.4.1 Experimental Setting

Datasets: We used five real-world social graphs that are available at snap.stanford.edu.

The details are shown in Table 4.10.

Table 4.10: The sizes of datasets on EH-GPNM

Name #Nodes #Edges
Ask Ubuntu 159,316 964,437
Facebook 134,833 1,380,293

Super User 194,085 1,443,339
Wiki Talk 1,140,149 7,833,140

LiveJournal 4,847,571 68,993,773

To the best of our knowledge, there are no existing real-world datasets with labels.

As there are no fixed patterns for the labels in a social network, without loss of gener-

ality, the well-known existing works in GPSM [39, 41] and GPNM [40, 106] randomly

set the classes of labels in their data-sets for experiments. Similarly, we randomly set

the labels of the nodes. For each dataset, we set the number of labels as 20, 40, 60, 80
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and 100 respectively.

Pattern Graph Generation and Parameter Setting: We used a graph generator, soc-

netv2, to generate pattern graphs, controlled by 3 parameters: (1) the number of nodes,

(2) the number of edges, and (3) the bounded path length on each edge. Since the

numbers of nodes and edges in a pattern graph are usually not large [39], they are set

between 6 and 10. Since the bounded path length on each edge is usually a small inte-

ger [39], we randomly set the bounded path length on each edge from 1 to 3.

Updates of GD: In each experiment, we removed m edges and m nodes from GD, at

the same time, we also inserted n new edges and n new nodes into GD, where both m

and n increase from 100 to 500 with a step of 100. Therefore, 4GD increases from

200 to 1,000 with a step of 200 in each experiment.

Comparison Methods: As discussed in Section 2, there is no existing GPNM method

in the literature which takes the relationships of updates into consideration. Therefore,

in the experiments, we implemented the following GPNM methods:

• TopKDAG: TopKDAG is the most promising static GPNM method proposed in

[40], which does not take the updates of GD into consideration. When facing

any update in GD, TopKDAG needs to recompute the GPNM results starting

from scratch.

• INC-GPNM: INC-GPNM is the most promising incremental GPNM method

proposed in [106], which takes the updates of GD into consideration. INC-

GPNM needs to perform an incremental GPNM procedure for each of the up-

dates in GD.

• NEH-GPNM: In order to investigate the performance of EH-Tree, we imple-

mented the GPNM algorithm without EH-Tree, called NEH-GPNM.
2https://socnetv.org/
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Implementation: All the three algorithms were implemented using GCC 4.8.2 run-

ning on a server with Intel Xeon-E5 2630 2.60GHz CPU, 256GB RAM, and Red Hat

4.8.2-16 operating system. For each dataset, we considered 5 sets of updates and 5

sets of pattern graphs, and the experiments were conducted on each dataset for 5 inde-

pendent runs. Therefore, there are 125=5*5*5 results of the query processing time on

each dataset.

4.4.2 Experimental Results and Analysis

Figs. 4.5 to 4.9 depict the average query processing time with the varying sizes of

4GD on different sizes of GP . The results and analysis are as follows.

Results-1 (Efficiency): With the increase of the size of the datasets, the average pro-

cessing time of EH-GPNM is always less than that of TopKDAG, INC-GPNM and

NEH-GPNM in all the cases of experiments, and the average processing time of NEH-

GPNM is always less than that of INC-GPNM and TopKDAG in all the cases of exper-

iments. The detailed results are given in Table 4.11, and the comparisons between the

methods are shown in Table 4.12. On average, (1) EH-GPNM can reduce the query

processing time by 51.23%, 22.59% and 10.31% compared with that of TopKDAG,

INC-GPNM and NEH-GPNM respectively; and (2) Based on statistics, NEH-GPNM

can reduce the query processing time by 45.69% and 13.68% compared with that of

TopKDAG and INC-GPNM respectively. The improvement remains consistent when

the size of datasets has significantly increased.

Analysis-1: As discussed in Section 4.1, if there exist elimination relationships among

the updates, both NEH-GPNM and EH-GPNM require less execution time than INC-

GPNM and TopKDAG as they can avoid performing an incremental GPNM procedure

for each of the updates. Compared with NEH-GPNM, EH-GPNM has better efficiency
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Figure 4.5: The average query processing time in Ask Ubuntu on EH-GPNM
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Figure 4.6: The average query processing time in Facebook on EH-GPNM
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Figure 4.7: The average query processing time in Super User on EH-GPNM
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Figure 4.8: The average query processing time in Wiki Talk on EH-GPNM
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Figure 4.9: The average query processing time in LiveJournal on EH-GPNM
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Table 4.11: The average query processing time based on different datasets on EH-GPNM

Dataset EH-GPNM NEH-GPNM INC-GPNM TopKDAG
Ask Ubuntu 193.91s 218.50s 249.48s 408.47s
Facebook 205.67s 227.71s 270.47s 458.46s

Super User 211.56s 237.86s 277.60s 477.85s
Wiki Talk 568.53s 627.21s 724.51s 1160.01s

LiveJournal 2359.09s 2628.49s 3002.90s 4749.91s
Average 707.59s 787.95s 904.99s 1450.94s

Table 4.12: Comparison with TopKDAG, INC-GPNM and NEH-GPNM based on different
datasets on EH-GPNM

Dataset with TopKDAG with INC-GPNM with NEH-GPNM
Ask Ubuntu 52.53% less 22.27% less 11.25% less
Facebook 55.14% less 23.96% less 9.68% less

Super User 55.73% less 23.79% less 11.05% less
Wiki Talk 52.99% less 21.52% less 9.35% less

LiveJournal 50.33% less 21.43% less 10.24% less
Average 51.23% less 22.59% less 10.31% less

as it can avoid checking each pair of the updates by searching the EH-Tree.

Results-2 (Scalability): With the increase of the scale of4GD from 200 to 1,000, the

processing time of both INC-GPNM and TopKDAG increases fast while the process-

ing time of both NEH-GPNM and EH-GPNM increase slowly compared with that of

INC-GPNM and TopKDAG, which shows the better scalability of NEH-GPNM and

EH-GPNM. Moreover, EH-GPNM has the best scalability among all the four algo-

rithms. The detailed results are given in Table 4.13, and the comparisons between the

methods are shown in Table 4.14.

Analysis-2: With the increase of the scale of 4GD, since TopKDAG needs to re-

compute the results starting from scratch for each update and INC-GPNM needs to

perform an incremental GPNM procedure for each update to find the matching nodes,

the scale of 4GD have a significant influence on their query processing time. While

NEH-GPNM and EH-GPNM consider the elimination relationships between 4GD,
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Table 4.13: The average query processing time based on different scales of 4GD on EH-
GPNM

Scale of
4GD

EH-GPNM NEH-GPNM INC-GPNM TopKDAG

200 609.09s 671.82s 752.05s 1056.99s
400 666.72s 737.74s 828.98s 1250.07s
600 716.16s 795.62s 905.35s 1442.15s
800 757.18s 845.99s 981.08s 1633.99s

1000 789.60s 888.59s 1057.52s 1827.47s

Table 4.14: Comparison with TopKDAG, INC-GPNM and NEH-GPNM based on different
scales of4GD on EH-GPNM

Scale of
4GD

with TopKDAG with INC-GPNM with NEH-GPNM

200 42.38% less 19.01% less 9.34% less
400 46.67% less 19.57% less 9.63% less
600 50.34% less 20.90% less 9.99% less
800 53.66% less 22.82% less 10.50% less

1000 56.79% less 25.33% less 11.14% less

the query processing time of NEH-GPNM and EH-GPNM increase slowly compared

with that of INC-GPNM and TopKDAG. Because of the EH-Tree index, EH-GPNM

can efficiently find the elimination relationships for each pair of updates in 4GD,

which means that it has the best scalability among all the four algorithms.

