MACQUARIE
University

Single-behaviour and Multi-behaviour
Streaming Recommender Systems

by

Yan Zhao

Master of Computer Science, Blaise Pascal University (Aubiere, France), 2016

Bachelor of Computer Science, Harbin Institute of Technology (Harbin, China), 2014

A thesis submitted in fulfilment of
the requirements for the award of the degree
Doctor of Philosophy
from
Department of Computing
Faculty of Science and Engineering

MACQUARIE UNIVERSITY

Supervisor: Prof. Yan Wang
Associate Supervisor: Prof. Michael Sheng
Adjunct Supervisor: Dr. Shoujin Wang
May 2021

© Copyright by
Yan Zhao
May 2021

Statement of Candidate

I certify that this thesis entitled “‘Single-behaviour and Multi-behaviour Streaming
Recommender Systems” is being submitted to Macquarie University and Harbin In-
stitute of Technology in accordance with the Cotutelle agreement dated 20 September

2018.

I also certify that this thesis is an original piece of research and it has been written
by me. Any help and assistance that I have received in my research work and the

preparation of this thesis itself have been appropriately acknowledged.

In addition, I certify that all information sources and literature used are indicated

in this thesis.

Yan Zhao
14 May 2021

To my father, my sister, and my wife,

who make me understand the true meaning of love.

In memory of my mother,

Fengyan Zhao

Abstract

In this information age, Recommender Systems (RSs) have played an increasingly im-
portant role in providing users with tailored suggestions that match their preferences.
However, conventional offline RSs cannot well deal with the ubiquitous data streams
of user-item interactions. This is because offline RSs are periodically trained with
large-volume historical interaction data, and thus cannot well capture the latest prefer-
ences of users embedded in their recent interactions. To address this issue, Streaming
Recommender Systems (SRSs) have emerged in recent years, which commonly train
recommendation models with newly coming interaction data to capture the latest user
preferences for streaming recommendations. For further improving the accuracies of
streaming recommendations, this thesis proposes the following three approaches.

Firstly, training recommendation models with newly coming data only benefits
overcoming the preference drift problem, but overlooks the long-term user prefer-
ences embedded in the historical data. Moreover, the common heterogeneity of users
and items makes it more challenging to deliver accurate streaming recommendations,
as different types of users (or items) have different preferences (or characteristics). To
address these two issues, we propose a Variational and Reservoir-enhanced Sampling
based Double-Wing Mixture-of-Experts framework, called VRS-DWMOoE. Specifi-
cally, in VRS-DWMOoE, we first devise variational and reservoir-enhanced sampling
to wisely complement newly coming data with historical data for capturing long-term
user preferences while addressing the issue of preference drift. Then, we propose
a double-wing mixture-of-experts model to effectively learn the heterogeneous user
preferences and item characteristics with two mixture of experts, respectively, where
each individual expert model specialises in one type of users or items.

Secondly, the commonly existing underload (or overload) scenarios, where the

iv

data receiving speed is lower (or higher) than the data processing speed, should be well
dealt with for accurate streaming recommendations. Therefore, we propose a Stratified
and Time-aware Sampling based Adaptive Ensemble Learning framework, called STS-
AEL. Specifically, in STS-AEL, we first devise stratified and time-aware sampling to
extract training data from both newly coming data and historical data. This practice
not only benefits utilising the idle resources in underload scenarios more effectively,
but also helps capture long-term user preferences while addressing the preference drift
issue. After that, we propose adaptive ensemble learning to first leverage multiple in-
dividual recommendation models for concurrently learning from the prepared training
data, and then fuse the results of these individual models with a sequential adaptive
mechanism for accurate streaming recommendations.

Thirdly, all the existing SRSs have been devised for dealing with data streams
of user-item interactions w.r.t. a single behaviour type (e.g., purchases) and com-
monly suffer from the data sparsity issue caused by the limited number of such single-
behaviour interactions. Therefore, we propose the first Multi-behaviour Streaming
Recommender System, called MbSRS, to exploit more sufficient multi-behaviour in-
teractions (e.g., purhcases, add-to-carts and views) for further improving the accu-
racies of streaming recommendations. In MbSRS, confronting data streams of multi-
behaviour interactions, we first propose the Multi-behaviour Learning Module (MbLLM)
to accurately learn the short-term user preferences and stable item characteristics.
Then, we propose the Attentive Memory Network (AMN) to effectively maintain the
long-term user preferences. After that, these learnt short-term user preferences and
long-term user preferences are merged by the elaborately devised User Preference
Merging Module (UPMM). Note that MbLM, AMN and UPMM all effectively lever-
age the multi-behaviour interactions to further improve the accuracies of streaming
recommendations.

The superiorities and the effectiveness of all the above three approaches proposed
in this thesis have been validated by both the theoretical analysis and extensive exper-

iments that are conducted on real-world datasets.

Acknowledgments

First of all, I would like to express my sincere gratitude to my supervisors, Prof.
Yan Wang (principal supervisor), Prof. Michael Sheng (associate supervisor) and
Dr. Shoujin Wang (adjunct supervisor), for their continuous help and patient super-
vision during my time in Macquarie University. Meanwhile, I would also like to thank
my supervisor at my home university, Prof. Hongwei Liu, for his complete support
throughout the years. Without their selfless devotions and practical suggestions, this
thesis would not have been completed. Over the past years, I have learnt how to do
high-quality research from them and established a rigorous research attitude. This
experience will be of great value to my future academic career.

Second, I wish to express my thanks to my colleagues and the staff in the Depart-
ment of Computing for their support. They have provided me great encouragement
during my tough times and established a comfortable working environment.

Most importantly, I would like to thank my father and sister, Xianggui Zhao and
Yujiao Zhao, for their unconditional love throughout my life. Sincerest thanks to my
wife, Xiaoyu Zhang, who gives me the confidence and courage I needed to pursue my

dream. Their love is my fundamental motivation to complete this thesis.

vi

Publications vii

Publications

This thesis is based on the research work I completed with the help of my supervisors
and other colleagues during my Cotutelle PhD at the Department of Computing, Mac-
quarie University, between 2019 and 2021. Some parts of my research are contained

in the following papers:

[1] Yan Zhao, Shoujin Wang, Yan Wang, Hongwei Liu, Weizhe Zhang: Double-
Wing Mixture of Experts for Streaming Recommendations, 21st International
Conference on Web Information Systems Engineering (WISE 2020), pages 269-
284. (regular paper, acceptance rate 19.5%, CORE2020' Rank A)

[2] Yan Zhao, Shoujin Wang, Yan Wang, Hongwei Liu: Stratified and time-aware
sampling based adaptive ensemble learning for streaming recommendations,
Applied Intelligence (APIN), online published in November 2020. (CORE2020
Rank B)

[3] Yan Zhao, Shoujin Wang, Yan Wang, Hongwei Liu: MbSRS: a Multi-behaviour
Streaming Recommender System. Submitted to IEEE Transactions on Knowl-

edge and Data Engineering (TKDE, CORE2020 Rank A¥)

'CORE stands for Computing Research and Education Association of Australasia (http://www.
core.edu.au).

http://www.core.edu.au
http://www.core.edu.au

Contents

Abstract iv
Acknowledgments vi
Publications vii
1 Introduction 1
1.1 Background and Significance L. 1

1.2 Challenges of Streaming Recommendations 5
1.2.1 Preference Drift and Long-term User Preferences 5

1.2.2 Heterogeneity of Users and Items 5

1.2.3 Underload Problem and Overload Problem 6

1.2.4 Multi-behaviour Interactions for Streaming Recommendations 7

1.3 Thesis Contributions 9

1.4 Thesis Structure 12

2 Literature Review 14
2.1 Single-behaviour Offline Recommender Systems 15
2.1.1 Representative SbBORSs 15

2.1.2 Memory network enhanced SbORSs 23

2.1.3 Ensemble Learning based SbORSs 24

2.1.4 Single-behaviour Offline Recommender Systems: A Summary 26

2.2 Single-behaviour Streaming Recommender Systems 27
2.2.1 Adaptation-based SbSRSs 27

2.2.2 Stream-oriented SbBSRSso oL 31

viii

Contents ix

2.3

2.2.3 Single-behaviour Streaming Recommender Systems: A Sum-

MATY .+ o v o v e e e e e e e e e e e e e e e 36
Multi-behaviour Offline Recommender Systems 37
2.3.1 2-behaviour Offline Recommender Systems 38
2.3.2 n-behaviour Offline Recommender Systems 41

2.3.3 Multi-behaviour Offline Recommender Systems: A Summary 46

24 Chapter Summaryo 47
Double-Wing Mixture of Experts for Streaming Recommendations 50
3.1 Problem Statement 51
3.2 Our Proposed VRS-DWMOE Framework 52
3.2.1 Overall Structure oL 52
3.2.2 Variational and Reservoir-enhanced Sampling 52
3.2.3 Double-Wing Mixture of Experts 55
33 Experiments e e 59
3.3.1 Experimental Settings 60
3.3.2 Performance Comparison and Analysis 63
34 Chapter Summary 66

Stratified and Time-aware Sampling based Adaptive Ensemble Learning

for Streaming Recommendations 68
4.1 Problem Statement Lo 69
4.2 Our Proposed STS-AEL Framework 70
42.1 Overall Structure L oo 70
4.2.2 Stratified and Time-aware Sampling 72
4.2.3 Adaptive Ensemble Learning 75
43 EXperiments e e 81
4.3.1 Experimental Settings 82
4.3.2 Performance Comparison and Analysis 86
4.4 Chapter Summary 94

Contents X

5 MDbSRS: a Multi-behaviour Streaming Recommender System 95
5.1 Problem Statement 97

5.2 Our Proposed Multi-behaviour Recommender System 98
5.2.1 Overall Structure 98

5.2.2 Multi-behaviour Learning Module 100

5.2.3 Attentive Memory Network 102

5.2.4 User Preference Merging Module 104

5.2.5 Prediction Process and Training Process 106

5.3 Experiments 108
5.3.1 Experimental Settings 109

5.3.2 Performance Comparison and Analysis 116

54 Chapter Summary 122

6 Conclusions and Future Work 124
6.1 Conclusions 124

6.2 FutureWork 126

A The Notations in the Thesis 128
B The Acronyms in the Thesis 131
Bibliography 134

List of Figures

1.1
1.2

3.1
32
33

4.1
4.2
4.3
4.4
4.5

5.1
5.2

5.3
54

Comparison between offline RS and streaming RS 3

Comparison between the single-behaviour SRS and multi-behaviour

SRS . . e 4
The structure of the VRS-DWMOoE Framework 53
Performance comparison for VRS o000 65
Effect of the number (n.) of experts for VRS-DWMoE 66
The structure of the STS-AEL Framework 71
Stratified and Time-aware Sampling (STS) approach 73
Effect of the number of individual models. 90
The superiority of STS L. 91
The superiority of AEL 93
The structure of MbSRS. 0. 99

Effect of the size of behaviour-specific Embedding (BsE) and the size

of Shared Embedding (SE). 119
Effect of the memory size. 121
Effect of the number of behaviour types. 122

xi

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7

3.1
3.2

4.1
4.2
4.3

5.1
52
5.3
54

A.l
A2
A3

B.1
B.2
B.3

The comparison of representative matrix factorisation based SbORSs .
The comparison of representative deep learning based SbORSs
The comparison of representative ensemble learning based SbORSs

The comparison of adaptation-based SbSRSs
The comparison of stream-oriented SbSRSs
The comparison of 2-behaviour ORSs

The comparison of n-behaviour ORSs

Statistics of the tunned datasets for VRS-DWMoE

Performance comparison for VRS-DWMoE

Performance comparison for STS-AEL (results on MovieLens)
Performance comparison for STS-AEL (results on Netflix)

Performance comparison for STS-AEL (resultson Yelp)

Statistics of the tuned datasets for MbSRS
Performance comparison for MbSRS (results on Beibei)
Performance comparison for MbSRS (results on Taobao)

Performance comparison for MbSRS (results on Tmall)

The important notations in Chapter3
The important notations in Chapter4

The important notations in Chapter 5

Main acronyms in all the chapters (part 1)
Main acronyms in all the chapters (part2)

Main acronyms in all the chapters (part3)

xii

Chapter 1

Introduction

1.1 Background and Significance

Recommender Systems (RSs) [70] are a type of information filtering systems, which
assist users to select items more effectively and efficiently in the current big data era.
With the ever-growing data volume, RSs have played an increasingly important role
in both academia and industry to confront the information explosion. As data streams
of user-item interactions (e.g., continuous purchase records generated by online shop-
ping websites) are pervasive in this information age [6], delivering accurate streaming
recommendations is an essential task we need to accomplish. However, this task re-
mains a challenge [127] despite the fast development and wide applications of RSs.
This is because that conventional offline RSs periodically train recommendation mod-
els with large-volume historical interaction data, which impedes capturing the latest
preferences of users embedded in their recent interactions.

To deliver accurate streaming recommendations, recent years have seen an emerg-
ing trend where recommendation models are trained with newly coming interaction
data instantly. The RSs following this trend are commonly referred to as online [38] or
Streaming Recommender Systems (SRSs) [6]. Compared with the conventional offline

RSs, SRSs have the following three main advantages.

1) SRSs can capture the latest user preferences. As user preferences commonly
change over time, capturing the latest user preferences significantly contributes

to delivering accurate recommendations based on users’ current intentions for

§1.1 Background and Significance 2

interacting with items. However, offline RSs treat all the available interactions
equally, and thus can only learn the overall user preferences from all available
interaction data. In contrast, SRSs are commonly trained with newly coming
interaction data, and thus can well capture the latest user preferences embedded

in the recent interaction data for more accurate streaming recommendations.

2) SRSs can better deal with the cold start problem. By training recommenda-
tion models with newly coming interaction data in a timely manner, SRSs can
quickly learn the preferences of new users and characteristics of new items, and

thus make accurate recommendations in terms of new users and new items.

3) SRSs do not need to store large-volume interaction data. Offline RSs are periodi-
cally trained with large-volume historical data, and thus they require large-space
storage for performing the offline recommendations. In contrast, most SRSs do
not need to store any historical data, which benefits protecting user privacy and

also helps reduce the extra expenses for the storage.

The superiorities of SRSs over offline RSs are also illustrated by the following moti-
vating example.

Motivating Example 1. We present a motivating example in Fig. 1.1, which depicts an
online shopping scenario. Specifically, after Alice has purchased three pairs of sports
shoes last year and two pairs of dance shoes this year, she is recommended a pair of
sports shoes and a pair of dance shoes by the offline RS and SRS, respectively. This
is because the offline RS considers all Alice’s purchased items equally, and infers that
Alice prefers the sports shoes as she has purchased more sports shoes than the dance
shoes. In contrast, the SRS successfully captures Alice’s latest preferences towards
dance shoes embedded in her recent purchases, and thus recommends her a pair of
dance shoes. In the end, Alice purchases dance shoes that better match her latest
preference. This motivating example clearly illustrates the fact that SRSs are able to
deliver more accurate recommendations than offline RSs do by effectively capturing

users’ latest preferences.