Summary: The experimental results and analysis have demonstrated that the proposed

EH-GPNM provides an effective means to answer GPNM queries with the updates of a

data graph. In addition, we have also proposed a tree structure to index the elimination

relationships between the updates, and with our proposed index, EH-GPNM can great-

ly save query processing time, which enables EH-GPNM to outperform NEH-GPNM

in efficiency. Compared to TopKDAG, INC-GPNM and NEH-GPNM, EH-GPNM

can reduce the query processing time by an average of 51.23%, 22.59% and 10.31%

respectively. In particular, when facing a large number of updates in a data graph,

EH-GPNM has much better performance.
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4.5 Conclusion

In this paper, we have proposed a GPNM method called EH-GPNM considering mul-

tiple updates in data graphs. EH-GPNM is the first work which considers the elimina-

tion relationships among the updates in data graphs, and thus, can efficiently deliver

node matching results and reduce the query processing time. The experimental result-

s on five real-world social graphs have demonstrated the efficiency of our proposed

method.



Chapter 5

Incremental Graph Pattern based

Node Matching Considering the

Elimination Relationships Among

Updates in Both Pattern Graphs and

Data Graphs

As we introduced in Section 1.1.1, nodes and edges in both GP and GD are usually

updated frequently over time. However, in a large-scale social graph that is updated

with a high frequency, the algorithm INC-GPNM algorithm introduced in Chapter 3

is still computationally expensive because it ignores the relationships that exist among

the updates in both GP and GD, and thus, when facing any update, it has to perform

an incremental GPNM procedure for each of the updates. The EH-GPNM algorithm

introduced in Chapter 4 considers the updates in GD only. When facing updates in the

pattern graph, it still has to perform the incremental GPNM procedure for each of the

updates in the pattern graph. Therefore, a new efficient GPNM method is in demand.

Inspired by EH-GPNM, we realized that there exists elimination relationships a-

mong the updates. EH-GPNM only considers the single-graph elimination relation-

ships among the updates in data graph. However, in real life, the elimination relation-

ships exist among the updates not only in the data graph but also in the pattern graph,

96
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Figure 5.1: The elimination relationships among the updates in both GP and GD

and even exist among the updates from different graphs (one update from the pattern

graph and the other one from the data graph). Below Example 5.1 illustrates the details

of our motivations.

Table 5.1: The node matching results of Example 5.1

Nodes in GP Matching nodes in GD

PM PM1

SE SE1, SE2

S S1

TE TE1, TE2

Example 5.1: Based on the pattern graph and data graph shown in Fig. 5.1(c) and

Fig. 5.1(a) respectively, the original GPNM matching results are shown in Table 5.1.

Suppose there are two updates in the pattern graph, where PM needs to be associated

with a TE within two hops (denoted as UP1 in Fig. 5.1(b)), and an S needs to be

associated with a TE within four hops (denoted as UP2 in Fig. 5.1(b)). And there are

also two updates in data graph, where SE1 establishes the collaboration relationship

with TE2 (denoted as UD1 in Fig. 5.1(d)) and DB1 establishes the collaboration rela-



98

tionship with S1 (denoted as UD2 in Fig. 5.1(d)). The new pattern graph GP new and

new data graph GD new are shown in Fig. 5.1(b) and Fig. 5.1(d) respectively.

Based on these two updated graphs, the INC-GPNM [106] has to apply the incre-

mental procedure four times because there are a total of four updates in GP and GD,

leading to low efficiency. However, in practice, one update can be eliminated by anoth-

er update. It is easy to understand that in each single graph, if one edge (node) is firstly

removed from (or inserted into) GD (GP ) and then inserted back to (or removed from)

GD (GP ), the effects of the two updates can eliminate each other. Therefore, there

may exist elimination relationships among the updates in a single graph of GP or GD,

and we term this kind of elimination relationships of a single graph as single-graph

elimination relationships. More importantly, one update in a graph may eliminate an

update in another graph, we term this kind of elimination relationships as cross-graph

elimination relationships. In Example 5.1, although in update UP1, a PM needs to be

associated with a TE within 2 hops, it indeed leads to no change in the GPNM results.

This is because in another update UD1, SE1 happens to establish the collaboration with

TE2, making all the PMs in the data graph be connected with a TE within 2 hops.

Therefore, the effects of UP1 and UD1 eliminate each other.

This example motivates us to develop a new GPNM solution which considers the e-

limination relationships among the updates to efficiently answer GPNM queries. When

facing an updated pattern graph and an updated data graph, we can compute the GP-

NM result for the original pattern graph, and then deliver the new GPNM result by

analyzing the elimination relationships among the updates, instead of performing the

incremental GPNM procedure for each of the updates.

This new GPNM solution is significant for the social graph searches in large-scale

and frequently updated social networks, such as Facebook and Twitter.

In this new solution, there are three major challenges. Firstly, it is non-trivial

to identify the elimination relationships among the updates because there exist both

single-graph elimination relationships and cross-graph elimination relationships. There-

fore, the first challenge of our work is CH1: how to effectively detect the elimination
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relationships of the updates. Secondly, if update Ua eliminates update Ub, and update

Ub eliminates update Uc, there exists a hierarchical structure of them, which applies

to all the elimination relationships. As it is computationally expensive to deliver GP-

NM results by investigating each of the elimination relationships among the updates,

it is beneficial to build up an index to record the hierarchical structure of all the elim-

ination relationships. Therefore, the second challenge of our work is CH2: how to

build up an index structure to record the hierarchical structure of all the elimination

relationships covering both single-graph elimination relationships and cross-graph e-

limination relationships, which supports the development of an efficient algorithm to

deliver the GPNM results by making use of the index. Thirdly, in the GPNM proce-

dure, we need to compute the shortest path length between any two nodes, which is

very time-consuming. Therefore, the third challenge of our work is CH3: how to effi-

ciently compute the shortest path length between any two nodes to speed up the GPNM

procedure.

5.1 Elimination Relationships in Both Pattern Graphs

and Data Graphs

In this section, we first analyze three types of elimination relationships. Then, we

propose the effective methods to detect these elimination relationships. We further

build up an index to record the hierarchical structure of these elimination relationships.

5.1.1 Elimination Relationship Types in Both Pattern Graphs and

Data Graphs

The elimination relationships can be categorized into three types. Below we analyze

the elimination relationships for these three types respectively.

Single-graph elimination relationships in GP (Type I): For each update UPi in pat-
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tern graph GP , we need to identify the nodes in data graph GD that has the possibility

to be added into or removed from the matching results. We call these nodes as can-

didate nodes and put these candidate nodes into the set of candidate nodes (denoted

as Can N(UPi)). Given two updates UPi and UPj , if the set of candidate nodes of an

update UPi covers that of UPj , i.e., Can N(UPi) ⊇ Can N(UPj), we say UPi elimi-

nates UPj , denoted as UPi w UPj .

Remark: Can N(UPi) can be divided into two subsets: a)Can AN(UPi), which rep-

resents the set of candidate nodes that has the possibility to be added into the matching

results; b)Can RN(UPi), which represents the set of candidate nodes that has the pos-

sibility to be removed from the matching results.

Single-graph elimination relationships in GD (Type II): In GPNM, we need to in-

vestigate if the shortest path length between each pair of nodes in GD can satisfy the

requirements of the bounded path length in GP . For each update UDi in data graph

GD, if the shortest path between two nodes has been affected by UDi, we call these

nodes as affected nodes and put these affected nodes into the set of affected nodes (de-

noted as Aff N (UDi)). Given two updates UDi and UDj , if the set of affected nodes

of an update UDi covers that of UDj , i.e., Aff N(UDj) ⊇ Aff N(UDi), we say UDi

eliminates UDj , denoted as UDi � UDj .

Cross-graph elimination relationships between GP and GD (Type III): For an up-

dateUPi from a pattern graphGP and an updateUDi from a data graphGD, if these two

updates keep the GPNM results unchanged, then UPi and UDi eliminate each other,

denoted as UDi ⇔ UPi.
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Algorithm 10: DER-I
Input: GP , GD,4GP , SLen
Output: The type I elimination relationships of the updates

1 for each pair of updates UPa and UPb ∈ 4GP do
2 if UPa and UPb ∈ 4G−P then
3 for each pair of nodes ui and vi in IQuery do
4 if SLen(ui, vi) > the bounded path length on UPa then
5 Put ui, vi into Can RN (UPa);

6 if SLen(ui, vi) > the bounded path length on UPb then
7 Put ui, vi into Can RN (UPb);

8 if Can RN (UPa) ⊇ Can RN (UPb) then
9 UPa w UPb;

10 if UPa and UPb ∈ 4G+
P then

11 for each pair of nodes ui and vi in GD do
12 if SLen(ui, vi) < the bounded path length on UPa then
13 Put ui, vi into Can AN (UPa);

14 if SLen(ui, vi) < the bounded path length on UPb then
15 Put ui, vi into Can AN (UPb);

16 if Can AN (UPa) ⊇ Can AN (UPb) then
17 UPa w UPb;

18 Return type I elimination relationships of the updates;

5.1.2 Detecting Elimination Relationships in Both Pattern Graphs

and Data Graphs

Below we introduce the detailed steps for detecting the three types of elimination re-

lationships respectively.

Detect Type I elimination relationships (DER-I): For each update in the pattern

graph, we first identify the nodes that have the possibility to be removed from or added

into the original matching results. Then if the set of candidate nodes of an update UPi

covers that of UPj , then UPi eliminates UPj . Below are the detailed steps of detecting

Type I elimination relationships. The pseudo-code is shown in Algorithm 10.

• Step 1: We first build up the shortest path length matrix, SLen, to record the
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shortest path length between each pair of nodes in GD;

• Step 2: For each UPi, if UPi ∈ 4G+
P , we then inspect if the shortest path length

between the pair of nodes in IQuery can satisfy the bounded path length con-

strain on UPi, if not, we put these nodes into Can RN (UPi) as they cannot

satisfy the bounded path length constrain of the newly added edge and have to

be removed from IQuery; If UPi ∈ 4G−D, we then inspect if the shortest path

length between the pair of nodes in GD can satisfy the bounded path length con-

strain on UPi, if not, we put these nodes into Can AN (UPi) as the edge with

the shortest path length constrain they cannot satisfy has been deleted and these

nodes can be added into IQuery;

• Step 3: For each pair of UPa and UPb ∈4GP , if Can N (UPa)⊇ Can N (UPb),

then UPa w UPb.

Example 5.2: Recall GP and GD shown in Fig. 5.1(c) and Fig. 5.1(a) respectively,

IQuery is shown in Table 5.1. UP1 is to insert edge e(PM, TE) with a bounded path

length 2 into GP and UP2 is to insert edge e(S, TE) with a bounded path length 4

into GP shown in Fig. 5.1(b). The SLen of GD in Fig. 5.1(c) is shown in Table 5.2.

With UP1, because the PM needs to be associated with TE within 2 steps and the

shortest path length between PM2 and TE2 is ∞, which is larger than the bounded

path length 2, then PM2 and TE2 are added into Can RN (UP1 ). After PM2 and TE2

are set as candidate nodes, we need to check if the nodes connected to PM2 and TE2

can be set as candidate nodes. Because the shortest path length between PM1 and

S1, the shortest path length between PM1 and SE1, SE2, and the shortest path length

betweenSE2, SE1 and TE1 are all less than the corresponding bounded path length in

GP , then only PM2 and TE2 are added into Can RN (UP1 ); With UP2, only TE2 is

added into Can RN(UP2). The set of candidate nodes of UP1 and UP2 are shown in

Table 5.3. Because Can RN(UP1) ⊇ Can RN(UP2), then UP1 w UP2.
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Table 5.2: SLen of GD in Fig. 5.1(c).

PM1 PM2 SE1 SE2 S1 TE1 TE2 DB1

PM1 0 3 2 1 3 2 ∞ 1
PM2 ∞ 0 1 2 2 3 ∞ 3
SE1 ∞ 1 0 1 1 2 ∞ 2
SE2 ∞ 3 2 0 3 1 ∞ 1
S1 ∞ 3 2 3 0 4 ∞ 1
TE1 ∞ 4 3 1 4 0 ∞ 2
TE2 ∞ 4 3 4 1 5 0 2
DB1 ∞ 2 1 2 2 3 ∞ 0

Table 5.3: The set of candidate nodes of UPi

Updates in pattern graph Can RN (UPi)
UP1 PM2, TE2

UP2 TE2

Theorem 5.1: The order of the updates in4GP does not affect the correctness of the

detection of Type I elimination relationships.

The Proof of Theorem 5.1: When UPa is applied to GP prior to UPb, suppose UPa

w UPb. Then, according to the definition of an elimination relationship of Type I,

Can N (UPa) w Can N (UPb), namely, for any node ni ∈ Can N (UPb), ni is al-

so in Can N (UPa). When UPb is applied to GD prior to UPa, suppose UPa and

UPb do not have the elimination relationship. Then, there is at least one node ni

such that ni ∈ Can N (UPb) and ni /∈ Can N (UPa). However, this contradicts

ni ∈ Can N (UPa) when UPa is applied to GD. Therefore, Theorem 1 is proven.

2

Detect Type II elimination relationships (DER-II): For each update in the data

graph, we first detect the nodes where the shortest path length in data graph between

them are changed by each update (denoted as affected nodes). Then, if the set of af-

fected nodes of an update UDi covers that of UPj , then UPi eliminates UPj . Below are

the detailed steps of detecting Type II elimination relationships. The pseudo-code is

shown in Algorithm 11.
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Algorithm 11: DER-II
Input: GP , GD,4GD, SLen
Output: The type II elimination relationships of the updates

1 for each pair of updates UDa and UDb ∈ 4GD do
2 if the shortest path lengths between the nodes are not affected then
3 Keep the shortest path lengths in SLen new as that in SLen;

4 else
5 Apply the Dijkstra’s algorithm for updating the shortest path lengths

between the affected nodes in SLennew;
6 Put the affected nodes into Aff N (UDa);
7 Put the affected nodes into Aff N (UDb);
8 if Aff N (UDa) ⊇ Aff N (UDb) then
9 UDa � UDb;

10 Return type II elimination relationships of the updates;

• Step 1: We first update SLen to get the updated shortest path length matrix,

SLennew, for each update in data graph;

• Step 2: For each update UDi, we compare the SLennew with SLen, if the short-

est path length of two nodes is changed due to UDi, we put these nodes into

Aff N (UDi);

• Step 3: For each pair of updates UDa and UDb, if Aff N (UDa) ⊇ Aff N (UDb),

then UDa � UDb.

Table 5.4: SLennew with UD1.

PM1 PM2 SE1 SE2 S1 TE1 TE2 DB1

PM1 0 3 2 1 3 2 3 1
PM2 ∞ 0 1 2 2 3 2 3
SE1 ∞ 1 0 1 1 2 1 2
SE2 ∞ 3 2 0 3 1 3 1
S1 ∞ 3 2 3 0 4 3 1
TE1 ∞ 4 3 1 4 0 4 2
TE2 ∞ 4 3 4 1 5 0 2
DB1 ∞ 2 1 2 2 3 2 0

Example 5.3: Recall GP and GD shown in Fig. 5.1(c) and Fig. 5.1(a) respectively,

IQuery is shown in Table 5.1. UD1 is to insert edge e(SE1, TE2) into GD and UD2
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Table 5.5: SLennew with UD2.

PM1 PM2 SE1 SE2 S1 TE1 TE2 DB1

PM1 0 3 2 1 2 2 ∞ 1
PM2 ∞ 0 1 2 2 3 ∞ 3
SE1 ∞ 1 0 1 1 2 ∞ 2
SE2 ∞ 3 2 0 2 1 ∞ 1
S1 ∞ 3 2 3 0 4 ∞ 1
TE1 ∞ 4 3 1 3 0 ∞ 2
TE2 ∞ 4 3 4 1 5 0 2
DB1 ∞ 2 1 2 1 3 ∞ 0

is to insert edge e(DB1, S1) into GD shown in Fig. 5.1(d). The SLen of GD in Fig.