§1.1 Background and Significance 3

-
o o o o
o o o o, o
o o o ° o

Recommend Alice

ooo
coo
coo
coo
ooo

Do
o
[e]
(e}

(a) Offline Recommender System

r__—:*-}r_b'_:_ I : *—@ :-__:_0"_|__:; @@ Q

[[I | | o
B S0 o8 oLt —

L —— L —— L——

(b) Streaming Recommender System

Figure 1.1: Comparison between offline RS and streaming RS

The existing SRSs are mainly developed in two stages: 1) adaption-based SRSs
and 2) stream-oriented SRSs. As an earlier attempt, adaption-based SRSs aim to adapt
the conventional offline RSs to streaming scenarios by incrementally training their
recommendation models with newly coming data, such as Incremental Collaborative
Filtering (ICF) [86] and Element-wise Alternating Least Squares (eALS) [38]. Re-
cently, stream-oriented SRSs have been proposed, which are specifically devised for
the streaming scenarios, such as Stream-centered Probabilistic Matrix Factorisation
(SPMF) [127] and Neural Memory Recommender Networks (NMRN) [121].

These SRSs can all be referred to as single-behaviour SRSs, as they make recom-
mendations with data streams of interactions w.r.t. a single type of behaviour (e.g.,
purchases). Intuitively, in the cases where interactions w.r.t. multiple behaviour types
(e.g., purchases, add-to-carts and views) are available, multi-behaviour SRSs should
be proposed to incorporate such multi-behaviour interactions for accurate streaming

recommendations. This is because incorporating the more sufficient multi-behaviour

§1.1 Background and Significance 4

r@p@ . ¥ shoes
2 | 0 2

Alice BUY BUY —
~ Q ~N Recommend
Bob (a) Single-behaviour Streaming Recommender System
BUY I ! Pink
purchase Pk L bresst T : | Dross
1 0 0 A A
add-to cart \, ~— BUY 1\ -+ BUY-*)

ai G ia i Recommend

(b) Multi-behaviour Streaming Recommender System

view

Figure 1.2: Comparison between the single-behaviour SRS and multi-behaviour SRS

interactions benefits addressing the long-standing data sparsity issue, and thus con-
tributes to more accurate streaming recommendations when confronting data streams
of multi-behaviour interactions. This is also illustrated in the following motivating
example.
Motivating Example 2. In the motivating example presented in Fig. 1.2, after Alice
has purchased a pair of pink shoes and viewed two dresses with different colours, the
single-behaviour SRS in Fig. 1.2a recommends her another pair of shoes based on her
single-behaviour (purchase) interactions while the multi-behaviour SRS in Fig. 1.2b
recommends her a pink dress based on her multi-behaviour (purchase and view) inter-
actions. As Alice has already purchased a pair of similar shoes recently, she prefers the
pink dress that is recommended based on her multi-behaviour interactions. This moti-
vating example clearly illustrates the fact that exploiting multi-behaviour interactions
significantly contributes to more accurate streaming recommendations.

This thesis aims to improve the accuracies of both single-behaviour recommenda-
tions (see Chapters 3 and 4) and the multi-behaviour recommendations (see Chapter 5).
The following subsection introduces the challenges we need to address for achieving

this goal.

§1.2 Challenges of Streaming Recommendations 5

1.2 Challenges of Streaming Recommendations

In this subsection, we introduce the four main challenges that are targeted in this thesis.
Specifically, Challenges 1, 2 and 3 (CH1, CH2 and CH3) are from single-behaviour
streaming recommendations, while Challenge 4 (CH4) is from multi-behaviour stream-

ing recommendations.

1.2.1 Preference Drift and Long-term User Preferences

The first challenge CH1 in this thesis is ‘how to well deal with the preference drift
(i.e., user preferences towards items change over time) while capturing long-term user
preferences’.

The evolutional user preferences over time cause preference drift (also known as
concept drift) in streaming recommendations [127]. For example, the preferences of
Alice towards the styles of clothes change as she ages. Another problem is the loss of
long-term user preferences. For example, Bob likes to read history books; however,
the online book store recommends him math books only after he recently bought some
math books just for an examination. It is a challenging task for SRSs to simultaneously
deal with the above two problems.

Targeting this challenge, SPMF [127] and NMRN [121] have proposed reservoir-
based and neural memory network based approaches, respectively. However, SPMF
has difficulties in dealing with preference drift as it does not effectively utilise newly
coming data to capture the latest user preferences, while NMRN has a limited capabil-
ity to capture long-term user preferences as the memory recording preferences might

be updated frequently over the continuous data stream.

1.2.2 Heterogeneity of Users and Items

The second challenge CH2 in this thesis is ‘how to well deal with the heterogeneity of
both users and items (i.e., different types of users and items have different preferences

and characteristics, respectively)’.

§1.2 Challenges of Streaming Recommendations 6

Different preferences (or characteristics) of different types of users (or items) com-
monly exist in the real world. For example, ballet dancers tend to purchase ballet shoes
while tennis players are more likely to purchase rackets. This heterogeneity makes ac-
curate streaming recommendations for all types of users and items a challenging task.
However, this issue has not been discussed in the literature of SRSs. Existing SRSs
commonly utilise a unified model to learn both user preferences and item character-
istics for all the users and items [32, 38]. Nevertheless, with a single unified model,
SRSs cannot well deal with the intrinsic differences between user preferences and item
characteristics or accurately learn the preferences (or characteristics) of different types

of users (or items).

1.2.3 Underload Problem and Overload Problem

The third challenge CH3 in this thesis is ‘how to tackle the underload problem (i.e.,
the scenarios where the data coming speed is lower than the data processing speed)
and the overload problem (i.e., the scenarios where the data coming speed is higher
than the data processing speed)’. This challenge can be further decomposed into the

following two sub-challenges.

CH3.1 how to tackle the underload problem? The low resource utilisation ratio caused
by the underload problem commonly exists in real-world applications [62,
51], as the systems are devised to be scalable and prepared for the peak de-
mand. Although resource management approaches [35, 75] have been studied
to address the underload problem for general stream processing, to the best of
our knowledge, no studies have been reported in the literature to particularly
address the underload problem in streaming recommendations. However, it is
an important issue, since the wasted computational resources in the widely-
existing underload scenarios should be effectively utilised for improving the
recommendation accuracies. Therefore, we argue that SRSs that can effec-

tively deal with the underload problem should be proposed.

§1.2 Challenges of Streaming Recommendations 7

CH3.2 how to tackle the overload problem? The overload problem has attracted
more research interests in the stream processing areas [93, 49], including the
streaming recommendations [6, 127, 32]. As the generation velocity of data
streams keeps increasing, SRSs should be well prepared to handle the inten-
sive workload beyond their capacities. To address the overload problem in
streaming recommendations, sampling methods have been proposed in the
literature [32, 127] to reduce the training workload of monolithic SRSs (i.e.,
SRSs that employ single recommendation models for recommendations). How-
ever, monolithic SRSs cannot completely tackle the overload problem due to

their limited computational capabilities.

1.2.4 Multi-behaviour Interactions for Streaming Recommenda-

tions

The fourth challenge CH4 in this thesis is ‘how to wisely leverage multi-behaviour
interactions for improving the accuracies of streaming recommendations’. This chal-

lenge can be further decomposed into the following three sub-challenges.

CH4.1 how to wisely exploit multi-behaviour interactions to accurately learn the
short-term user preferences and stable item characteristics in the stream-
ing scenarios? Compared with the single-behaviour interactions, the multi-
behaviour ones are much more difficult to deal with. This is because multi-
behaviour interactions comprise the following two types of user preferences
(or item characteristics): 1) the shared user preferences (or item characteris-
tics) across multiple behaviour types, e.g., a user tends to purchase and view
the same brand of mobile phones; and 2) the behaviour-specific user prefer-
ences (or item characteristics), e.g., a user views expensive mobile phones for
curiosity but tends to purchase cheap ones for the financial issue. Therefore,
these two types of user preferences (or item characteristics) need to be both

accurately learnt from data streams of multi-behaviour interactions. More-

§1.2 Challenges of Streaming Recommendations 8

over, different from the relative stable item characteristics, user preferences
vary over time. Thus, short-term preferences of users embedded in their re-
cent interactions need to be well captured for accurate streaming recommen-

dations.

Although some offline multi-behaviour RSs [28] attempt to utilise multi-
behaviour interactions for offline recommendations, they fail to explicitly
learn the shared user preferences (or item characteristics) and behaviour-
specific user preferences (or item characteristics) for further improving rec-
ommendation accuracies. Furthermore, they are not devised to deal with data
streams, and thus are not able to be employed for streaming recommenda-

tions.

CH4.2 how to wisely utilise the multi-behaviour interactions for effectively main-
taining the long-term user preferences in the streaming scenarios? Com-
pared with that in offline recommendation scenarios, maintaining long-term
user preferences in streaming scenarios is more challenging. This is because
recommendation models for streaming scenarios are commonly trained with
newly coming data only, and thus their learnt long-term user preferences em-
bedded in historical interactions are easily overwritten by the short-term ones.
For example, Bob prefers reading history books, however, he is only recom-
mended textbooks after he has purchased some textbooks for exams. More-
over, incorporating multi-behaviour interactions makes this problem more
challenging. This is because interactions w.r.t. different behaviour types
might comprise different long-term user preferences, and are difficult to be
exploited simultaneously for maintaining such preferences w.r.t. the primary

behaviour.

Although some single-behaviour SRSs [127, 32] have been proposed to main-

tain the long-term user preferences, they are not devised to exploit the multi-

§1.3 Thesis Contributions 9

behaviour interactions for more accurately learning such long-term prefer-

ences.

CH4.3 how to effectively merge the short-term and long-term user preferences when
confronting data streams of multi-behaviour interactions? Merging short-
term user preferences and long-term user preferences benefits reflecting users’
overall intention for interacting with items, and thus leads to more accurate
recommendations. However, this merging process is challenging since the
contributions of short-term preferences (or long-term preferences) might be
different for different users, and even different for the same user towards dif-
ferent items. In addition, this problem becomes more challenging when incor-
porating multiple behaviour types, as we need to exploit the multi-behaviour
interactions to obtain the merged user preferences w.r.t. the primary be-
haviour. For example, Alice watched romantic movies for months while
searching several thriller movies this week, it is challenging to decide which

type of movies to be recommended for her to watch.

Although some SRSs [150] have taken both short-term preferences and long-
term preferences into consideration, they learn these two preferences simul-
taneously by a single module, and thus the merging process is not devised.
However, we argue that short-term preferences and long-term preferences
cannot be well learnt by a single module simultaneously, as these two types of
preferences are inconsistent and might affect the learning processes of each

other in some cases.

1.3 Thesis Contributions

Targeting the four challenges of streaming recommendations mentioned above, this

thesis has three major contributions.

1. Targeting CH1 and CH2, the first contribution is proposing a novel mixture of

§1.3 Thesis Contributions 10

expert based streaming recommendation framework along with an elaborately
devised sampling method. The characteristics and contributions of this work are

summarised as follows:

* In this work, we propose a novel VRS-DWMOoE framework, which consists
of Variational and Reservoir-enhanced Sampling (VRS) and Double-Wing

Mixture of Experts (DWMOoE), for accurate streaming recommendations.

* To address CH1, we propose VRS to wisely complement newly coming
data with the sampled historical data while guaranteeing the proportion of
newly coming data. In this way, VRS not only benefits addressing the pref-
erence drift issue by highlighting the importance of newly coming data but
also helps learn the long-term user preferences from the sampled historical

data.

* To address CH2, we propose DWMOE to effectively learn heterogeneous
user preferences and item characteristics. Specifically, DWMOoE not only
learns user preferences and item characteristics with two elaborately de-
vised MoEs, respectively, to deal with their intrinsic differences, but also
allows each expert to specialise in one underlying type of users (or items)
to more effectively learn the heterogeneous user preferences (or item char-

acteristics).

2. Targeting CH1 and CH3, the second contribution is proposing a novel ensem-
ble learning based framework that can well deal with the underload problem
and overload problem for delivering accurate streaming recommendations. The
relevant characteristics and contributions of this framework are summarised as

follows:

* In this work, we propose a novel STS-AEL framework for more accurate
streaming recommendations, which contains two main components: STS

and AEL.

§1.3 Thesis Contributions 11

* To address CH1 and CH3.1, we propose STS to extract representative data
from both newly coming data and historical data while guaranteeing the
proportion of newly coming data. In this way, through elaborately incor-
porating both newly coming data and historical data, STS can not only
capture both short-term and long-term user preferences, but also effectively
utilise idle resources in underload scenarios for delivering accurate recom-

mendations in the streaming scenarios.

* To address CH3.1 and CH3.2, we propose AEL to increase recommenda-
tion accuracies in both underload scenarios and overload scenarios. AEL
first conducts concurrent training to address the excessive data in both un-
derload scenarios (complemented by the sampled historical data) and over-
load scenarios via multiple individual models, and then fuses the predic-
tion results of these models to achieve higher recommendation accuracies.
Moreover, for the fusion process, we propose a sequential adaptive fusion
method specifically for streaming scenarios to further improve the accura-

cies of streaming recommendations.

Extensive experiments demonstrate that the proposed STS-AEL framework sig-
nificantly outperforms the state-of-the-art SRSs in terms of recommendation ac-
curacies on all three widely-used datasets in both underload scenarios and over-

load scenarios.

. Targeting CH4, the third contribution is proposing a novel multi-behaviour stream-
ing recommender system, which effectively exploits data streams of interactions
w.r.t. multiple behaviour types for improving the accuracies of streaming recom-
mendations. To the best of our knowledge, this is the first SRS in the literature
that exploits the multi-behaviour interactions for streaming recommendations.

The characteristics and contributions of this work are summarised as follows:

* In this work, we propose the first Multi-behaviour Streaming Recommender

§1.4 Thesis Structure 12

System, called MbSRS. Specifically, MbSRS contains three main com-
ponents: Multi-behaviour Learning Module (MbLM), Attentive Memory
Network (AMN) and User Preference Merging Module (UPMM).

* To address CH4.1, we propose MbLLM to accurately learn both the short-
term user preferences and the stable item characteristics in streaming sce-
narios by elaborately learning shared embeddings and behaviour-specific

embeddings for both users and items.

* To address CH4.2, we propose AMN to well maintain the long-term user
preferences by first memorising the items that interacted with the target
user in terms of all the behaviours, and then wisely utilising these items
to represent the long-term preferences of the target user w.r.t. the target

behaviour type via an attentive method.

* To address CH4.3, we propose UPMM to wisely merge the short-term
user preferences and long-term user preferences with a gate mechanism.
Through this way, the short-term user preferences and long-term user pref-
erences w.r.t. the primary behaviour can be well merged for collaboratively

contributing to the accurate streaming recommendations.

Extensive experiments on three real-world datasets demonstrate that our pro-
posed MbSRS significantly outperforms both the state-of-the-art SRSs and the
state-of-the-art offline multi-behaviour RSs that can be modified to adapt to the

streaming scenarios.