5.1(c) is shown in Table 5.2. the SLennew of UD1 and UD2 in Fig. 5.1(d) are shown

in Table 5.4 and Table 5.5 respectively. With UD1, because the shortest path lengths

from all the other nodes to TE1 are changed, then all the nodes in data graph are set

as the affected nodes of UD1. With UD2, because the shortest path lengths from PM1,

SE2, TE1 and DB1 to S1 are are changed, then PM1, SE2, TE1, DB1 and S1 are set

as affected nodes. The set of affected nodes of UD1 and UD2 are shown in Table 5.6.

Because Aff N (UD1 ) ⊇ Aff N (UD2), then UD1 � UD2.

Table 5.6: The affected nodes of UD1 and UD2

Updates in data graph The affected nodes
UD1 PM1, PM2, SE1, SE2, S1, TE1, TE2, DB1

UD2 PM1, SE2, S1, TE1, DB1

Theorem 5.2: The order of the updates in4GD does not affect the correctness of the

detection of Type II elimination relationship.

The Proof of Theorem 5.2: When UDa is applied to GD prior to UDb, suppose

UDa � UDb. Then, according to the definition of the elimination relationships of

Type II, Aff N (UDa) ⊇ Aff N (UDb), namely, for any node ni ∈ Aff N (UDb), ni

is also in Aff N (UDa). When UDb is applied to GD prior to UDa, suppose UDa

and UDb do not have the elimination relationship. Then, there is at least one node
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Algorithm 12: DER-III
Input: GP , GD,4GP ,4GD, SLen, SLennew

Output: The type III elimination relationships of the updates
1 for each update UPi ∈ 4GP do
2 Perform DER-I to get Can N(UPi);

3 for each update UDi ∈ 4GD do
4 Perform DER-II to get Aff N(UDi);

5 for each pair of nodes ui, vi in UPi do
6 if SLennew(ui, vi) ≤ the bounded path length on UPi then
7 UDi⇔ UPi;

8 Return type III elimination relationships of the updates;

ni such that ni ∈ Aff N (UDb) and ni /∈ Aff N (UDa). However, this contradicts

ni ∈ Aff N (UDa) when UDa is applied to GD. Therefore, Theorem 2 is proven. 2

Detect Type III elimination relationships (DER-III): For an update UPi from a pat-

tern graph and an updateUDi from a data graph, we need to inspect if these two updates

keep the GPNM results unchanged. Below are the detailed steps of detecting Type III

elimination relationships. The pseudo-code is shown in Algorithm 12.

• Step 1: For the update UPi from a pattern graph, we identify the candidate nodes

for UPi.

• Step 2: For the update UDi from a data graph, we identify affected nodes for

UDi.

• Step 3: Based onCan N(UPi) andAff N(UDi), ifAff N(UDi) ⊇ Can N(UPi),

which means the shortest path length between any nodes in the set of candidate

nodes is changed due to the update UDi, we inspect the updated shortest path

length matrix SLennew to check if the shortest path length of the candidate n-

odes can satisfy the new pattern graph. If so, no node should be added into or

deleted from the matching results; therefore, UPi ⇔ UDi.

Example 5.4: Recall GP and GD shown in Fig. 5.1(c) and Fig. 5.1(a) respective-

ly, IQuery is shown in Table 5.1. UP1 is to insert edge e(PM, TE) with a bounded
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path length 2 into GP shown in Fig. 5.1(b) and UD1 is to insert edge e(SE1, TE2)

into GD shown in Fig. 5.1(d). Based on Example 5.2 and Example 5.3, we have

Can N(UPi)={PM2, TE2} and Aff N(UDi)={PM1, PM2, SE1, SE2, S1, TE1,

TE2, DB1}, then Aff N(UD1) ⊇ Can N(UP1). Since AFF (PM2, TE2) = (∞, 2),

the shortest path length between PM2 and TE2 can still satisfy the bounded path

length on the newly inserted edge. Therefore, UP1 ⇔ UD1.

Complexity: The complexity of the generation and the updates of SLen isO(|ND|(|ND|+

|ED|) [94]. In the worst case, DER-I, DER-II and DER-III need to check SLennew for

each update, then the complexity of each of DER-I, DER-II and DER-III isO(|ND|(|ND|+

|ED|)+ |4G||ND|2), where |ND| and |ED| are the number of the nodes and the number

of the edges respectively in GD, and |4G| is the scale of the updates.

5.1.3 EH-Tree for the Updates in Both Pattern Graphs and Data

Graphs

EH-Tree for the Updates in Both Pattern Graphs and Data Graphs Establishmen-

t: As it is computationally expensive to deliver GPNM results by investigating each

of the elimination relationships among the updates, we build up an index to record

the hierarchical structure of the elimination relationships. This index structure can ef-

ficiently help detect the elimination relationships between each pair of updates. We

present the details of the generation of EH-Tree as follows. The pseudo-code is shown

in Algorithm 13.

• Step 1: Firstly, for each update, we use the method mentioned in Section 5.1

to identify the affected nodes for each update in data graph and identify the

candidate nodes for each update in pattern graph. Each tree node in EH-Tree

denotes an update and stores the affected nodes or candidates of the update.

• Step 2: Based on the affected nodes and candidate nodes of each update, we

have the following strategies: (a) the update that has the maximum number of
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affected nodes or candidate nodes is set as the root of an EH-Tree; (b) if the

affected nodes of one update UDi can be covered by another update UDj , then

UDi is set as a child tree node of UDj; (c) if the candidate nodes of one update

UPi can be covered by another update UPj , then UPi is set as a child tree node

of UPj; (d) if UDi and UPj can eliminate each other, then we can set the UPi as

a child tree node of UDi or set the UDi as a child tree node of UPi.

• Step 3: We then recursively insert all the updates into the EH-Tree.

Example 5.5: Recall UD1, UD2, UP1 and UP2 in Fig .5.1. As UD1 has the maximum

number of affected nodes in all the updates, it is set as the root of EH-Tree; with UD2,

as the set of affected nodes of UD1 covers that of UD2, UD2 is set as the child node of

UD1; with UP1, as the set of candidate nodes of UP1 covers that of UP2, UP2 is set as

child node of UP1; Because UD1 and UP1 can eliminate each other, UP1 is set as the

child node of UD1. The completed EH-Tree is shown in Fig. 5.2.

UD1

UD2 UP1

UP2

Figure 5.2: The EH-Tree of Example 5.5

5.2 Graph Partition

5.2.1 Label-based Partition

It is computational expensive to construct the shortest path length matrix SLen and

update the SLennew. Therefore, in this section, we propose a graph partition method
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Algorithm 13: EH-Tree for the Updates in Both Pattern Graphs and Data Graphs
Establishment

Input: GP , GD,4GD,4GP , SLen
Output: the address of the root of an EH-Tree

1 for each update UDi ∈ 4GD do
2 Detect affected nodes for UDi;
3 Put the affected nodes into Aff N (Ui);
4 if UDi has the maximum number of affected nodes then
5 UDi is set as the root of an EH-Tree;

6 else
7 for each update UDj ∈ 4GD do
8 if the set affected nodes of UDi covers that of UDj then
9 UDj is set as the child node of UDi;

10 if the number of affected nodes of UDj is less than or equal to
that by other child nodes then

11 UDj is set as the left child node;

12 else
13 UDj is set as the right child node;

14 for each update UPi ∈ 4GP do
15 Detect candidate nodes for UPi;
16 Put the candidate nodes into Can N (Ui);
17 if UPi has the maximum number of affected nodes then
18 UPi is set as the root of an EH-Tree;

19 else
20 for each update UPj ∈ 4GP do
21 if the set candidate nodes of UPi covers that of UPj then
22 UPj is set as the child node of UPi;
23 if the number of candidate nodes of UPj is less than or equal to

that by other child nodes then
24 UPj is set as the left child node;

25 else
26 UPj is set as the right child node;

27 for each pair of update UPi and UDi do
28 if UPi and UDi eliminate each other then
29 UPi is set as the child node of UDi or UDi is set as the child node of UPi;

30 return the address of the root of an EH-Tree;
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TE1

PM1

SE1

TE2 TE3

SE2

SE3

SE4

Data Graph
(a)

TE1 TE2 TE3

Partition PTE

(b)

SE1 SE2 SE3

SE4

Partition PSE

(c)

Partition PPM

(d)

PM1

Partition

Figure 5.3: Label-based Partition

to improve the efficiency of computing the shortest path length between any two n-

odes. Based on the observation that people with the same role (e.g., has the same job

title) usually connect with each other closely [16], we put the nodes that have the same

label in a data graph and their corresponding edges into the same partition. Then the

shortest path computation will be processed distributively based on the partitions.

Example 5.6: Fig. 5.3(a) depicts a data graph, where it has three different labels of

nodes, namely, TE, SE and PM respectively. Based on the different labels of the

nodes, we divide the data graph into three partitions, denoted as partition PTE , PSE

and PPM respectively.

After the partition, we need to preserve the connectivity of the data graph. Then our

partition method records the cross-partition edges in the partitions where the starting

nodes are in. For example, in Fig. 5.3(a), we record e(SE2, TE1) in the partition PSE .

Before introducing the process of computing shortest path length, we first define some

nodes with properties below.
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Definition 1. inner bridge node: Given a partition Pi, a node vi (vi ∈ Pi) is termed as

an inner bridge node of Pi if there is an edge e(vi, vj) in data graph and vj /∈ Pi. Let

IB(Pi) denote the set of the inner bridge nodes of partition Pi.

Example 5.7: In Fig. 5.3, SE2 is an inner bridge node of PSE , because there exists an

edge e(SE2, TE1) in Fig. 5.3(a) and TE1 /∈ PSE .

Definition 2. outer bridge node: Given a partition Pi, a node vj (vj /∈ Pi) is termed as

a outer bridge node of Pi if there exists an edge e(vi, vj) in data graph and vi ∈ Pi. Let

OB(Pi) denote the set of the bridges nodes of partition Pi.

Example 5.8: In Fig. 5.3, PM1 is a outer bridge node of PSE because there exists an

edge e(SE2, PM1) in Fig. 5.3(a).

We use a table to record the inner bridge nodes and outer bridge nodes in each

partition. For example, the inner bridge nodes and outer bridge nodes for partition

PSE are shown in Table 5.7.

Table 5.7: The inner bridge nodes and outer bridge nodes of TSE

inner bridge nodes outer bridge nodes
SE1 PM1

SE2 TE1

5.2.2 Graph Partition based Shortest Path Length Computation

We divide computation of the shortest path length into two sub-processes, i.e., sub-

process-1: computing the shortest path length between any two nodes in the same

partition, and sub-process-2: computing the shortest path length between any two

nodes in different partitions. Below we introduce these two sub-processes in detail.

sub-process-1: For each partition Pi, ifOB(Pi) = ∅, we apply the Dijkstra’s algorithm

in this partition to compute the shortest path length. Otherwise, we apply the following

steps. The pseudo-code is shown in Algorithm 14.
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• Step 1: In each partition Pi, we denote the nodes in Pi as vPi, for each pair of n-

odes from vaP i to vbP i, we first apply the Dijkstra’s algorithm to compute the short-

est path length value from vaP i to vbP i in this partition (denoted as SPPi(v
a
P i, v

b
P i))

and set the shortest path length value (denotes as SPD(v
a
P i, v

b
P i)) from vaP i to vbP i

in the data graph as SPPi(v
a
P i, v

b
P i);

• Step 2: For each outer bridge node vcPj (vcPj ∈ OB(Pi)), if BN(pj) = ∅, then

the shortest path length between vaP i and vbP i is still SPD(v
a
P i, v

b
P i). Otherwise,

if one of the outer bridge nodes of Pj belongs to partition Pi, we combine the

partitions of Pi and Pj , and then apply the Dijkstra’s algorithm to compute the

shortest path length between vaP i and vbP i in the combined partition. If the new

shortest path length is less than SPD(v
a
P i, v

b
P i), we update SPD(v

a
P i, v

b
P i) with

the newly computed shortest path length;

• Step 3: We recursively apply Step 2 to update SPD(v
a
P i, v

b
P i) until no partition

can be combined with Pi.

Example 5.9: To compute the shortest path length between any two nodes in PSE in

Fig. 5.3, because there are two outer bridge nodes in PSE , i.e., PM1 and TE1, and

PTE has no outer bridge node and the outer bridge node of PPM belongs to PSE , we

combine PSE and PPM . Then, we apply the Dijkstra’s algorithm to compute the short-

est path length in the combined partition. The shortest path length matrix of PSE is

shown in Table 5.8.

sub-process-2: For each partition Pi, if OB(Pi) = ∅, the shortest path length from any

node in Pi to any node in other partitions is infinity. Otherwise, we apply the following

steps. The pseudo-code is shown in Algorithm 15.

• Step 1: We first apply sub-process-1 to compute the shortest path length be-

tween the nodes in same partition;

• Step 2: For each inner bridge node vaP i in Pi with the outer bridge node vaPj , we

first set SPD(v
a
P i, v

a
Pj) = 1;
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Algorithm 14: sub-process-1
Input: GD, partitions of GD

Output: The shortest path length between any two nodes in the same partition
1 for each partition Pi do
2 if OB(Pi) is ∅ then
3 for each pair of nodes from vaP i to vbP i in Pi do
4 Apply the Dijkstra’s algorithm to compute SPD(v

a
P i, v

b
P i);

5 else
6 for each pair of nodes from vaP i to vbP i in Pi do
7 Apply the Dijkstra’s algorithm to compute SPPi(v

a
P i, v

b
P i);

8 Set SPD(v
a
P i, v

b
P i)=SPPi(v

a
P i, v

b
P i);

9 for each outer bridge node in Pi that belongs to Pj do
10 if BN(Pj) is ∅ then
11 Return SPD(v

a
P i, v

b
P i);

12 else
13 if one of the outer bridge nodes in Pj belongs to Pi then
14 Combine Pi and Pj;
15 Apply the Dijkstra’s algorithm to compute the shortest

path length from vaP i to vbP i in the combined partition;
16 Update SPD(v

a
P i, v

b
P i);

17 else
18 Recursively inspect the outer bridge nodes of Pj until no

partition can be combined with Pi;
19 Update SPD(v

a
P i, v

b
P i);

20 Return the shortest path length between any two nodes in the same partition;

• Step 3: For each node vbPj in the same partition of vaPj , we set SPD(v
a
P i, v

b
Pj) =

SPD(v
a
P i, v

a
Pj) + SPD(v

a
Pj, v

b
Pj); And for each node vbP i in partition Pi, we set

SPD(v
b
P i, v

b
Pj) = SPD(v

b
P i, v

a
P i) + SPD(v

a
P i, vv

b
Pj).

Example 5.10: To compute the shortest path length from SE to TE in Fig. 5.3,

because TE1 is the outer bridge node of SE2, then we set SPD(SE2, TE1) = 1. For

each node in the partition PTE , SPD(SE2, TE2) = 1+ 1 = 2 and SPD(SE2, TE3) =

1 + 2 = 3. Since the shortest path length from SE3 and SE4 to SE2 are infinity, the

shortest path length from SE3 and SE4 to all the nodes in PTE are all infinity. The

shortest path length matrix between each node in PSE to each node in PTE is shown
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Table 5.8: The shortest path length matrix of PSE

SE1 SE2 SE3 SE4

SE1 0 1 2 2
SE2 ∞ 0 1 2
SE3 ∞ ∞ 0 1
SE4 ∞ ∞ ∞ 0

Algorithm 15: sub-process-2
Input: GD, partition of GD

Output: The shortest path length between any two nodes in different partitions
1 for each partition Pi do
2 if OB(Pi) is ∅ then
3 The shortest path length from any node in Pi to any node in other

partitions is infinity;
4 else
5 sub-process-1;
6 for each inner bridge node vaP i in Pi with the outer bridge node vaPj do
7 set SPD(v

a
P i, v

a
Pj) = 1;

8 for each node vbPj in the same partition of vaPj do
9 set SPD(v

a
P i, v

b
Pj) = SPD(v

a
P i, v

a
Pj) + SPD(v

a
Pj, v

b
Pj);

10 for each node vbP i in partition Pi do
11 set SPD(v

b
P i, v

b
Pj) = SPD(v

b
P i, v

a
P i) + SPD(v

a
P i, vv

b
Pj);

12 Return the shortest path length between any two nodes in different partitions;

in Table 5.9.