1.4 Thesis Structure

The remainder of this thesis is structured as follows.
Chapter 2 reviews the literature on RSs related to the work in this thesis, including
the single-behaviour offline RSs, single-behaviour streaming RSs and multi-behaviour

offline RSs.

§1.4 Thesis Structure 13

Chapter 3 introduces our proposed VRS-DWMOoE framework, which not only ad-
dresses the preference drift issue while maintaining the long-term user preferences, but
also well handles the heterogeneity of users and items for improving the accuracies of
streaming recommendations. This chapter covers our work that has been published in
WISE’2020 [150].

Chapter 4 introduces our proposed STS-AEL framework, which can well deal with
both underload scenarios and overload scenarios for accurate streaming recommenda-
tions. It covers our work that has been published in APIN’2020 [149].

Chapter 5 introduces our proposed MbSRS, which effectively exploits the multi-
behaviour interactions for further improving the accuracies of streaming recommen-
dations. This chapter covers our work that is prepared to be submitted to TKDE.

Chapter 6 concludes this thesis and provides an outlook for future research direc-

tions.

Chapter 2

Literature Review

In this chapter, the existing literature related to the work in this thesis are introduced.
Specifically, these related literature are reviewed based on the categories w.r.t. rec-
ommendation scenarios of their proposed RSs: (1) Single-behaviour Offline Recom-
mender Systems (SbORSs), (2) Single-behaviour Streaming Recommender Systems
(SbSRSs), and (3) Multi-behaviour Offline Recommender Systems (MbORSSs). To the
best of our knowledge, no multi-behaviour SRSs have been reported in the literature,
thus they are not introduced in this chapter. In addition, as a detailed introduction
of the widely-explored SbORSs is beyond the scope of this thesis, this chapter only
reviews the SbORSs that have inspired our work, including representative SbORSs,
memory network enhanced SbORSs and ensemble learning based SbORSs.

The remainder of this chapter is organized as follows:

* Section 2.1 reviews the related SbORSs, including representative SbORSs, mem-

ory network enhanced SbORSs and ensemble learning based SbORSs.

* Section 2.2 reviews the existing SbSRSs, including adaption-based SbSRSs and

stream-oriented SbSRSs.

* Section 2.3 reviews the existing MbORSSs, including 2-behaviour ORSs and n-
behaviour ORSs.

14

§2.1 Single-behaviour Offline Recommender Systems 15

2.1 Single-behaviour Offline Recommender Systems

Single-behaviour offline RSs is a well-explored research area, which has been studied
from a wide range of perspectives. So far, many surveys have been proposed to system-
atically introduce the SbORSs devised for different recommendation scenarios, includ-
ing group recommendations [13], conversational recommendations [46], explainable
recommendations [148], session-based recommendations [123, 124], review-based
recommendations [9] and social recommendations [135]; or with different recommen-
dation mechanisms, including deep learning based recommendations [147], knowl-
edge graph based recommendations [33], graph neural network based recommenda-
tions [125] and adversarial machine learning based recommendations [14]. According
to the focus of this thesis, this section only reviews the representative SbORSs (see
Subsection 2.1.1) and those are highly relevant to our work, including memory net-
work enhanced SbORSs (see Subsection 2.1.2) and ensemble learning based SbORSs
(see Subsection 2.1.3). Readers can refer to the corresponding surveys mentioned

above for the detailed introduction to other types of SbORSs.

2.1.1 Representative SbORSs

Based on recommendation mechanisms, SbORSs can be roughly categorised into three
types: 1) content-based SbORSs [69, 88, 4], 2) collaborative filtering based SbORSs
[94, 37, 138] and 3) hybrid SbORSs [10, 106, 50] which combine the first two types.
Content-based SbORSs make recommendations by analysing the profiles of users and
properties of items. Differently, collaborative filtering based SbORSs recommend
items to target users by analysing the interactions from both target users and other
users who have similar preferences. During the past decade, the collaborative filter-
ing based SbORSs attract the most research interests, and have achieved substantial
progress towards delivering accurate recommendations. The most prevailing collab-
orative filtering based SbORSs are based on the matrix factorisation models or deep

learning models. Generally, these SbORSs first learn the latent factors of users (a.k.a.

§2.1 Single-behaviour Offline Recommender Systems 16

Table 2.1: The comparison of representative matrix factorisation based SbORSs

Technique adopted
or basic idea
FunkSVD — Funk [99] | Singular value decomposition

Category |Representative approach

PMF — Mnih et al. [94] Probability theory
Without side Koren et al. [56] Personalized bias
information | WRMF — Hu et al. [41] Weighted factorisation

WMF — Pan et al. [84] Weighted factorisation

Bayesian optimisation &

BPR —Rendle etal. [91] personalised ranking

C SR — Cheng et al. [72] Social constraints
With side . - -
information sRui — Ma [71] Social constraints
BMFSI -

Porteous et al. [89] Bayesian optimisation

user embeddings) and latent factors of items (a.k.a. item embeddings), and then lever-
age these latent factors to make recommendations. To be more specific, matrix fac-
torisation based SbORSs rely on the linear operation (i.e., dot product) for learning
users’ preferences towards items from user-item interactions, while the deep learning
based SbORSs employ multiple neural network layers to capture complex and non-
linear user-item relations between users and items. In the following, we introduce rep-
resentative Matrix Factorisation based SbORSs (MF-SbORSs) in Subsection 2.1.1.1
with a brief summary in Table 2.1, and introduce representative Deep Learning based

SbORSs (DL-SbORSS) in Subsection 2.1.1.2 with a brief summary in Table 2.2.

2.1.1.1 Matrix Factorisation based SbORSs

In this subsection, we introduce MF-SbORSs with two parts, i.e., 1) MF-SbORSs with-

out side information and 2) MF-SbORSs with side information.

MF-SbORSs without side information
Singular Value Decomposition (SVD) [104] is a well known mathematical approach

for factorising a matrix. Inspired by SVD, Simon Funk proposed FunkSVD [99] to

§2.1 Single-behaviour Offline Recommender Systems 17

perform recommendations. Specifically, FunkSVD first factorises a rating matrix into
two low-rank matrixes, which incorporate the latent factors of users and latent factors
of items, respectively. Compared with the original SVD approach, FunkSVD does not
only have a lower time complexity but can also apply to the matrixes with missing
values, which are common for user-item interaction matrixes. Later on, many recom-
mendation models have been proposed based on the matrix factorisation methods.

For example, Probabilistic Matrix Factorisation (PMF) [94] was proposed to im-
prove recommendation accuracies with the probability theory. Specifically, PMF first
initialises the latent factors of users and the latent factors of items with the Gaus-
sian distribution, then learns user preferences and item characteristics based on these
well initialised latent factors, and finally makes recommendations with these learnt
user preferences and item characteristics. Moreover, the work in [94] extended PMF
to constrained PMF, which assumes that users with similar rated items possibly have
similar preferences. Their experimental results show that this constraint PMF is more
effective and performs well on the Netflix dataset.

In addition, Koren et al. [56] added biases to the original matrix factorisation
model. In this way, the personalised features of the target users and target items are
also considered for recommendations. First, they calculated the overall average rating
of the dataset, and the biases of the ratings for the target users and target items. Then,
they summed up these three values to serve as regularisation terms for the matrix
factorisation process. In this way, the predicted ratings are tuned for target users and
the target items, and thus are possibly more accurate.

Later on, Hu et al. [41] and Pan et al. [84] improved the matrix factorisation
models for performing recommendations w.r.t. implicit behaviours, such as purchases,
views and clicks. Compared with the explicit behaviours such as ratings, implicit be-
haviours are generally more common and easier to collect. Thus, recommendations
w.r.t. implicit behaviours should be well studied. However, this is a challenging task
because implicit behaviours do not explicitly reflect user preferences. For example,

users might find that they are not interested in a video after viewing it. To address this

§2.1 Single-behaviour Offline Recommender Systems 18

issue, Hu et al. [41] and Pan et al. [84] both proposed the weighted matrix factori-
sation models, which assign each interaction with a weight indicating the preferences
of the target user on the target item. Moreover, the work in [84] also employs a nega-
tive sampling method to leverage the user-item pairs without observed interactions for
effectively training the matrix factorisation models. This negative sampling method
benefits improving the accuracies of recommendations w.r.t. implicit behaviours, and

has been widely employed in recently proposed SbORSs [37, 38].

The above mentioned SbORSs are all element-wise SbORSs, which trains recom-
mendation models by minimising the differences between real labels (or values) and
the corresponding predicted ones. Different from these element-wise SbORSs, Rendle
et al. [91] proposed Bayesian Personalised Ranking (BPR) to learn user preferences
via a pair-wise method for accurate recommendations. Specifically, they assumed that
users have more preferences for their interacted items than those of their missed items.
Based on this assumption, they first sampled tuples of <target user, interacted item,
missed item>, and trained the matrix factorisation model with these tuples via the
Bayesian optimisation method [101]. The training objective is that the learnt prefer-
ences of users for their interacted items are more than those for their missed items.
BPR has been proved to be effective for training recommendation models, but it intro-
duces more time complexities into the training process.

MF-SbORSs with side information

Although the matrix factorisation model has been enhanced by the above work, the
inherent data sparsity issue in recommendations has not been well solved. Recently,
some researchers have proposed to employ side information to address this data spar-
sity issue. For example, Hao et al. [72] proposed a RS with social constraints, which
leverages the social network information among users to improve the recommendation
accuracies. Specifically, they assumed that friends in a social network with similar

historical ratings would have similar preferences for items. Based on this assumption,

§2.1 Single-behaviour Offline Recommender Systems 19

the work in [72] utilises the L, norm of the differences between the latent factors of
users and their friends as regularisation terms to more effectively train matrix factori-
sation models. Moreover, Hao et al. [72] multiplied these regularisation terms with
the similarities of target users and their corresponding friends. In this way, the friends
with more similar preferences to target users will contribute more to the regularisation
terms.

Further to the work in [72], along with leveraging the latent factors of friends with
similar preferences as regularisation terms, Ma [71] also leveraged the latent factors
of friends with dissimilar preferences and the item social relations to further improve
the recommendation accuracies. Specifically, Ma assumed that the learnt latent factors
for target users and latent factors for dissimilar friends should be diversified, and thus
the differences between them should be maximised. Moreover, Ma leveraged the sim-
ilarities of ratings among items to represent the implicit social relations among items.
Then, similar to the user social relations, such implicit item social relations were also
served as regularisation terms to more effectively train the matrix factorisation models.

Apart from the social constraints, other side information such as user profiles and
item properties have also been incorporated by some MF-SbORSs. For example, Por-
teous et al. [89] proposed a Bayesian optimisation based matrix factorisation model
to well leverage such side information. Specifically, they first represented the given
side information with vectors, and then incorporated these vectors into the priors of
latent factors of corresponding users or items. After that, they employed the Gibbs
sampler to conduct the inference process for final predictions based on these side in-
formation enhanced latent factors. Later on, this method has been further improved by
Park et al. [87] with a hierarchical structure, which can more sufficiently exploit the
side information to better assist the recommendations.

Despite continued efforts, the MF-SbORSs are commonly restricted by their linear
operations and shallow structure, and thus have difficulty accurately learning non-
linear and complex user-item relations to further improve the recommendation accu-

racies.

§2.1 Single-behaviour Offline Recommender Systems 20

Table 2.2: The comparison of representative deep learning based SbORSs

. Technique adopted
Category Representative approach or basic idea
AutoRec — Sedhain et al. [97] Autoencoder
Without side Cheng et al. [11] Wide & deep learning
information DMF — Xue et al. [41] Double-wing MLP
NeuMF — He et al. [37] Wide & deep learning

ConvMF — Kim et al. [52] Convolutional Neural Network
With side |DeepCoNN — Zheng et al. [151] | Convolutional Neural Network

information | SR-RNN - Hidasi et al. [40] Recurrent Neural Network

SR-GNN - Wu et al. [131] Graph Neural Network

2.1.1.2 Deep Learning based SbORSs

Compared with the MF-SbORSs, DL-SbORSs are generally more effective. This ef-
fectiveness partially comes from their non-linear operations, deep structure, and high
flexibilities to adapt to different recommendation scenarios. In this subsection, we in-
troduce DL-SbORSs with two parts: 1) DL-SbORSs without side information and 2)
DL-SbORSs with side information.

DL-SbORSs without side information
The AUTOencoder based RECommender system (AutoRec) was proposed by Sedhain
et al. [97] to make recommendations with an unsupervised autoencoder. Specifically,
given a rating matrix, AutoRec takes rows (or columns) as the input of the user-based
(or item-based) autoencoder to learn the hidden states, and then reconstructs these rows
(or columns). In this way, the missing ratings are filled by the reconstructed rows (or
columns). Moreover, [97] proved that the deep structure benefits AutoRec to achieve
higher recommendation accuracies. Further, AutoRec has been enhanced in [132] and
[34] to be more robust and effective.

Later on, the Multiple-Layer Perceptron (MLP) based SbORSs have been proposed
and achieve satisfactory recommendation accuracies. For example, Cheng et al. [11]

proposed a wide and deep learning based RS that employs MLP to learn the complex

§2.1 Single-behaviour Offline Recommender Systems 21

and non-linear features of users and items. Moreover, besides this deep MLP com-
ponent, a wide and shallow component has also been employed to memorise the raw
input features and transformed input features. Then, the deep component and the wide
component are fused to reinforce each other for accurate recommendations.

Besides, Deep Matrix Factorisation (DMF) was proposed by Xue et al. [138] to
employ a double-wing MLP structure for accurate recommendations. First, they em-
ployed two MLPs to accurately learn user preferences and item characteristics, respec-
tively. Then, these learnt user preferences and item characteristics were fused with the
function of cosine similarity for the predictions. In this way, with the more accurately
learnt user preferences and item characteristics, DMF is expected to achieve higher
recommendation accuracies.

Moreover, Neural Matrix Factorisation (NeuMF) was proposed by He et al. [37]
to further improve the recommendation accuracies. Specifically, they first enhance
the original matrix factorisation model with non-linearities by replacing the linear dot
production with one fully connected neural network layer. Further, the output vector
of this enhanced matrix factorisation model is fused with that of an MLP model to
complement each other for better modelling the complex user-item relations, and thus

deliver accurate recommendations.

DL-SbORSs with side information
Similar to MF-SbORSs, the side information has also been employed by DL-SbORSs
to improve the recomemndation accuracies. Moreover, DL-SbORSs are flexibly con-
structed with multiple types of neural network structures, such as Covolutional Neu-
ral Network (CNN) [48, 59], Recurrent Neural Network (RNN) [81, 144] and Graph
Neural Network (GNN) [95, 152], for effectively exploiting different types of side
information.

For example, in the recommendation scenarios where user reviews for items are
available, ConvMF [52] addresses the data sparsity issue by leveraging such review

information via CNN, and thus improves the recommendation accuracies. Specifi-

§2.1 Single-behaviour Offline Recommender Systems 22

cally, ConvMF first embeds user reviews for items into latent factors with CNN, then
leverages these latent factors of reviews to well initialise the latent factors of the corre-
sponding items. Finally, the PMF [94] model is employed to make recommendations
based on these well-initialised item latent factors and randomly initialised user latent
factors.