Table 5.9: The shortest path length matrix from PSE to PTE

TE1 TE2 TE3

SE1 2 3 4
SE2 1 2 3
SE3 ∞ ∞ ∞
SE4 ∞ ∞ ∞

Complexity: In the worst case, we need to combine all the partitions to compute the

shortest path length matrix. Therefore, the time complexity isO(|ED|+|ND|log|ND|).
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5.3 UA-GPNM Algorithm

In this section, we propose a new Updates-Aware GPNM algorithm, called UA-GPNM.

It first searches the EH-Tree to efficiently detect both the single-graph elimination re-

lationships and the cross-graph elimination relationships, and then incrementally de-

livers the GPNM results. The detailed steps of UA-GPNM are shown below. The

pseudo-code is shown in Algorithm 16.

• Step 1: For each update Ui ∈ 4GD or Ui ∈ 4GP , UA-GPNM first searches the

EH-Tree to detect the elimination relationships among the updates.

• Step 2: UA-GPNM then recursively finds the elimination relationships for each

update until all the updates have been investigated.

• Step 3: After searching the EH-Tree, we apply the incremental GPNM proce-

dure for uneliminated updates to deliver the GPNM results. The details of the

incremental GPNM procedure can be found in [106].

Complexity: Since UA-GPNM first searches the EH-Tree, and then incrementally

deliver the GPNM results for the updates, UA-GPNM achievesO(|ND|(|ND|+|ED|)+

(|4G| − |Ue|)(|ND|2) + |4G| log |4G|) in time complexity, where |Ue| is the number

of the updates that can be eliminated.

5.4 Experiments on UA-GPNM

We now present the results and the analysis of experiments conducted on five real-

world social graphs to evaluate the performance of our proposed UA-GPNM.

5.4.1 Experimental Setting

Datasets: We have used five real-world social graphs that are available at snap.stanford.edu.

The details are shown in Table 5.10.
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Algorithm 16: UA-GPNM
Input: GP , GD,4GP ,4GD, IQuery
Output: SQuery

1 Build up the EH-Tree for all the updates;
2 for each UPi ∈ 4GP do
3 Check the EH-Tree;
4 if UPi is the parent node of UPj (i 6= j) then
5 UPi can eliminate UPj;

6 else
7 if UPi is the parent node of UDi (i 6= j) then
8 UPi can eliminate UDi;

9 for each UDi ∈ 4GD do
10 Check the EH-Tree;
11 if UDi is the parent node of UDj (i 6= j) then
12 UDi can eliminate UDj;

13 else
14 if UDi is the parent node of UPi (i 6= j) then
15 UDi can eliminate UPi;

16 Incrementally delivers the GPNM results for the updates;
17 return SQuery;

Pattern Graph Generation and Parameter Setting: We used a graph generator, soc-

netv1, to generate pattern graphs, controlled by 3 parameters: (1) the number of nodes,

(2) the number of edges, and (3) the bounded path length on each edge. Since the

numbers of nodes and edges in a pattern graph are usually not large [39], they are set

between 6 and 10. Since the bounded path length on each edge is usually a small inte-

ger [39], we randomly set the bounded path length on each edge from 1 to 3.

Updates of GD: In each experiment, we removed mG edges and mG nodes from GD;

at the same time, we also inserted nG new edges and nG new nodes into GD, where

both mG and nG increase from 100 to 500 with a step of 100.

Updates of GP : In each experiment, we removed mP nodes and nP edges from GP ,

and add nP new nodes and nP new edges into GP , where 1 ≤ mP ≤ 5, and 1 ≤ nP

1https://socnetv.org/
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Table 5.10: The sizes of datasets for UA-GPNM

Name #Nodes #Edges
email-EU-core 1,005 25,571

DBLP 317,080 1,049,866
Amazon 334,863 925,872
Youtube 1,134,890 2,987,624

LiveJournal 3,997,962 34,681,189

≤ 5.

Remark: In each experiment, let 4G(4GP ,4GD) denote the updates, where 4GP

denotes the updates in GP and4GD denotes the updates in GD.

Comparison Methods: As discussed in Chapter 2, there is no existing GPNM method

in the literature which takes the relationships of updates in both pattern graphs and data

graphs, and the partition strategy into consideration. Therefore, in the experiments, we

implemented the following GPNM methods:

• INC-GPNM: INC-GPNM [106] takes the updates of GD and GP into consider-

ation. INC-GPNM needs to perform an incremental GPNM procedure for each

of the updates in GD or GP .

• EH-GPNM: EH-GPNM [105] only considers the elimination relationships in

data graph, when facing any update in pattern graphs, it needs to perform an

incremental GPNM procedure for each of the updates in GP .

• UA-GPNM-NoPar: UA-GPNM-NoPar takes the relationships of updates in

both pattern graph and data graph into consideration. However, it does not have

the partition strategy.

Implementation: All the three algorithms were implemented using GCC 4.8.2 run-

ning on a server with Intel Xeon-E5 2630 2.60GHz CPU, 256GB RAM, and Red Hat

4.8.2-16 operating system. For each dataset, we considered 5 sets of updates and 5 sets

of pattern graphs, and the experiments were conducted on each dataset for 5 indepen-

dent runs. Therefore, there are a total of 125=5*5*5 results of the query processing
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time on each dataset.

Figs. 5.4-5.8 depict the average query processing time with the varying sizes of

4G on different sizes of GP . The results and analysis are as follows.

5.4.2 Experimental Results and Analysis

Results-1 (Efficiency): With the increase of the size of the datasets, the average pro-

cessing time of UA-GPNM is always less than that of INC-GPNM, EH-GPNM and

UA-GPNM-NoPar in all the cases of experiments. The detailed results are given in

Table 5.11, and the comparisons between the methods are shown in Table 5.12. On

average, (1) UA-GPNM can reduce the query processing time by 58.60%, 35.29%

and 17.70% compared with that of INC-GPNM, EH-GPNM and UA-GPNM-NoPar

respectively. The improvement remains consistent when the size of datasets has sig-

nificantly increased.

Table 5.11: The average query processing time based on different datasets for UA-GPNM

Dataset UA-GPNM UA-GPNM-NoPar EH-GPNM INC-GPNM
email-EU-core 3.31s 3.98s 5.25s 8.27s

DBLP 210.34s 262.71s 322.38s 501.25s
Amazon 225.48s 278.37s 346.15s 536.85s
Youtube 497.70s 602.41s 753.03s 1185.23s

LiveJournal 1567.48s 1911.56s 2449.19s 3765.27s
Average 500.86s 611.70s 755.20s 1199.38s

Analysis-1: As we discussed in Section 5.1, if there exist elimination relationships a-

mong the updates, both UA-GPNM and UA-GPNM-NoPar require less execution time

than INC-GPNM and EH-GPNM as they can avoid performing an incremental GPNM

procedure for each of the updates. Compared with UA-GPNM-NoPar, UA-GPNM has

better efficiency as it divides the data graphs into small subgraphs, saving the query

processing time when applying the the Dijkstra’s algorithms.
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Figure 5.4: The average query processing time in email-EU-core on UA-GPNM
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Figure 5.5: The average query processing time in DBLP on UA-GPNM
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Figure 5.6: The average query processing time in Amazon on UA-GPNM
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Figure 5.7: The average query processing time in Youtube on UA-GPNM
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Figure 5.8: The average query processing time in LiveJournal on UA-GPNM
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Table 5.12: Comparison with INC-GPNM, EH-GPNM and UA-GPNM-NoPar based on dif-
ferent datasets for UA-GPNM

Dataset with INC-GPNM with EH-GPNM with UA-GPNM-NoPar
email-EU-core 59.98% less 36.95% less 16.83% less

DBLP 58.04% less 34.75% less 19.77% less
Amazon 58.00% less 34.86% less 18.99% less
Youtube 58.60% less 33.91% less 14.91% less

LiveJournal 58.37% less 36.01% less 18.00% less
Average 58.60% less 35.29% less 17.70% less

Results-2 (Scalability): With the increase of the scale of 4G from (6, 200) to (10,

1000), the processing time of both INC-GPNM and EH-GPNM increases fast while

the processing time of both UA-GPNM and UA-GPNM-NoPar increase slowly com-

pared with that of INC-GPNM and EH-GPNM, which shows the better scalability of

UA-GPNM and UA-GPNM-NoPar. Moreover, UA-GPNM has the best scalability a-

mong all the four algorithms. The detailed results are given in Table 5.13, and the

comparisons between the methods are shown in Table 5.14.

Table 5.13: The average query processing time based on different scales of4G for UA-GPNM

Scale of
4G

UA-GPNM UA-GPNM-NoPar EH-GPNM INC-GPNM

(6, 200) 371.64s 423.46s 503.03s 712.67s
(7, 400) 439.23s 513.71s 643.29s 956.63s
(8, 600) 510.02s 606.03s 774.87s 1182.12s
(9, 800) 571.69s 700.35s 907.19s 1417.40s

(10, 1000) 636.42s 786.02s 1038.96s 1625.27s

Table 5.14: Comparison with INC-GPNM, EH-GPNM and UA-GPNM-NoPar based on dif-
ferent scales of4G for UA-GPNM

Scale of
4G

with INC-GPNM with EH-GPNM with UA-GPNM-NoPar

(6, 200) 47.85% less 26.12% less 12.24% less
(7, 400) 54.09% less 31.72% less 14.50% less
(8, 600) 56.86% less 34.18% less 15.84% less
(9, 800) 59.67% less 36.98% less 18.37% less

(10, 1000) 60.84% less 38.74% less 19.03% less
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Analysis-2: With the increase of the scale of4G, since INC-GPNM needs to perform

an incremental GPNM procedure for each update to find the matching nodes, the scale

of4G have a significant influence on their query processing time. While UA-GPNM

consider the elimination relationships among the updates, the query processing time

of UA-GPNM increases slowly compared with that of INC-GPNM, EH-GPNM and

UA-GPNM-NoPar, which means that it has the best scalability among all the four al-

gorithms.

Summary: The experimental results have demonstrated that the proposed UA-GPNM

provides an effective means to answer GPNM queries with the updates of a data graph

and a pattern graph. In addition, we have also proposed a tree structure to index

the elimination relationships between the updates, and with our proposed index and

partition method, UA-GPNM can greatly save query processing time. Compared to

INC-GPNM, EH-GPNM and UA-GPNM-NoPar, UA-GPNM can reduce the query

processing time by an average of 58.60%, 35.29% and 17.70% respectively. In par-

ticular, when facing a large number of updates in a data graph, UA-GPNM has much

better performance.

5.5 Conclusion

In this paper, we have proposed a GPNM method called UA-GPNM considering mul-

tiple updates in both data graphs and pattern graphs. UA-GPNM can efficiently de-

liver node matching results, and can reduce the query processing time. To the best

of our knowledge, UA-GPNM is the first GPNM method which takes the elimination

relationships in both pattern graphs and data graphs into consideration. The experi-

mental results on five real-world social graphs have demonstrated the efficiency of our

proposed method and superiority over the state-of-art GPNM methods. In our future

work, we will work on (1) the improvement of space complexity by designing new

index structures, and (2) a new approach to selecting the top-k matching nodes.



Chapter 6

Conclusions and Future Work

6.1 Conclusions

As a popular data model for representing the relationships of different data, graphs

have been widely used in various fields such as social networks, social security and

biology. Graph Pattern based Subgraph Matching (GPSM) is a fundamental problem

in graph analysis. GPSM aims to find all the matching subgraphs of a pattern graph

GP in a data graph GD. It has been increasingly used in knowledge discovery, traffic

network analysis, intelligence analysis, and social networks analysis, among other ap-

plications. Conventional subgraph matching solutions are based on the subgraph iso-

morphism problem, in which matches are depend strictly on graph structure. However,

the subgraph isomorphism problem is an NP-Complete problem [46], which makes it

computationally expensive to find the exact matching subgraphs, especially in large

graphs. To address this problem, Bounded Graph Simulation (BGS) was proposed,

which has fewer restrictions but more capacity to extract more useful subgraphs with

better efficiency because it supports simulation relations instead of an exact match of

edges and nodes. The subgraph isomorphism-based and BGS-based subgraph match-

ing methods aim to find the entire subgraphs in GD. However, in some applications,

such as group finding and expert recommendation, people are more interested in find-

ing some nodes based on a specified structure between them, leading to the Graph

Pattern based Node Matching (GPNM) problem. In real life, the pattern graph and

data graph are usually updated frequently over time. The existing GPNM methods do

122
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not consider any update of a pattern graph or a data graph. Therefore, with the updates

of a pattern graph and/or a data graph, they have to perform a new GPNM procedure

from scratch to deliver the node matching results, which consumes much more query

processing time.

In this thesis, we focus on the three challenges in improving the efficiency of de-

livering the GPNM results.

(1) The first challenge is how to efficiently deliver the node matching results rather

than performing a whole GPNM procedure from scratch (that consumes much more

query processing time) when facing frequent updating pattern graphs and data graphs.

(2) Although both the pattern graphs and data graphs are updated frequently, not all

the updates in a pattern graph GP or a data graph GD essentially affect the GPNM

matching results. For example, if one edge (node) is firstly removed from (or inserted

into) GD (GP ) and then inserted back to (or removed from) GD (GP ), the effects of

the two updates can eliminate each other. It is non-trivial to identify the elimination

relationships among the updates because there exist both single-graph elimination re-

lationships and cross-graph elimination relationships. Therefore, the second challenge

of this thesis is: how to effectively detect the elimination relationships of the updates.

In addition, if update Ua eliminates update Ub, and update Ub eliminates update Uc,

there exists a hierarchical structure of them, which applies to all the elimination rela-

tionships. As it is computationally expensive to deliver GPNM results by investigating

each of the elimination relationships among the updates, it is beneficial to build up an

index to record the hierarchical structure of all the elimination relationships. There-

fore, another challenging problem of elimination relationships is how to build up an

index structure to record the hierarchical structure of all the elimination relationships

covering both single-graph elimination relationships and cross-graph elimination re-

lationships, which supports the development of an efficient algorithm to deliver the

GPNM results by making use of the index.

(3) In the GPNM procedure, we need to inspect whether the shortest path length be-

tween two nodes can satisfy the path length constraints on the pattern graph. The com-
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putation of the shortest path length between any two nodes is very time-consuming

especially in large data graphs (e.g., social networks and traffic networks). In order to

overcome this bottleneck, we propose a strategy to partition the graph into subgraph

to speed up the GPNM procedure. In the partition strategy, we need to ensure that

the connectivity of the data graph will not be destroyed and the shortest path length

between any two nodes can be efficiently updated when the graphs are updated. There-

fore, the third challenge of this thesis is how to efficiently compute the shortest path

length between any two nodes to accelerate the GPNM procedure without destroying

the connectivity of the graphs.

Targeting these three challenges, we have proposed our solutions.