Further to ConvMF [52], which leverages the review information to initialise the
latent factors of items only, DeepCoNN [151] also employs the review information to
initialise the latent factors of the corresponding users as well. Then, these initialised
latent factors for users and items are first concatenated, and then fed to a fully con-
nected layer for predictions. Compared with ConvMF, DeepCoNN better exploits the
review information to learn user preferences, and thus can achieve higher recommen-
dation accuracies. Recently, some other CNN based SbORSs have been proposed to
well leverage the review information for delivering more accurate recommendations,
such as ReGS [134], HSACN [145] and WCN-MF [120].

Moreover, RNN has been widely leveraged by SbORSs to perform accurate se-
quential recommendations. For example, Hidasi et al. [40] proposed a session-based
RS, which employs RNN to capture the sequential dependencies among the items in
a session. RNN was originally proposed for learning the features embedded in se-
quential data, and thus suitable for learning the dependencies from the item sequences
in a session for accurate session-based recommendations. Later, many other RNN en-
hanced RSs for session-based recommendations have been proposed, such as DREAM
[141], iGRU4Rec [39], NARM [65], HRNN [90] and MCPRN [126].

Furthermore, GNN has been employed to more effectively exploit the transitions
among items to further improve the accuracies of session-based recommendations
[131, 95, 152, 119]. For example, SR-GNN [131] models each session as a directed
subgraph, and all these subgraphs composite the complete session graph that incorpo-
rates the information of all the sessions. Then, the transitions and dependencies among
items are well captured by the gated graph neural networks for accurate session-based

recommendations.

§2.1 Single-behaviour Offline Recommender Systems 23

2.1.2 Memory network enhanced SbORSs

The memory network [130] is an effective machine learning model, which contains a
readable and writable storage. It was originally proposed in [130] and is further en-
hanced to an end-to-end model in [108]. The effectiveness of the memory network has
been widely proved in various areas where objects or information need to be stored
for further usage, such as natural language processing [58, 111], image processing
[110, 136] and pattern recognization [82, 57]. Recently, researchers have also ex-
ploited the potential of the memory network for achieving accurate recommendations
[153, 42,74, 73].

For example, Huang et al. [42] devised a double-wing memory network along with
a hierarchical attention mechanism to perform mention' recommendations in Twitter-
like applications. First, they employed two memories for storing the Twitter histories
of authors and candidate users, respectively. Then, they utilised a word-level encoder
and a sentence-level encoder, both of which rely on the attention mechanism, to collab-
oratively embed the interests of authors and candidate users from their corresponding
Twitter histories, respectively. Finally, they leveraged the learnt interests for men-
tion recommendations by judging which candidate users match the authors. Later, the
memory-based mention recommendations have been further improved by the work in
[74]. Besides, the hashtag recommendations [73] for Twitter-like applications have
also benefited from the memory network for improving recommendation accuracies.

Recently, the memory network has also been leveraged by Dong et al. [22] to
effectively address the long-standing cold-start problem in recommendations. Specif-
ically, they employed a feature-specific memory and a task-specific memory to assist
initialise the latent factors of users in a personalised manner and guide more effective
predictions, respectively. By leveraging the feature-specific memory, which memo-
rises the profiles and latent factors of existing users, the latent factors of new users

can be initialised based on their profiles while referring to the latent factors of existing

!'The action of Qusername is called a mention in Twitter-like applications.

§2.1 Single-behaviour Offline Recommender Systems 24

Table 2.3: The comparison of representative ensemble learning based SbORSs

. Technique adopted
Category Representative approach or basic idea
Ke et al. [47] Bagging
Ensemble learning Su et al. [60] Mixture of Experts (MoE)
based SbORSs Heater — Zhu et al. [154] MoE
MMOoE_SAC — Li et al. [64] Multi-gate MoE

users, and thus can more accurately reflect the preferences of these new users. As for
the task-specific memory that memorises the fast gradients of users, it is employed for
well initialising the parameters for predictions by learning from the interactions from
all users, and thus perform more accurate predictions for new users.

In addition, the memory network has also been widely employed by sequence-
based SbORSs [67, 103, 29, 43] to exploit the long-term item dependencies embedded
in the historical interactions. For example, Gligorijevic et al. [29] proposed to first
memorise the historical sessions in a memory, and then leverage an end-to-end mem-
ory network structure to exploit users’ preferences towards items from these historical

sessions for accurate recommendations w.r.t. the ongoing session.

2.1.3 Ensemble Learning based SbORSs

Ensemble learning [23] combines multiple individual machine learning models for
achiving better learning performance.

Based on the ensemble strategies, ensemble learning can be categorised into four
main groups: Bagging [2, 3], Boosting [26, 25], Stacking [24, 114] and Mixture of
Experts (MoE) [78, 142]. As the work in this thesis is highly related to Bagging and
MOoE, we introduce these two types of ensemble learning methods and the SbORSs
devised based on them in this subsection. In addition, for a clear comparison, these

ensemble learning based SbORSs and their features are summarised in Table 2.3.

§2.1 Single-behaviour Offline Recommender Systems 25

2.1.3.1 Bagging based SbORSs

Bagging [2, 3] aims to achieve better learning performance by averaging the results
of multiple individual models, which are trained independently with the bootstrapped
samples from the complete training data. In this way, the ensembled model generated
by Bagging could have a lower bias than each individual model, and thus improve the
learning performance.

The effectiveness of Bagging for recommendations has been verified in [47], where
Ji et al. proposed a Bagging-based matrix factorisation framework to increase the rec-
ommendation accuracies. Specifically, they first resampled multiple subsets of training
data from the dataset, then leveraged these subsets to train multiple matrix factorisa-
tion models, respectively, and finally averaged the predicted values of these models for

recommendations.

2.1.3.2 MokE based SbORSs

Besides, MoE [142, 78] is another effective ensemble learning method that wisely
fuses multiple expert models to achieve better learning performance. Generally, MoE
contains 1) multiple experts where each expert is an atomic model specialising in learn-
ing from a particular type of input data, 2) a gating network to calculate the gating
weights that reflect the expertise of each expert regarding the input and 3) a fusion
module to fuse the outputs of multiple experts with the gating weights.

Because of its effectiveness, MoE has been employed by SbORSs for achieving
higher recommendation accuracies. Among the first attempts, Su et al. [60] proposed
a sequential strategy and a joint strategy for leveraging MoE to ensemble different
types of collaborative filtering methods. Specifically, in the sequential strategy, the
predictions of the prior collaborative filtering method are fed to the posterior one for
more accurate predictions. Differently, in the joint strategy, all the collaborative fil-
tering methods take the original interaction matrix as input and then obtain the final

predictions by voting. As an early attempt, Su et al. [60] did not effectively leveraged

§2.1 Single-behaviour Offline Recommender Systems 26

MoE for accurate recommendations, as they only employed different types of collabo-
rative filtering methods as expert models but did not allow them to specialise in certain
types of interactions.

More recently, some RSs [154, 64] have better exploited the potential of MoEs
to further improve the recommendation accuracies. Specifically, they employ the gat-
ing network to dynamically assign different weights for different expert models when
confronting different types of interactions. In this way, each expert model is trained
to specialise in a certain type of interactions, and then the specialised experts are as-
signed higher weights for predictions w.r.t. the corresponding types of interactions.
In this way, through recommending items to users by specialised expert models, the

recommendation accuracies are expected to be improved.

2.1.4 Single-behaviour Offline Recommender Systems: A Sum-

mary

The research area of SbORSs is well explored from various perspectives for delivering
recommendations w.r.t. a single behaviour type in the offline scenarios. Among the
existing SbORSs, the most representative ones are mainly based on the matrix fac-
torisation models or deep learning models. The MF-SbORSs tend to learn the linear
relations between users and items from interactions, and later leverage these learnt
relations for recommendations. Compared with the MF-SbORSs, DL-SbORSs are
able to capture the complex and non-linear relations, and thus are commonly more ex-
pressive and benefit delivering more accurate recommendations. Moreover, some ad-
vanced machine learning techniques, such as ensemble learning and memory network,
have been employed by some existing SbORSs to further improve the recommendation
accuracies.

However, all these SbORSs are devised for single-behaviour recommendations in

the offline scenarios, and thus have following two main limitations.

e SbORSs can only deal with interactions w.r.t. the primary behaviour (e.g.,

§2.2 Single-behaviour Streaming Recommender Systems 27

purchases) but ignore the widely-existing and informative auxiliary behaviours
(e.g., views and add-to-carts), and thus have difficulty well dealing with the data

sparsity problem.

* SbORSs are all devised for delivering recommendations in the offline scenarios
only, and thus cannot deal with the pervasive data stream of user-item interac-

tions for accurate streaming recommendations.

2.2 Single-behaviour Streaming Recommender Systems

As discussed above, conventional SbORSs are all devised for offline scenarios and
cannot well deal with the continuous data stream. Therefore, SbSRSs are proposed
to deliver accurate recommendations in streaming scenarios. Based on their develop-
ment stages, SbSRSs can be roughly categorised into two groups: 1) adaption-based
SbSRSs and 2)stream-oriented SbSRSs. Specifically, adaptation-based SbSRSs aim
to adapt the existing offline RSs to streaming scenarios by enhancing recommenda-
tion models with incremental update mechanisms, while stream-oriented SbSRSs are
specifically devised for delivering accurate recommendations in the streaming scenar-
ios. For a more detailed introduction, the adaptation-based SbSRSs are reviewed in
Subsection 2.2.1 with a brief summary in Table 2.4, while the stream-oriented SbSRSs

are reviewed in Subsection 2.2.2 with a brief summary in Table 2.5.

2.2.1 Adaptation-based SbSRSs

In the early stage, researchers tended to adapt the conventional offline RSs to streaming
scenarios for streaming recommendations. These adaptation-based SRSs can be cate-
gorised into two groups: 1) adaptation of neighbourhood-based collaborative filtering

models and 2) adaptation of matrix factorisation models.

§2.2 Single-behaviour Streaming Recommender Systems 28

Table 2.4: The comparison of adaptation-based SbSRSs

Technique adopted
or basic idea
Incremental updates of
user-to-user similarities
Bayesian optimisation &
approximation algorithm

Category Representative approach

ICF — Papagelis et al. [86]
Adaptation of
neighbourhood-based| VBMF — Silva et al. [98]

collaborative filtering STREAMREC —

models Subbian et al. [107] Approximation algorithm

OCF-DR - Li et al. [66] Dynamic regularisation

StreamRec - Stream processing system
Chandramouli et al. [5]
TecnetRec = Stream processing system
Huang et al. [44]
RKMF — Rendle et al. [92] Regularised kernel
Adaptation of RMFK - Reservoir technique
matrix factorisation Diaz-Aviles et al. [16]
models ISGD — Vinagre et al. [116] | Stochastic gradient descent

Randomised block
coordinate descent
Alternative least square &
popularity weight

Devooght et al. [15]

eAls — He et al. [38]

2.2.1.1 Adaptation of neighbourhood-based Collaborative Filtering Models

Among the first attempts in the streaming recommendations, Papagelis et al. [86] pro-
posed an Incremental Collaborative Filtering (ICF) method to conduct efficient stream-
ing recommendations based on neighbourhood-based collaborative filtering. Specifi-
cally, ICF updates the user-to-user matrix with an incremental strategy, which avoids
repetitive computations in the training process, and thus achieves efficient recommen-
dations w.r.t. continuous data stream of user-item interactions. Moreover, this incre-
mental update process does not rely on any approximation method, and thus does not
lead to any degradation of recommendation accuracies.

Later on, the approximation method has been employed by Silva et al. [98] to

increase the efficiency of streaming recommendations. Specifically, Silva et al. first

§2.2 Single-behaviour Streaming Recommender Systems 29

leveraged a statistical model to sample a subset of informative user-item interactions as
the training data. Then, they integrated the Bayesian inference method into the matrix
factorisation model to increase the recommendation accuracies in the streaming sce-
narios. Finally, they trained this Bayesian inference based matrix factorisation model
with the earlier sampled data via a fast and near-optimal method. Due to the approx-
imation strategy, this SRS is computationally efficient, but this efficiency comes at a
price of degradation of recommendation accuracy.

Further to [98], the approximation strategy has been further leveraged by Subbian
et al. [107] for improving the recommendation efficiency of adapted neighbourhood-
based collaborative filtering in the streaming scenarios. Specifically, Subbian et al.
dynamically calculated the similarities between items with an approximate algorithm,
and thus the computational complexity can be significantly reduced. Moreover, they
deduced the theoretical bounds of the approximation error, which indicates the degra-
dation of recommendation accuracy is controllable and acceptable.

Besides, neighbourhood-based collaborative filtering has also been enhanced by Li
et al. [66] with dynamic regularisation for streaming recommendations. Specifically,
they dynamically calculated the statistics about the users and items (e.g., the average
rating of each user) and then utilised these statistics to regularise the predictions for
more personalised recommendations. For example, the predicted rating will be ad-
justed to be lower for a user with a lower average rating for consistency with his/her
usual practice.

For higher computational efficiency, Chandramouli et al. proposed StreamRec [5]
to conduct neighbourhood-based collaborative filtering with a stream processing sys-
tem [105] (e.g., Storm [115]) and thus delivering more effective streaming recommen-
dations with efficient stream processing. Specifically, StreamRec first decomposes
collaborative filtering into several native incremental streaming operators, and then
deploys these operators in the stream processing system for delivering efficient recom-
mendations in the streaming scenarios.

Further to [5], Huang et al. [44] proposed a general framework, named Tecen-

§2.2 Single-behaviour Streaming Recommender Systems 30

tRec, built on the stream processing system. To be more specific, TecentRec aims
to conveniently integrate the offline RSs for streaming recommendations with high
computational efficiency. Some representative recommendation models have already
been deployed in TecentRec (e.g., neighbourhood-based collaborative filtering and
demographic-based models). Moreover, this framework has been deployed in real-
world applications and well served 10 billion user requests per day. Stream processing
systems are highly computationally efficient for dealing with data stream, and thus are

promising to be leveraged for streaming recommendations.

2.2.1.2 Adaptation of Matrix Factorisation Models

Apart from these neighbourhood-based collaborative filtering approaches, the matrix
factorisation models, which are commonly more effective, have also been adapted to
streaming scenarios for streaming recommendations. For example, Regularised Ker-
nel Matrix Factorisation (RKMF) was proposed by Rendle et al. [92] to endow the
matrix factorisation model the ability of dynamical updates in the streaming scenarios.
Specifically, in RKMF, a regularised kernel is devised, which can not only dynami-
cally update the matrix factorisation model without retraining this model from scratch,
but also benefits capturing the non-linear relations between users and items with its
non-linear structure.

In order to further improve the recommendation accuracies in streaming scenarios,
Streaming Ranking Matrix Factorisation [16] was proposed to train the matrix factori-
sation model with newly receiving data along with the sampled historical data from the
reservoir. Here, the reservoir is a set of representative samples of the historical data,
which is partially used for training the matrix factorisation model. Note that this reser-
voir technique is useful and inspiring, and is later employed and enhanced by some
more advanced SRSs [127, 32].

Later on, Stochastic Gradient Descent (SGD) [1] was employed by Vinagre et
al. [116] to train the matrix factorisation model in the streaming scenarios. Through

stochastic gradient descent, the matrix factorisation model can be updated once a user-

§2.2 Single-behaviour Streaming Recommender Systems 31

item interaction is received, and thus can make accurate real-time recommendations.
Note that, SGD is a generalised training technique for machine learning methods, and
is leveraged by some recently proposed SRSs [140].

In addition, missing interactions (i.e., user-item pairs without any observed inter-
action) have been employed by Devooght et al. [15] to train the matrix factorisation
model in the streaming scenarios. Specifically, they first assigned missing interactions
a fixed and small value (e.g. 0), and then employed Randomised Block Coordinate
(RCD) to effectively train the matrix factorisation model with these missing interac-
tions and observed interactions for streaming recommendations. Actually, the practise
of employing missing interactions for training streaming recommendation models sig-
nificantly benefits improving the recommendation accuracies, and is widely employed
in the SbSRSs [38, 32, 140] proposed recently.

Different from the work in [15], where missing interactions are all assigned to
the same weight for training recommendation models, He et al. [38] weighted these
missing interactions based on the popularities of their incorporated items to more ef-
fectively train the recommendation models. For example, a popular item that is pur-
chased by many users might not match Alice’s special preferences if Alice has not
purchased this popular item, and thus this unobserved interaction should be assigned
larger weights to more accurately learn the special preferences of Alice. Then, He
et al. [38] proposed an element-wise Alternating Least Squares (eAls) algorithm to
efficiently and effectively train recommendation models while accounting for these

weighted missing interactions.

2.2.2 Stream-oriented SbSRSs

Recently, Stream-oriented SbSRSs (So-SbSRSs) have been specifically proposed for
addressing the challenges of streaming recommendations. Based on the recommenda-
tion scenarios, So-SbSRSs can be roughly categorised into three groups: 1) interactio-

based So-SbSRSs, 2) session-based So-SbSRSs and 3) other So-SbSRSs.

§2.2 Single-behaviour Streaming Recommender Systems

32

Table 2.5: The comparison of stream-oriented SbSRSs

Category

Representative approach

Technique adopted
or basic idea

interaction-based

sRec — Chang et al. [6]

Random process &
Brownian motion

streamGBMF —
Chen et al. [8]

Forgetting mechanism

SPMF —et al. [127]

Ranking-based sampling &
reservoir technique

NMRN — Wang et al. [121]

Key-value memory
network

OCFIF - Yin et al. [140]

Ensembling multiple
matrix factorisation models

Vinagre et al. [117]

Online bagging

Session-based

SSRM - Guo et al. [32]

Attention mechanism &
reservoir technique

SANSR -
Sun et al. [109]

Self-attention network

MAN -
Mi et al. [80]

Memory network

Other

TRM - Yin et al. [139]

POI recommendation &
topic model

SIMF — Jakomin et al. [45]

Side information &
relational learning

2.2.2.1 Interaction-based So-SbSRSs

Among various types of So-SbSRSs, the interaction-based ones are the most common

and relatively well explored. These So-SbSRSs make recommendations based on data

streams of user-item interactions only. For example, Targeting the preference drift

issue, Change et al. [6] proposed a random process to track the evolution of user

preferences. Specifically, they first assumed that preferences of new users followed

the general preferences of the existing users, and then utilised the Brownian motion to

track the evolution of such preferences. It should be noted that using a random process

to capture user preferences and address the preference drift issue might be a promising

research direction, as it is explainable and computationally efficient.

§2.2 Single-behaviour Streaming Recommender Systems 33

Then, this preference drift issue has also been addressed by Chen et al. [8] with
two forgetting mechanisms. Specifically, the first forgetting mechanism discards the
historical user-item interactions that do not match the users’ latest preferences embed-
ded in the recent interactions. However, this consistency is measured by the difference
between the predicted rating and the real rating, which might not be accurate as such
differences might also come from the low prediction accuracy of the recommendation
model. As for the second forgetting mechanism, it is devised based on the time-decay
confidence, which assumes that more recent interactions should be assigned larger
weights for training the recommendation models. This time-decay method is reason-
able, as more recent interactions commonly better reflect users’ latest preferences, and
thus contribute more to accurate streaming recommendations.

Later on, the reservoir technique leveraged in [16] was employed by Stream-
centered Probabilistic Matrix Factorisation (SPMF) [127] to capture long-term user
preferences embedded in the historical interactions. Moreover, a ranking-based sam-
pling method was proposed to deal with overload scenarios, where the data receiving
speed is higher than the data processing speed. Furthermore, SPMF also deals with
the preference drift problem with a probabilistic Gaussian classification model. How-
ever, the proposed ranking-based sampling method needs to first make predictions for
all the historical interactions, and then sample the ones with the largest prediction er-
rors. Although this sampling method can provide informative interactions to more
effectively train the recommendation models, it is highly computationally expensive,
and thus might not be suitable for the streaming scenarios. Moreover, the proposed
SPMF relies on a linear operation (i.e., the dot product) to learn from the interactions,
and thus might have difficulty well capturing the non-linear user preferences and item
characteristics.

Additionally, the memory network has also been employed to learn both short-
term user preferences and long-term user preferences. Specifically, Wang et al. [121]
devised a key-value memory network, where the key memory slot memorises the user-

specific weights of the latent factors memorised in the value memory. The weights

§2.2 Single-behaviour Streaming Recommender Systems 34

remain unchanged for each user, while the memorised latent factors evolve to track
both short-term user preferences and long-term user preferences. This memory-based
streaming recommendation model has low computational complexity; however, the
short-term user preferences and long-term user preferences can be hardly well learnt
simultaneously within this single memory network structure. This is because, in some
cases, these two types of preferences are inconsistent and might affect the learning
processes of each other.

Moreover, ensemble learning has also been employed by the stream-oriented Sb-
SRSs to further improve the recommendation accuracies in the streaming scenarios.
For example, Yin et al. [140] proposed to leverage ensemble learning to address the
limitations of a single SRS. Specifically, they first trained multiple matrix factorisa-
tion models of different parameters with the same training data, and then selected one
model only for the final recommendations. Ensemble learning is an effective machine
learning method and should be well studied for streaming recommendations. How-
ever, this approach in [140] feeds the same input to all the individual models while
selects only one recommendation model for the final prediction. Therefore, it might
not sufficiently exploit the potential of ensemble learning to effectively leverage all
recommendation models for accurate streaming recommendations.

Further to [140], Vinagre et al. [117] proposed to leverage online bagging to more
effectively ensemble multiple individual factorisation models for accurate streaming
recommendations. Specifically, they first trained each individual factorisation model
incrementally with the same input, and then averaged their predictions for the final
prediction. In this way, all the individual models contribute to the final prediction,
and thus can reduce the bias of each individual model for improving recommendation
accuracies. However, as this model feeds all the individual models with the same input,
it does not fully exploit the potential of ensemble learning to confront the high-speed

and continuous data stream.

§2.2 Single-behaviour Streaming Recommender Systems 35

2.2.2.2 Session-based So-SbSRSs

Recently, session-based So-SbSRSs have been proposed. Compared with the interaction-
based So-SbSRSs, these session-based ones additionally take the session information
to improve the recommendation accuracies. For example, Guo et al. [32] proposed an
attention-based matrix factorisation model along with the reservoir technique to de-
liver accurate session-based recommendations in the streaming scenarios. First, they
employed the reservoir technique to keep a set of representative historical sessions,
which are later sampled with an elaborately devised sampler for training the recom-
mendation model along with the newly receiving sessions. Then, they enhanced the
matrix factorisation model with an attention technique to capture both long-term and
short-term user preferences for more accurate session-based streaming recommenda-
tions.

Later on, Sun et al. [109] employed the self-attention network for more accurate
session-based recommendations in the streaming scenarios. Specifically, this proposed
self-attention network predicts the next item by first calculating the similarities be-
tween the target item and the existing items in the ongoing session, then embedding
the ongoing session into a unified vector with these similarities, and finally comparing
this unified vector with the embedding of the target item for the prediction. Although
the importance of each item within the ongoing session is measured by the calculated
similarities, the sequential dependencies among items have not been well considered
for higher session-based recommendations in the streaming scenarios.

Further to the work in [32, 109], Mi et al. [80] explored the potential of mem-
ory networks in session-based streaming recommendations. Specifically, in [80], they
proposed a Memory Augmented Neural model (MAN) for accurate session-based rec-
ommendations in the streaming scenarios. The effectiveness of MAN mainly lies in
its memory network component, which can effectively and efficiently capture long-
term user preferences embedded in historical sessions stored in this memory, and thus

benefits delivering accurate session-based recommendations in streaming scenarios.

§2.2 Single-behaviour Streaming Recommender Systems 36

2.2.2.3 Other So-SbSRSs

Besides, Point-of-Interest (POI) recommendations in streaming scenarios are studied
by Yin et al. [139]. Specifically, they first proposed a topic-region model based on the
probabilistic theory to learn from the users’ check-in activities, and then leveraged the
learnt knowledge for POI recommendations. Moreover, this topic-region model was
further enhanced with the online learning method to track the evolution of user pref-
erences and accelerate the training process. The POI recommendations in streaming
scenarios remain largely unexplored, and might be a potential research topic.
Moreover, targeting the inherent data sparsity issue in streaming recommendations,
Jakomin et al. [45] proposed to leverage side information, such as user profiles and
item properties, via relational learning to better learn user preferences and item char-
acteristics. Specifically, in addition to data streams of user-item interactions, they also
analysed the user profiles and item properties, and thus could better learn user prefer-
ences and item characteristics with such side information. This practice of considering
side information to improve the recommendation accuracies in streaming scenarios is

promising and less explored, and thus should attract more research attention.

2.2.3 Single-behaviour Streaming Recommender Systems: A Sum-

mary

As discussed above, the conventional offline RSs cannot deal with the ubiquitous data
stream, and SbSRSs have been proposed to address this issue by training recommen-
dation models incrementally with continuous user-item interactions w.r.t. a single be-
haviour type. Based on their development stages, the SbSRSs can be roughly cate-
gorised into two groups: adaptation-based SbSRSs and stream-oriented SbSRSs.
Adaptation-based SbSRSs aim to adapt existing SbORSs to streaming scenarios
for streaming recommendations. Specifically, they commonly enhance SbORSs with
the incremental update mechanisms for well dealing with the continuous data stream.

However, these adaptation-based SbSRSs mainly focus on dealing with the continu-

§2.3 Multi-behaviour Offline Recommender Systems 37

ous user-item interactions for streaming recommendations, but pay less attention to
improving the accuracies of streaming recommendations.

By contrast, stream-oriented SbSRSs have been proposed specifically for deliver-
ing accurate streaming recommendations. Compared with the adaptation-based Sb-
SRSs, stream-oriented SbSRSs focus more on addressing the challenges of streaming
recommendations to improve recommendation accuracies in the streaming scenarios.

Although efforts have been made, the challenge of well learning both short-term
and long-term user preferences still needs to be well addressed. Moreover, the existing
SbSRSs are all devised for dealing with data streams of single-behaviour interactions,

and thus might have difficulty well dealing with the data sparsity issue.

2.3 Multi-behaviour Offline Recommender Systems

The above reviewed SbORSs and SbSRSs are both devised to deal with interactions
w.r.t. a single behaviour type, and suffer from the data sparsity issue caused by the lim-
ited number of such single-behaviour interactions. Therefore, MbORSs [18, 77] have
been proposed recently to improve recommendation accuracies by leveraging multiple
types of user behaviours (e.g., purchases, add-to-carts and views) in the offline scenar-
i0s. Based on the maximal number of behaviours could be incorporated, the MbORSs
can be categorised into two groups: 2-behaviour ORSs [85, 18, 20] and n-behaviour
(n > 2) ORSs [21, 113, 7]. Specifically, 2-behaviour ORSs are devised to deal with
the interactions w.r.t. two behaviour types, i.e., the primary behaviour and one type of
auxiliary behaviour, while n-behaviour ORSs are more generalised and able to incor-
porate an arbitrary number types of auxiliary behaviours. For a clear introduction, the
2-behaviour ORSs are reviewed in Subsection 2.3.1 with a brief summary in Table 2.6,
while the n-behaviour ORSs are reviewed in Subsection 2.3.2 with a brief summary in

Table 2.7.

§2.3 Multi-behaviour Offline Recommender Systems 38

Table 2.6: The comparison of 2-behaviour ORSs

Technique adopted
or basic idea
Bayesian optimisation &
personalised ranking
Pair-wise)) Bayesian optimisation &

BPR+view — Ding et al. [18] ; .
personalised ranking
Bayesian optimisation &
personalised ranking
Alternative least square &
max-margin learning
SVD++ — Koren et al. [54] Regularised matrix factorisation

Category Representative approach

Ding et al. [17]

ABPR — Pan et al. [85]

VALS - Ding et al. [20]

Element-wise TimeSVD++ — Regularised matrix factorisation &
Koren et al. [55] temporal pattern capture
MGNN-SPred —

Wang et al. [128] Gated graph neural network

2.3.1 2-behaviour Offline Recommender Systems

2-behaviour ORSs [85, 17, 18, 20, 128] focus on improving the recommendations
w.r.t. the primary behaviour with the additional interactions w.r.t. one type of auxiliary
behaviour. In this subsection, the 2-behaviour ORSs are introduced with two parts: 1)

pair-wise 2-behaviour ORSs and 2) element-wise 2-behaviour ORSs.

2.3.1.1 Pair-wise 2-behaviour ORSs

Most 2-behaviour ORSs [17, 18, 85, 20] have adopted the pair-wise ranking strategy to
endow the primary behaviour higher priority over the auxiliary one. Here, the priority
of a certain behaviour type indicates how much it reflects the user preferences for
items (e.g., the primary behaviour usually has the highest priorities). Note that, the
unobserved behaviour, which serves as a virtual behaviour between a user and a missed
item by this user, has also been considered with lowest priority by most pair-wise 2-
behaviour ORSs [85, 17, 21, 68] to help more effectively train the recommendation

models.

§2.3 Multi-behaviour Offline Recommender Systems 39

For example, to leverage the view behaviour to assist purchase recommendations,
Ding et al. [17] proposed an improved sampler for BPR by leveraging the interac-
tions w.r.t. both the purchase behaviour and the view behaviour. Specifically, this
view-enhanced sampler samples three types of tuples: <target user, purchased item,
viewed item>, <target user, purchased item, missed item> and <target user, viewed
item, missed item>. After that, each of these three types of tuples is trained with the
BPR method [91] independently for learning the relations between users and items.
However, this work might not well learn the overall semantics of the view behaviour,
as it trains the tuples of <target user, purchased item, viewed item> and <target user,
viewed item, missed item> independently.