• We first proposed an INCremental Graph Pattern node Matching method, called

INC-GPNM, to deliver the GPNM results based on the updates of both pattern

graphs and data graphs. Instead of recomputing the GPNM results from scratch

when both pattern graphs and data graphs are updated, in GPNM, we first build

an index to incrementally record the shortest path length range between different

label types in GD, and then identify the affected parts of GD in GPNM includ-

ing nodes and edges w.r.t. the updates of GP and GD. Moreover, based on

the index structure and our novel search strategies, INC-GPNM can efficiently

deliver node matching results taking the updates of GP and GD as input, and

can greatly reduce the query processing time with improved time complexity.

Extensive experiments on seven real-world social graphs demonstrate that our

method greatly outperforms the GPNM method in efficiency.

• In real life, many typical pattern graphs frequently and repeatedly appear in user-

s’ queries in a short period of time, e.g., social graph searches on Facebook. To

deliver a GPNM result in such applications, the existing GPNM methods have

to recompute the matching results starting from scratch or perform incremental

GPNM procedure for each of the updates in the data graph, which are compu-

tationally expensive. To address this problem, in this paper, we first analyze
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the elimination relationships between multiple updates in GD and the hierar-

chical structure between these elimination relationships. Then, we generate an

Elimination Hierarchy Tree (EH-Tree) to index the elimination relationships and

propose an EH-Tree based GPNM method, called EH-GPNM, considering the

elimination relationships between multiple updates in GD. EH-GPNM first de-

livers the GPNM result of an initial query, and then delivers the GPNM result

of a subsequent query, based on the initial GPNM result and the multiple up-

dates of GD that occur between those two queries. The experimental results on

five real-world social graphs demonstrate that our proposed EH-GPNM is much

more efficient.

• Inspired by EH-GPNM, we realized that the elimination relationships not on-

ly exist among the updates in the data graph, but also among the updates in

the pattern graph and even in the cross updates from GP and GD. To further

improve the GPNM efficiency when both GP and GD are updated frequently,

in this thesis, we propose a more efficient GPNM method, called UA-GPNM.

UA-GPNM first detect the elimination relations between multiple independent

updates in GP and GD, and also the cross elimination relationships between the

updates from GP and GD, then UA-GPNM generates an EH-Tree to index all

the elimination relationships. In addition, we also propose a graph partition s-

trategy in UA-GPNM to speed up the GPNM procedure. The experiments show

that UA-GPNM can achieve better efficiency compared with INC-GPNM and

EH-GPNM when facing the updates of GP and GD.

6.2 Future Work

In this thesis, we have mainly discussed the incremental GPNM problem. There are

still unresolved issues and thus, our future work will include the following:

• In the GPNM procedure, our algorithms can find the nodes that can match the
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pattern graphs. In large real-life social graphs, the excessive number of matching

nodes may be returned by our algorithms. In our future work, we aim to propose

a measurement to rank these matching nodes and can efficiently select Top-k

matching nodes from all the matching results.

• In BGS, the shortest path length is the constraint in the pattern graphs. There-

fore, in our matching procedure, we use a matrix to record the shortest path

length between any two nodes in the data graphs, which consumes a large amoun-

t of space. In our future work, we aim to propose a new index to record the

shortest path length or propose a new technique to compress the storage space.



Appendix A

The Notations in the Thesis

Table A.1: The Notations in Chapter 3

Notations Explanations
GD a data graph
GP a pattern graph

GD new an updated data graph
GP new an updated pattern graph
4GD the updates of GD

4GP the updates of GP

e(vi, vj) a directed edge from vi to vj
V a set of vertices in GD

E a set of edges in GD

fA(u) the attributes of a node u in GD

VP a set of vertices in GP

EP a set of edges in GP

fv(u) the attributes of a node u in GP

fe(u, v) the bounded path length on e(u, v) in GP

M(GP , GD) the matching result of GP in GD based on BGS
Nui the matching nodes set of ui
N

′
ui

the updated matching nodes set of ui
4G+

PE
the insertions of edges for GP

4G−PE
the deletions of edges for GP

4G+
PN

the insertions of nodes for GP

4G−PN
the deletions of nodes for GP

4G+
DE

the insertions of edges for GD

4G−DE
the deletions of edges for GD

4G+
DN

the insertions of nodes for GD

4G−DN
the deletions of nodes for GD
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Table A.2: The Notations in Chapter 3 (continued)

Notations Explanations

SLen
the shortest path length matrix
between each pair of nodes in GD

RSLen
the shortest path length range matrix
between each category of nodes in GD

AFF
the set of affected pairs of nodes where the shortest
path length between each pair of nodes is changed.

Table A.3: The Notations in Chapter 4
Notations Explanations

GD a data graph
GP a pattern graph

GD new an updated data graph
4GD the updates of GD

e(vi, vj) a directed edge from vi to vj
V a set of vertices in GD

E a set of edges in GD

fA(u) the attributes of a node u in GD

VP a set of vertices in GP

EP a set of edges in GP

fv(u) the attributes of a node u in GP

fe(u, v) the bounded path length on e(u, v) in GP

M(GP , GD) the matching result of GP in GD based on BGS
IQuery the GPNM result of the initial query
SQuery the GPNM result of the subsequent query
4G+

DE
the insertions of edges for GD

4G−DE
the deletions of edges for GD

4G+
DN

the insertions of nodes for GD

4G−DN
the deletions of nodes for GD

4G+
D the insertions of edges or nodes for GD

4G−D the deletions of nodes or nodes for GD

Ui one update in4GD

SLen
the shortest path length matrix between
each pair of nodes in GD

Aff N (Ui) the set of affected nodes of Ui

Aff N (Ua ,Ub) the set of affected nodes with Ua and Ub

AFF [ui, vj] = [a, b]
the shortest path length from ui to vj is
changed from a to b
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Table A.4: The Notations in Chapter 5
Notations Explanations

GD a data graph
GP a pattern graph

GD new an updated data graph
GP new an updated pattern graph
4GD the updates of GD

4GP the updates of GP

e(vi, vj) a directed edge from vi to vj
V a set of vertices in GD

E a set of edges in GD

fA(u) the attributes of a node u in GD

VP a set of vertices in GP

EP a set of edges in GP

fv(u) the attributes of a node u in GP

fe(u, v) the bounded path length on e(u, v) in GP

M(GP , GD) the matching result of GP in GD based on BGS
IQuery the GPNM result of the initial query
SQuery the GPNM result of the subsequent query

4G+
DE

/4G−DE
the insertions / deletions of edges for GD

4G+
DN

/4G−DN
the insertions / deletions of nodes for GD

4G+
D /4G−D the insertions / deletions of edges or nodes for GD

4G+
PE

/4G−PE
the insertions / deletions of edges for GP

4G+
PN

/4G−PN
the insertions / deletions of nodes for GP

4G+
P /4G−P the insertions / deletions of edges or nodes for GP

UDi one update in4GD

UPi one update in4GP

SLen
the shortest path length matrix between
each pair of nodes in GD

Can N (UPi) the set of candidate nodes of UPi

Aff N (UDi) the set of affected nodes of UDi

AFF [ui, vj] = [a, b]
the shortest path length from ui to vj is
changed from a to b

Pi one partition
IB(Pi) the set of inner bridge nodes of Pi

OB(Pi) the set of outer bridge nodes of Pi

vPi one node in Pi



Appendix B

The Acronyms in the Thesis

Table B.1: The Acronyms in All the Chapters
Sections Explanations Acronyms

Chapter 1&2&3&4&5&6 Graph Pattern based Node Matching GPNM
Chapter 1&2&3&4&5&6 Graph Pattern Matching GPM

Chapter 1&3&4&5 Shortest Path Length Matrix SLen
Chapter 1&2 Bounded Graph Simulation BGS

Chapter 1 Subgraph Isomorphism SI
Chapter 3 Shortest Path Length Range Matrix RSLen

Chapter 4&5 Detect Elimination Relationships DER
Chapter 4&5 Elimination Hierarchy Tree EH-Tree
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