Later on, Ding et al. extends the work in [17] to view-enhanced BPR [18] for ad-
dressing the limitation mentioned above. Specifically, this view-enhanced BPR adopts
a joint training method to better learn from both purchase behaviours and view be-
haviours. This joint training method incorporates the partial priority order among
behaviours, i.e., purchase > view > the unobserved, with a unified loss function, and
thus benefits effectively learn user preferences from both the purchase behaviour and
view behaviour. Although efforts have been made, this approach relies on linear oper-
ations to model the relations between users and items, and thus might not well capture
the complex and non-linear user-item relations from the interactions.

Different from the above two studies, Adaptive Bayesian Personalized Ranking
(ABPR) [85] focuses more on the uncertainty of the auxiliary behaviour. That is, com-
pared with the primary behaviour, the auxiliary behaviour does not explicitly reflect
the preferences of a user for an item, and thus is more difficult to be interpreted. To
address this issue, ABPR adopts a margin-based method to adaptively calculate the
confidence of auxiliary behaviours for reflecting the user preferences. Then, this con-
fidence is integrated into the loss function for more effectively training the recommen-
dation model along with the BPR method. Although this confidence benefits more
accurately interpreting the auxiliary behaviours, it might not be precise in the cases

when prediction accuracy is low. This is because the confidence is simply calculated

§2.3 Multi-behaviour Offline Recommender Systems 40

based on the difference between the predicted probability of an interaction and its real
label.

In addition to the above mentioned BPR-based methods, the pair-wise strategy
was adopted along with the ALS method [41]. For example, View-enhanced Alter-
native Least Square (VALS) [20] improves eALS [38] to conduct recommendations
w.r.t. both the primary behaviour and the auxiliary behaviour. Specifically, VALS
first devises a view-enhanced objective function, which leverages a margin-based for-
mulation to incorporate all the interactions w.r.t. the purchase behaviour, the view
behaviour, and the unobserved behaviour. Different from the BPR-based 2-behaviour
ORSs, which sample limited unobserved behaviours for training the recommendation
models, VALS assumes that all the user-item pairs without interactions are with the
unobserved behaviours. Although this practice utilises all possible user-item pairs for
learning the relations between users and items, it introduces substantial computational
cost. To address this issue, VALS adopts a fast learning algorithm, which accelerates
its training process by avoiding repetitive calculations when updating the parameters
of the recommendation model. However, in essence, VALS is a regression method, and
thus might not be well suited to delivering purchase recommendations, which need to
accurately identify the users’ purchase behaviour from view behaviour and the unob-
served one. Moreover, similar to the limitations of BPR-based MbORSs, VALS also
relies on linear operations to learn from the multi-behaviour interactions, and thus has

limited abilities to model complex and non-linear user-item relations.

2.3.1.2 Element-wise 2-behaviour ORSs

Apart from these pair-wise approaches, element-wise 2-behaviour ORSs have also
been proposed. For example, Koren et al. [54] incorporated both explicit behaviour
and implicit behaviour for recommendations via an element-wise manner. Specifically,
they improved the traditional matrix factorisation model by leveraging the interactions
w.r.t. implicit behaviour as a regularisation term to assist the prediction of the explicit

rating. Later, this method was further extended in [55], where the temporal patterns of

§2.3 Multi-behaviour Offline Recommender Systems 41

user preferences were considered and captured for more accurate recommendations.
Although these two recommendation models are computationally efficient, they might
not well explore the user preferences and item characteristics embedded in the implicit
behaviour, as these two models both treat the implicit behaviour as a regularisation
term only.

Besides, GNN has also been employed by MGNN-SPred [128] to well learn the
user-item relations from 2-behaviour interactions. Specifically, in this graph neural
network, two types of edges are devised for representing the primary behaviour and
one type of auxiliary behaviour, respectively. Then, the sequence representation w.r.t.
a certain behaviour type is achieved by sum-pooling over all the items within this
sequence. After that, a gating mechanism is devised to merge the sequence represen-
tations of the primary behaviour and the auxiliary behaviour for reflecting user prefer-
ences. Although the item-item relations have been learnt by MGNN-SPred, the impor-
tance of the last item for sequence representation might not be sufficiently highlighted

with the sum-pooling operation, which might affect the recommendation accuracies.

2.3.2 n-behaviour Offline Recommender Systems

Different from the 2-behaviour ORSs, n-behaviour (n > 2) ORSs have been devised to
deal with an arbitrary number of types of auxiliary behaviours in the offline scenarios,
and thus are more flexible. In this subsection, we introduce n-behaviour ORSs with

two parts, i.e., 1) pair-wise n-behaviour ORSs and 2) element-wise n-behaviour ORSs.

2.3.2.1 Pair-wise n-behaviour ORSs

Some techniques in 2-behaviour ORSs have been enhanced by n-behaviour ORSs to
well deal with more types of auxiliary behaviours. For example, the BPR method
was enhanced by MFPR [68] to incorporate one type of explicit behaviour (primary
behaviour), such as ratings, and multiple types of implicit behaviours (auxiliary be-

haviours), such as purchases and clicks. Specifically, similar to the work in [85, 18],

§2.3 Multi-behaviour Offline Recommender Systems 42

Table 2.7: The comparison of n-behaviour ORSs

Representative Technique adopted
Category . .
approach or basic idea
MFPR - Bayesian optimisation &
Pair-wise Liu et al. [68] personalised ranking
AALS — Alternative least square &
Ding et al. [21] joint training
Liang et al. [112] Ensemble learning
CMF - . . .
. Collective matrix factorisaion
Non-sequential Singh et al. [100]
recommendation DCMF - Collective matrix factorisaion &
Element-wise Mariappan et al. [77] deep learning
MATN - Memory network &
Xiaet al. [133] transformer
M-MLP - Fusing MLP and
Wen et al. [129] matrix factorisation
NMTR — Multi-task learning
Gao et al. [28] cascaded prediction
EHCF - .
Chen et al. [7] Transfer-learning
. ASLI - .
reC(S)fI?IlrllZEEZiion Mehrab etal. [113] Ensemble Jeamng
Bi-directional RNN &
DPIN - . .
multi-task learning &
Guo et al. [31] .
edge computing

a generation algorithm was first proposed to generate tuples of <target user, item;,
itemy, > with an accurate priority order between item; and items. Then, a BPR-based
approach was proposed to learn user preferences from these generated tuples. Nev-
ertheless, similar to the BPR-based 2-behaviour MbORSs [85, 18], MFPR relies on
linear operations to learn from the multi-behaviour interactions, and might have lim-
ited ability to capture the complex and non-linear user-item relations.

Apart from BPR-based approaches, the 2-behaviour ORS VALS [20] has also been
improved into AALS [21] for conducting recommendations w.r.t. an arbitrary number
of types of auxiliary behaviours. The main improvement of AALS over the VALS lies

in its loss function, which is able to incorporate more behaviour types. Specifically,

§2.3 Multi-behaviour Offline Recommender Systems 43

the multiple behaviour types are first sorted by their priorities, where the purchase
is usually with the highest and the unobserved is with the lowest. Then, the differ-
ences between the predicted values of all adjacent behaviour types are summed up to
composite the loss function for learning the user-item relations from multi-behaviour
interactions. However, this loss function can only reflect the local partial priorities of
the adjacent behaviour types only, which might not be able to well learn the global

partial priorities of all behaviour types.

2.3.2.2 Element-wise n-behaviour ORSs

Besides the above pair-wise n-behaviour ORSs, element-wise n-behaviour ORSs have
also been proposed. In this subsection, we introduce n-behaviour ORSs with two parts:

1) non-sequential recommendations and 2) sequential recommendations.

Non-sequential recommendations

Liang et al. [112] provided an empirical study where three training strategies, includ-
ing Model Combination (MC), Prior Combination (PC) and Constrained Regression
(CR), are devised to simultaneously exploit interactions w.r.t. multi-behaviour inter-
actions. Specifically, 1) MC trains multiple individual recommendation models in-
dependently with each model focusing on a specific behaviour type, and makes final
predictions based on a weighted sum of the predictions of all these individual mod-
els; 2) PC trains multiple individual recommendation models sequentially where the
parameters of a prior model are utilised to regularise the parameters of the posterior
one, and the recommendations are made based on the last recommendation model;
and 3) the CR utilises only one recommendation model, where the training loss con-
siders the interactions w.r.t. all behaviour types. Although three strategies have been
proposed, they are still in the early stage of multi-behaviour recommendations, which
rely on the simple combination of individual models or naive joint training loss to ex-
ploit multi-behaviour interactions, and could be further improved with more advanced

techniques.

§2.3 Multi-behaviour Offline Recommender Systems 44

Besides, Collective Matrix Factorisation (CMF) originally proposed in [100] at-
tempts to factorise multiple user-item interaction matrixes simultaneously, e.g., the
interaction matrix w.r.t. the primary behaviour and interaction matrixes w.r.t. auxiliary
behaviours. Thus, CMF is able to incorporate multiple behaviour types for recom-
mendations. Moreover, CMF allows the user embeddings (or item embeddings) to
be different w.r.t. different behaviour types, and thus achieve more flexibilities when
learning from the multi-behaviour interactions. However, it has difficulties in learn-
ing the complex and non-linear relations between users and items, as it relies on the
shadow structure to learn from the multi-behaviour interactions..

Later on, Deep Collective Matrix Factorisation (DCMF) [77] enhances CMF [100]
with a deep neural network structure, and thus have stronger abilities to capture the
complex and non-linear user-item relations. Moreover, it employs the Bayesian opti-
misation method to address the optimisation challenges caused by the dependencies of
different behaviour types. However, this work mainly leverages the shared user em-
beddings and shared item embeddings to complement the modelling of the behaviours
with one another, but might not sufficiently highlight the distinctions of user prefer-
ences and item characteristics w.r.t. different behaviour types.

To better leverage multi-behaviour interactions, Memory-Augmented Transformer
Network (MATN) [133] models the dependencies among behaviours with a transformer-
based multi-behaviour relation encoder. Moreover, it also learns the contextual infor-
mation (e.g., view behaviour appear more frequently than purchase behaviour does)
for each behaviour type. Furthermore, a cross-behaviour aggregation component is de-
vised to collaborate these behaviours for assisting recommendations. Although MATN
models dependencies among different behaviour types well and considers the contex-
tual information, it might pay insufficient attention to explicitly learning user prefer-
ences and item characteristics w.r.t. each behaviour, which might affect the recom-
mendation accuracies.

Inspired by NeuMF [37], Wen et al. [129] proposed Multi-branch Multi-Layer Per-

ceptron (M-MLP) to capture the non-linearity from the multi-behaviour interactions,

§2.3 Multi-behaviour Offline Recommender Systems 45

and then made recommendations by collaborating M-MLP with a matrix factorisation
module. Similar to NeuMF [37], with both M-MLP and the matrix factorisation, this
recommendation model can capture both complex non-linear relations and shallow lin-
ear relations, respectively, for accurate recommendations. However, its fusion process
for M-MLP is not personalised for the target user and the target item, which might
affect the fusion effectiveness.

Moreover, the multi-task learning method has also been employed by Neural Multi-
Task Recommendation (NMTR) [28] to exploit multi-behaviour interactions. Specifi-
cally, NMTR first leverages multiple individual recommendation models to learn from
the interactions from interactions w.r.t. multiple behaviours, respectively. Then, cas-
caded predictions are made across these individual recommendation models, where
the prediction w.r.t. the precedent behaviour is used to help make predictions w.r.t. the
posterior behaviour. In this way, NMTR can capture the dependencies among different
behaviour types. However, for making these cascaded predictions, the training data for
NMTR must be interactions w.r.t. behaviours with strict priority order (e.g., <view,
click, add-to-cart, purchase>). Nevertheless, the generating process of interactions
w.r.t. such ordered behaviour types is not clearly stated in this paper, and the quality
of the generated interactions might greatly affect the recommendation accuracies.

Further, Chen et al. [7] proposed a transfer-learning based approach to effectively
leverage multi-behaviour interactions. Specifically, they devised a transfer-based pre-
diction layer, where the parameters w.r.t. a behaviour type are regularised by those
of other behaviour types. Transfer-learning based techniques are promising in utilis-
ing the knowledge learnt for one behaviour type to help the recommendations w.r.t.
another behaviour type. Thus, researchers should conduct more research on transfer-

learning based multi-behaviour RSs.

Sequential recommendations
Recently, the multi-behaviour interactions have also been employed for next-item rec-

ommendations by Attentive Sequential model of Latent Intent (ASLI) [113]. Specif-

§2.3 Multi-behaviour Offline Recommender Systems 46

ically, it first employs a self-attention layer to learn the item similarities from users’
interaction histories. Then, a temporal convolutional layer is leveraged to learn the be-
haviour representation on a particular category. Finally, the above self-attention layer
and the temporal convolutional layer are fused by a fully connected layer to recom-
mend an item to a user w.r.t. a specific behaviour type. However, ASLI learns from
behaviour sequences and item sequences independently, and thus might not well model
the overall relations between behaviours and items.

Besides, Deep Intent Prediction Network (DIPN) [31] incorporates both browse-
interactive behaviours (e.g., purchases and views) and touch-interactive behaviours
(e.g., swipes and taps) to deliver more accurate session-based recommendations. Specif-
ically, it first learns the dependencies among items by bi-directional RNN layers from
sequences w.r.t. different behaviour types, respectively. Then, a hierarchical attention
layer fuses the hidden outputs of different sequences w.r.t. all behaviours. Finally, this
recommendation model is trained on the server side with multi-task learning, and is
then deployed on the client side for recommendations. DIPN is elaborately devised;
however, it can achieve the best performance only with an edge computing platform
where the RS is trained on the server side and deployed on the client side. This fea-
ture restricts its generalisation. Moreover, as this model utilises touch-interactive be-
haviours, it might not be suitable for performing recommendations when only browse-

interactive behaviours are available (e.g., online shopping with browsers on PC).

2.3.3 Multi-behaviour Offline Recommender Systems: A Summary

Targeting the data sparsity issue caused by the limited interactions w.r.t. the single
behaviour type, MbORSSs are proposed to incorporate multiple behaviour types for
improving the recommendation accuracies in offline scenarios. Based on the maximal
number of behaviours that could be incorporated, MbORSs can be categorised into two
groups: 2-behaviour ORSs that are devised for leveraging only one type of auxiliary

behaviour, and n-behaviour ORSs that could incorporate an arbitrary number of types

§2.4 Chapter Summary 47

of auxiliary behaviours.

Most 2-behaviour ORSs adopt the pair-wise strategy to distinguish the priority of
the primary behaviour and that of the auxiliary behaviour. Specifically, they commonly
first generate tuples containing the target user and two items with an accurate priority
order w.r.t. behaviour types, and then employ BPR based or ALS based approaches to
train these generated tuples.

In contrast, n-behaviour ORSs can incorporate an arbitrary number of behaviour
types, and thus are more flexible and promising. To achieve this goal, n-behaviour
ORSs employ advanced machine learning methods, such as multi-task learning, trans-
fer learning, deep learning, temporal convolutional network, and memory network.

Although efforts have been made, it is still a challenging task to accurately learn
both the shared user preferences (or item characteristics) and behaviour-specific user
preferences (or item characteristics) to further improve the recommendation accura-
cies. More importantly, the existing MbSRSs are all devised for the offline scenarios,
and thus have difficulty dealing with the widely-existing data stream of interactions

w.r.t. multiple behaviour types.

2.4 Chapter Summary

In this chapter, we review the related literature on SbORSs, SbSRSs and MbORSs.
The SbORSs are well studied and aim to deliver recommendations w.r.t. a single
behaviour type in the offline scenarios. However, they cannot either well deal with the
pervasive data stream of user-item interactions for streaming recommendations or well
leverage the multiple behaviour types to address data sparsity issue for improving the
recommendation accuracies. Later on, SbSRSs and MbORSs are proposed to well deal
with the widely-existing data stream and exploit interactions w.r.t. multiple behaviour
types, respectively.

In regard to existing SbSRSs, their main categories, characteristics, advantags and

disadvantages, are summarised as follows:

§2.4 Chapter Summary 48

» Categories and characteristics.

— Adaptation-based SbSRSs. Adaptation-based SbSRSs adapt the existing
offline RSs to streaming scenarios for streaming recommendations. How-
ever, they mainly focus on how to perform recommendations in streaming
scenarios but pay less attention to addressing the challenges of streaming

recommendations for higher recommendation accuracies.

— Stream-oriented SbSRSs. Stream-oriented SbSRSs target the challenges
of streaming recommendations to further improve the recommendation ac-
curacies in streaming scenarios. However, they are devised to deal with a

single behaviour type, and thus suffer from the data sparsity issue.

* Advantages. These SbSRSs are able to well deal with the pervasive data stream
of single-behaviour interactions by updating recommendation models in a timely
manner. Thus, they are able to make recommendations in streaming scenarios

based on users’ latest preferences.

* Disadvantages. These SbSRSs cannot well exploit the widely-existing multi-
behaviour interactions to address the data sparsity issue in the streaming scenar-

10s, and thus have difficulty delivering accurate streaming recommendations.

Besides, in regard to existing MbORSS, their main categories, characteristics, ad-

vantages and disadvantages, are summarised as follows:
» Categories and characteristics.

— 2-behaviour ORSs. 2-behaviour ORSs aim to incorporate one type of
auxiliary behaviour to assist the recommendations w.r.t. the primary be-
haviour. However, their inabilities of dealing with more types of auxiliary

behaviours restrict their generalisations and performance.

— n-behaviour ORSs. n-beahvior RSs are able to incorporate an arbitrary

number of types of auxiliary behaviours, and thus are more flexible. In

§2.4 Chapter Summary 49

addition, existing n-behaviour ORSs are all devised for delivering recom-

mendations in offline scenarios only.

* Advantages. These MbORSs are able to address the long-standing data sparsity

issue by well incorporating interactions w.r.t. auxiliary behaviours.

* Disadvantages. These MbORSs are all devised for the recommendations in the
offline scenarios, and thus cannot deal with the pervasive data stream of user-

item interactions for streaming recommendations.

Chapter 3

Double-Wing Mixture of Experts for

Streaming Recommendations

To well deal with data streams of user-item interactions for delivering accurate stream-
ing recommendations, recent years have seen an emerging trend where the newly com-
ing interaction data are leveraged to train recommendation models in a timely manner.
The RSs falling in this new trend are commonly referred to as Streaming Recom-
mender Systems (SRSs). These SRSs train recommendation models with newly com-
ing interaction data, and thus can capture the latest preferences of users embedded in
their recent interactions for delivering accurate streaming recommendations. Note that
the SRSs in this chapter all refer to the Single-behaviour SRSs, as multi-behaviour
SRSs have not been reported in the literature and are either not considered by the work
reported in this chapter.

Although various SRSs have been proposed, the two challenges introduced in Sub-
section 1.2.1 and Subsection 1.2.2, respectively, still need to be well dealt with for de-
livering accurate streaming recommendations. Specifically, these two challenges are
expressed by CH1: ‘how to address preference drift while capturing long-term user
preferences’, and CH2: ‘how to handle the heterogeneity of both users and items’,
respectively.

To address the above two challenges, this chapter proposes a novel Variational
and Reservoir-enhanced Sampling based Double-Wing Mixture of Experts framework,

called VRS-DWMOE, for improving the accuracies of streaming recommendations.

50

§3.1 Problem Statement 51

Specifically, VRS-DWMOoE contains two key components, i.e, 1) Variational and Reservoir-
enhanced Sampling (VRS), which wisely samples historical data from the reservoir
(i.e., a set of representative historical data) with an adjustable sampling size to comple-
ment newly coming data, and 2) Double-Wing Mixture of Experts (DWMOoE), which
first learns heterogeneous user preferences and item characteristics with the training
data prepared by VRS, and then utilises these learnt preferences and characteristics to
perform streaming recommendations. Specifically, DWMOoE contains two elaborately
devised Mixture of Experts (MoEs) for learning user preferences and item character-
istics, respectively. Note that MoE is an effective ensemble learning model that wisely
fuses the results of multiple experts (i.e., atomic models specialising in different types
of input) for better learning performance [79]. Moreover, the multiple experts in each
of the aforementioned two MoEs learn the preferences (or characteristics) of different
types of users (or items) where each expert specialises in one underlying type.

The remainder of this chapter is organized as follows. We first formulate our re-
search problem of streaming recommendations. Then, we propose our VRS-DWMoE
framework. After that, we present the results of the experiments that are conducted to

verify the effectiveness of VRS-DWMOoE. Finally, we summarise this chapter.

3.1 Problem Statement

In this section, we formulate the research problem of streaming recommendations with
implicit interactions, such as the users’ purchase records of items. Given the user set
U and item set V, we use vy, , to denote an interaction between user u € U and
item v € V. Then, the list of currently received interactions is denoted by Y =
{y}il’vl, yzgﬂﬂ, e yi’“,v’“ ... }. Note that the interactions in Y are sorted based on their
coming time, for example, yﬁkyv,c indicates the k™ received interaction. In addition, as
in the real-world data stream, adjacent interactions (e.g., yﬁk,vk and yﬁﬁl ok +1) may
involve different users (e.g., user u* is different from user u**!). With the above

notations, given the target user v’ and target item v, the task of SRSs can be formulated

§3.2 Our Proposed VRS-DWMOoE Framework 52

as Uu v = P(yw.|Y); that is predicting the probability of an interaction between
the target user and target item conditionally on the currently received interactions.
Compared with conventional offline recommendations, streaming recommendations
take continuous and infinite data streams (e.g., streaming clicks) as input, thus they are

more challenging.

3.2 Our Proposed VRS-DWMOoE Framework

In this chapter, we first formulate our research problem. After that, we propose Vari-
ational and Reservoir-enhanced Sampling based Double-Wing Mixture of Experts

(VRS-DWMOE), and then introduce its two key components: VRS and DWMoE.

3.2.1 Opverall Structure

To simultaneously address preference drift while capturing long-term user preferences
and handle the heterogeneity of users and items, we propose VRS-DWMOoE, which
contains two key components: 1) Variational and Reservoir-enhanced Sampling (VRS)
and 2) Double-Wing Mixture of Experts (DWMoE). Specifically, as shown in Fig. 3.1,
VRS first complements the newly coming data with sampled historical data while
guaranteeing the proportion of newly coming data in preparation for training. Then,
with the training data prepared by VRS, DWMOoE better learns heterogeneous user
preferences and item characteristics with two elaborately devised Mixture of Experts
(MoEs), i.e., Mixture of User Experts (MoUE) and Mixture of Item Experts (MolE),
respectively. After that, the recommendations are made by learning the similarities

between the learnt user preferences and item characteristics.

3.2.2 Variational and Reservoir-enhanced Sampling

The continuous and infinite data stream makes it impractical for SRSs to train recom-

mendation models with all the interaction data. Therefore, we propose VRS to prepare

§3.2 Our Proposed VRS-DWMOoE Framework

53

. it e .
! Double-Wing c{—(y y) [Interaction | :
an

| .]
- Mixture of Experts O Training !
AR YT T T T T T N AT T T TR A X PN Y N
I”Mixture of User Experts | Mixture of Item Experts i
I' “User Preference Fusion r o) [|/ < Item Characteristic Fusion® |i
| ;
| L I
i £ LT h
il : N | 4B &z “h
| User Gatlng{]_\\etwork o @ @ E ® ® /83 Item Gg}lgg Network |!
| P — | 21 g © i
|I | Softmax RIS NS] 5 JN | Softmax | i
1 HE 5 2 & 2 Il ¢

| . = . i of aof -.. % = 1 ! 7
i [Concatenation Layer | | g é = | | =g ;.’_ :%’q [Concatenation Layer | i
| %)\J D % % g % | I} & é =J = 5 A 1
|| { Fully Connected IEmbeddingM ‘ I 1 P [Embedding} Fully Connected}]
(L Layer Layer | X R A, [RS A 2 Layer Layer j|
: — :
" [}
NP S D <. A SN ”
T T T T T T T S Ke. ba /" UExpert or ~ IExpert

min (|S eu| 8, bs—|S

Variational and
Reservoir-enhanced S
Sampling Reservoir:

Element-wise

Q@ multiplication

% Element-wise
" sum
‘/1) User embedding

\/2/ Item embedding

U Userset I Item set ‘ nL)w‘

new data

Ratio of the sampling size
of historical data against
that of new data, § >0

T

(| ‘
Sampled Historical Data

(i) | uEU, i€ I}

N)
(3) Item interference

\4\) User interference
Size of sampled
Number of fully

connected layers
for experts, x >1

N
) N 1 : Fully Connected Layer x
New Data ;!
I d : Fully Connected Layer 1
New Data: (W
{i)|u€U €T} ;| Embedding Layer
s Cosine 7~ ReLU
‘\(D similarity C)/‘ activation function
(‘5 Gating weights (7)) User
~=" for user experts ~— preferences
() Gating weights (8\ Item
~—/ for item experts 2/ characteristics

Batch size for training 7. Number of experts
S _ Predicted
Symbol indicating if ¥ probability of an

an interaction exists p . .
interaction occuring

Figure 3.1: The structure of the VRS-DWMOoE Framework

the training data by wisely complementing newly coming data with sampled historical

data while guaranteeing the proportion of newly coming data.

Specifically, following [63, 127], we first maintain a reservoir to store a set of rep-

resentative historical data. As newer data commonly reflect more recent user prefer-

ences, we put newly coming data into the reservoir and discard the oldest data when the

reservoir runs out of space. With this reservoir and newly coming data, VRS generates

the training data with two different strategies in two typical scenarios for streaming

recommendations: 1) the underload scenarios where the data receiving speed is lower

§3.2 Our Proposed VRS-DWMOoE Framework 54

than the data processing speed, and 2) the overload scenarios where the data receiv-
ing speed is higher than the data processing speed. Note that the contribution of VRS
mainly lies in underload scenarios, which are more common in the real world [51].
More details are presented below.

Underload Scenario. In underload scenarios, VRS generates training data by first
sampling representative historical data Sy,;s from the reservoir with a variational sam-
pling size, and then merging Sy, with all the newly coming data N. Specifically, the

sampling size |Sy;s| of the reservoir can be calculated as below,
IShis| = min(Spew * 9,08 — Spew)- (3.1

where bs denotes the training batch size and (0 > 0) is a predetermined parameter
measuring the ratio of the sampling size |Sy;;| of the reservoir against the size s,
of newly coming data. In this way, the sampling size of the reservoir can be adjusted
by 0 based on the characteristics of data streams. For example, ¢ should be set to
a small value (e.g., 0.1) for data stream where user preferences frequently change to
focus more on newly coming data. Then, S;;s is sampled from the reservoir based
on their coming time for assigning higher sampling probabilities to more recently re-
ceived interactions. Specifically, taking the sampling probability p, of the k" received

interaction as an example,

Pk = Pk—1 *)\res; (32)

where A,.cs (Ares > 1) denotes the decay ratio for assigning higher sampling probabil-
ities to newer data. Assuming that the sampling probability of the earliest received in-

teraction in the reservoir is p;, we can calculate p;, by iteratively performing Eq. (3.2),

Pr = p1 * (/\Tes)k_l- 3.3)

Then, with Eq. (3.3), we can obtain the normalised sampling probabilities, taking the

probability of the k*" received interaction as an example,

§3.2 Our Proposed VRS-DWMOoE Framework 55

/\res kol 1 -)\res
P(k’)\resv Sres) = D = () - ()7 (34)

Ef:f pi 1— ()‘TeS)STeS

where s,..; denotes the size of the reservoir.

With the normalised sampling probabilities and the sampling size calculated in Eq. (3.1),
VRS samples representative historical data Sy;; from the reservoir. Finally, the training
data T is obtained by merging S;;; with the newly coming data N.
Overload Scenario. In overload scenarios, VRS only samples S,,.,, from newly com-
ing data to form the training data for effectively capturing the latest user preferences.
The sampling probability of the newly coming data can be calculated in a similar way

to that described by Egs. (3.2) to (3.4),

Pk o (Anew)k_l * (1 -)\new)
2o pi 1= (Anew)*rev ’

P(kjp\newasnew) - (35)

where)\, and s,., denote the decay ratio and size, respectively, of newly coming
data. With this sampling probability and setting the sampling size to the batch size bs,
VRS samples S,,.,, from the newly coming data as the training data T. Note that in the
cases where the data receiving speed exactly equals to the data processing speed, VRS

utilises the entire newly coming data to form the training data T.

3.2.3 Double-Wing Mixture of Experts

With the training data T prepared by VRS, DWMOE first utilises MoUE and MolE
to learn user preferences and item characteristics, respectively, for dealing with their
intrinsic differences [122]. Moreover, each expert in MoUE (or MolE) specialises in
one underlying type of users (or items) to more effectively learn heterogeneous user
preferences (or item characteristics). Then, DWMoE makes recommendations with
the learnt user preferences and item characteristics.

Specifically, MoUE and MolE share the same structure with different parameters.

This structure has three key parts: 1) multiple experts, 2) a gating network and 3) a

§3.2 Our Proposed VRS-DWMOoE Framework 56

fusion module. Taking MoUE as an example, multiple experts first learn user pref-
erences in parallel. Then, the gating network calculates the gate weights to measure
the expertise of each expert regarding each input user. After that, the fusion module
calculates the unified preferences for each user by fusing the preferences learnt by
all experts with the gating weights. Note that we set the numbers (n.) of experts in
MOoUE and MolE the same in this work, and will study the effect of different numbers
of experts in MoUE and MOoIE in the future work. More details are presented below.

Expert. The experts in MoUE and MolE learn the user preferences and item char-
acteristics, respectively. Taking MoUE as an example, each expert first utilises an
embedding layer to learn the user embedding p!,, where i denotes the index of the
expert. Then, the user preferences are learnt by the experts with x (z > 1) fully con-
nected layers, taking the user preferences P!, for user u learnt by the i*" expert model

as an example,

Pl =g

l g\ﬂoUE(“‘a%oUE(WMOUE MoUE(WMoUE

p'L _|_bMoUE)+bMoUE) _|_bMOUE)
u 7, ’

(3.6)
where a’, W7, and b; denote the activation function, weight matrix, and bias vector,

MoUE WM oUE "and b)1°UF denote the activation function,

respectively. For example, a;’
weight matrix and bias vector, respectively, in the z** layer for the i*" expert in MoUE.
Note that the symbols a}, W and b are used in the rest of this chapter with different
superscripts and subscripts to introduce the fully connected layers. In a similar way to
that described by Eq. (3.6), item characteristics Q/ can be learnt by the j™* expert in
MOolIE with the item embedding ¢’ as input,

Q{):CL%COIE(. CL%OIE<WMOIE %OIE<WMOIEqU+bMOIE)—|—bMOIE) --—|—bMOIE)_

(3.7
Gating Network. The gating networks in MoUE and MolE calculate the gating
weights measuring the expertise scales of each expert in learning the preferences of
input users and characteristics of input items, respectively. To achieve this goal, tak-

ing the gating network in MoUE as an example, we first employ an embedding layer

§3.2 Our Proposed VRS-DWMOoE Framework 57

MoUE

" and item interference

and a fully connected layer to calculate user embedding p
IM°UE respectively. Note that the item interference is employed to more accurately
calculate the gating weights in MoUE by considering the items interacted with the cor-
responding users. Specifically, the item interference can be calculated with the item
embedding q¥°'¥ in MolE,

MoUE __ _MoUE MoUE ,,MolE MoUE
I - Ygate (Winter qv +binter) (38)

Then, the user embedding and item interference are concatenated as follows,

¢MOUE _ pﬂioUE;IMoUE] . (3.9)

After that, ¢™°UF is fed into a softmax layer to get the gating weights g"°UF by the

following equation,
gMoUE — softma:c(Wé\g}’tUEcM"UE—|—b§§?£w). (310)

Likewise, the gating weights g"°/® for the experts in MoIE can be calculated in a
similar way to that described by Egs. (3.8) to (3.10).

Fusion Module. The user preferences (or item characteristics) learnt by multiple ex-
perts in MoUE (or MolE) are fused to the unified ones to fully utilise the expertise of
all the experts. Specifically, with the above calculated user preferences, item charac-

teristics and their corresponding gating weights, the unified user preferences P“* and

uns
v

unified item characteristics Q,"" can be calculated with the dot production, respec-
tively,

PUY = [Py;- - Pl gMovE, G.1D)
QU = [Qii- Qg .12

where n. denotes the number of experts.

Interaction Module. To make recommendations based on unified user preferences

§3.2 Our Proposed VRS-DWMOoE Framework 58

and unified item characteristics, we first utilise cosine similarity for measuring to what

degree the unified preferences match the corresponding unified characteristics,

COS_STM _puni Quni, = cosine(P" Q! P[] Q™[
u v

(3.13)
and then we obtain the predicted probability ¢, ,, of the interaction between user v and
item v by performing a nonlinear transformation of this cosine similarity,

~ ___predict predict .)] predict
Yup = Qog (Wt COS_STM cpuni qunis + b 7). (3.14)

Optimisation. To learn the parameters of our proposed DWMOoE, we train the model

total

by minimising the following loss foss**** with stochastic gradient descent,

(055" = (055 + ~(L0ss9"'*), (3.15)

where foss%¢¢

is the loss for the recommendation accuracies, foss% is used as the
regularisation term for gating weights to avoid local optimisations, and -y is the coeffi-
cient to adjust the importance of {oss9%,

Specifically, to measure the difference between the ground truth and the prediction,

we employ the cross-entropy loss as below,

fO'S'Sacc<yu,va gu,v) = _(yu,vlog(gu,v) + (1 - yu,v)log(l - gu,v))7 (316)

where v, ,, 1s the label of the interaction between user u and item v; that is, it is 1
if this interaction exists and O otherwise, and g, , denotes the predicted probability
for this interaction. Moreover, we introduce foss9%¢ to avoid the local optimisation
caused by the imbalanced utilisation of experts; for example, some experts receive
large gating weights for most interactions while others always receive small gating

weights. Specifically, we employ the standard derivations of gating weights in both

§3.3 Experiments 59

MoUE and MOolIE to form ¢0ss9%¢ as follows,

gate __ gate gate
L0559 = L0880y + L0583 101

_ 1 e MoUE _ aMoUE\2 1 e MoIE _ aMolE\2
=S (g gy [LS (g g

where gM°UF

7

(3.17)

and g'°’¥ denote the gating weight for the " expert in MoUE and the
gating weight for the j* expert in MolE, respectively, and g"°UF and gM°’¥ denote
the average of gating weights for MoUE and MolE, respectively. Through minimising
Loss9, DWMOE encourages MoUE and MolE to more effectively utilise all their ex-
perts to learn the heterogeneous user preferences and item characteristics, respectively,

and thus to increase the accuracies of streaming recommendations.

3.3 Experiments

In this section, we present the results of the extensive experiments that are conducted

to answer the following four Research Questions (RQs).

RQ1: How does our proposed VRS-DWMOoE perform when compared with the state-

of-the-art approaches?

RQ2: How does our proposed DWMOoE perform when compared with the existing

recommendation models?

RQ3: How does our proposed VRS perform when compared with the existing sam-

pling methods?

RQ4: How does the number of experts in VRS-DWMOoE affect the recommendation

accuracies?

§3.3 Experiments

60

Table 3.1: Statistics of the tunned datasets for VRS-DWMOoE

Dataset #User | #Item | #Interaction | Sparsity
MovieLens | 6,400 3,703 994,169 95.81%
Netflix 5,000 | 16,073 1,010,588 98.74%
Yelp 25,677 | 25,815 731,671 99.89%

The symbol # in this table denotes the number (#User represents the number of users).

3.3.1 Experimental Settings

Datasets. In the experiments, we employ three widely-used real-world datasets [127,
38] in the literature of streaming recommendations, including MovieLens (1M)', Net-
flix? and Yelp?, to verify the effectiveness of our proposed VRS-DWMOoE. Note that
these three datasets all contain timestamps and thus can be utilized to simulate data
stream for evaluating our proposed approach and baselines. We extract the interac-
tions of 5000 randomly selected users from the Netflix dataset for the experiments,
as processing the original Netflix dataset, which contains more than 100 million in-
teractions, is beyond our computational capacity. In addition, following the common
practice [38, 91], for each dataset, we retain the interactions from users who have more
than 10 interactions to reduce data sparsity. The statistics of the tuned datasets are sum-
marised in Table 3.1. Moreover, following [140, 121], we transform the explicit ratings
in all three datasets into the implicit ones, where it is 1 if an explicit rating exists and
0 otherwise, as this work focuses on the recommendations with implicit interactions.

Evaluation Policy. Following [38], we first sort the data in each of the three datasets
by their coming time, and then divide them into two parts: 1) a training set to simu-
late the historical data and 2) a test set to simulate the upcoming data in the streaming
scenarios. Specifically, the data in the training set are used to incrementally train rec-
ommendation models while the data in the test set are first used for the test and then
used to incrementally train the recommendation models. Then, we select the first 85%,

90% and 95% of interactions from each dataset as training sets, while the remainder

Thttps://grouplens.org/datasets/movielens/Im
Zhttps://www.kaggle.com/netflix-inc/netflix-prize-data
3https://www.yelp.com/dataset

§3.3 Experiments 61

serves as the corresponding test sets. Note that the k-fold cross validation is infeasible
in streaming scenarios, as only the latest interactions (i.e., the interactions with the
largest timestamps) can be utilised for the test to be consistent with the data coming
order. In addition, following [38], we report the results in the cases where the propor-
tion of the training set is 90% while the results in other two cases are similar to the
reported ones. Moreover, to verify the effectiveness of our proposed VRS-DWMOoE in
both underload scenarios and overload scenarios, we train the recommendation model
with a fixed number n, (n, = 256 in this chapter) of interactions each time and ad-
just the number n, of interactions received in this training period to indicate different
workload intensities. For the sake of simplicity, we use n,, and n, to simulate the data
processing speed s,, and data receiving speed s,., respectively. In this way, underload
scenarios and overload scenarios can be simulated by the cases where s, > s, and
s, < sy, respectively, via adjusting the amount of data received during the training
process in the last iteration. Note that this work is among the first attempt in the liter-
ature to evaluate streaming recommender systems in both the underload and overload
scenarios, and the evaluation policies will be improved in the future work.
Evaluation Metrics. Following the common practice [127, 38], we adopt the ranking-
based evaluation strategy. Specifically, for each interaction between a target user and
a target item, we first randomly sample 99 items that are not interacted with by the
target user as negative items, and then rank the target item among these 100 items (i.e.,
the target one plus the 99 negative ones). Finally, the recommendation accuracies are
measured by two widely-used metrics: Hit Ratio (HR) and Normalised Discounted
Cumulative Gain (NDCG) [38, 127]. To be more specific, HR@Fk judges if the target
item is among the top-k recommended items, while NDCG@F£ also considers the spe-
cific ranking position of the target item in the top-k£ recommendation list. Normally,
larger HR and NDCG indicates higher recommendation accuracies. In this Chapter,
we utilize HR@10 and NDCG @10 as the evaluation metrics.

Baselines. The following eight baselines are used for comparisons, including iBPR,

iGME, iMLP, iNeuMF, RCD, eAls, SPMF and OCFIF.

§3.3 Experiments 62

* Bayesian Personalised Ranking (BPR) [91] is a representative personalised rank-
ing method to optimise the matrix factorisation. We adapt BPR to the streaming
scenarios, named as iBPR, by training it with newly coming data continuously

via stochastic gradient descent.

* Neural Matrix Factorisation (NeuMF) [37] is an advanced matrix factorisation
model, which combines two other recommendation models: Generalized Ma-
trix Factorisation (GMF) and Multi-Layer Perceptron (MLP), to achieve higher
recommendation accuracies. We adapt NeuMF, GMF and MLP, to streaming
scenarios by training recommendation models with newly coming data continu-
ously via stochastic gradient descent. The adapted streaming versions of these
three recommendation models are named as iNeuMF, iGMF and iMLP, respec-

tively.

* Randomised block Coordinate Descent (RCD) [15] and Element-wise Alternat-
ing Least Squares (eAls) [38] are two representative approaches for optimising
the matrix factorisation models in streaming scenarios. We enhance RCD and
eAls with abilities of batch processing to increase their throughput for fair com-

parisons.

o Stream-centered Probabilistic Matrix Factorisation (SPMF) [127] is a state-
of-the-art SRS. SPMF was originally performed along with a time-consuming
sampling method and does not perform well w.r.t. our evaluation policy where
sampling needs to be frequently performed. For a fair comparison, we employ

our proposed VRS to prepare training data for SPMF.

* Online Collaborative Filtering with Implicit Feedback (OCFIF) [140] is the
only SRS reported in the literature that employs multiple models (i.e., matrix
factorisation) to avoid the limitations of a single model for higher recommenda-

tion accuracies.

In addition, we equip our proposed VRS-DWMOoE with different numbers of experts

§3.3 Experiments 63

(i.e., 2, 4, 6 and 8) for comparisons. For example, VRS-DWMOoE _8 indicates the VRS-
DWMOE that is equipped with 8 experts for both MoUE and MolE.

Parameter Setting. For a fair comparison, we initialise the baselines with parameters
reported in their papers and optimise them for our experimental settings. For our VRS-
DWMOE, we empirically set the learning rate to 0.001, the batch size bs to 256, the loss
coefficient v to 0.01, and the volume of the reservoir to 10,000 interactions. Besides,
we employ the widely-used negative sampling technique [140, 126, 137], where the
reservoir is used to check if an interaction exists, to improve the learning performance
with the negative sampling size set to four. We also adopt L, regularisation and Adam
optimiser to avoid overfitting and for the optimisation purpose, respectively. Other
parameters including J, \,.s and \,..,, are adjusted via cross validation to achieve the

best performance in different cases.

3.3.2 Performance Comparison and Analysis

Experiment 1: Comparison with Baselines (for RQ1 and RQ2)
Setting. To answer RQ1 and RQ2, we compare our proposed VRS-DWMOoE (the
number n, of experts is set to eight) with all eight baselines with a fixed data process-
ing speed s, = 256 and different data receiving speeds, where s, = 128 and s, = 512
indicate underload scenarios and overload scenarios, respectively.
Result 1 (for RQ1). Table 3.2 shows the results of our proposed approach and eight
baselines on all three datasets. In all the cases, VRS-DWMOoE_8 delivers the highest
recommendation accuracies (marked with bold font), and the improvement percent-
ages of VRS-DWMOoE_8 over the best-performing baselines (with the results marked
by underline) are introduced in the last row for each dataset, ranging from 2.0% to
37.4% with an average of 8.5% in terms of HR@ 10, and ranging from 1.9% to 42.9%
with an average of 10.4% in terms of NDCG@10.

The superiority of VRS-DWMOE can be explained in two aspects: 1) VRS ad-

“Improvement percentages over the best-performing baseline(s)

§3.3 Experiments 64

Table 3.2: Performance comparison for VRS-DWMoE

Datasets Mgtrics HR@10 NDCG@10
Data Receiving Speeds (s;) 128 256 512 128 256 512
eAls 0231 0.231 0.234 | 0.106 0.106 0.108
RCD 0.287 0297 0278 | 0.139 0.145 0.138
iBPR 0303 0303 0.279 | 0.147 0.147 0.134
SPMF 0460 0453 0440 | 0251 0.246 0.238
MovieLens Baselines i.GMF 0525 0529 0477 | 0295 0297 0.265
iMLP 0.538 0539 0488 | 0304 0303 0.272
iNeuMF 0.551 0.546 0496 | 0.311 0.307 0.275
OCFIF 0.532 0508 0467 | 0291 0.279 0.256
Ours VRS-DWMoE_8 | 0.563 0.558 0.535 | 0.317 0.313 0.299
Improvement percentages’ 220% 220% 7.90% | 1.90% 2.00% 8.70%
eAls 0395 038 0362 | 0211 0207 0.192
RCD 0.447 0436 0435 | 0226 0226 0.219
iBPR 0.685 0.686 0.627 | 0396 0.395 0.360
SPMF 0.701 0.669 0.640 | 0425 0397 0.378
Netflix Baselines i_GMF 0.747 0.748 0577 | 0482 0482 0.352
iMLP 0.787 0.782 0.624 | 0519 0.510 0.369
iNeuMF 0.801 0.798 0.711 0.531 0.529 0.430
OCFIF 0.745 0.734 0.606 | 0.457 0453 0.357
Ours VRS-DWMoE_8 | 0.821 0.814 0.790 | 0.553 0.548 0.515
Improvement percentages’ 250% 2.00% 11.1% | 410% 3.60% 19.8%
eAls 0.287 0289 0.290 | 0.167 0.167 0.169
RCD 0.454 0452 0447 | 0260 0257 0.259
iBPR 0307 0295 0.188 | 0.180 0.172 0.108
SPMF 0.197 0.192 0.184 | 0.104 0.100 0.097
Yelp Baselines iGMF 0.499 0470 039 | 0294 0276 0.228
iMLP 0.573 0574 0438 | 0.338 0.338 0.246
iNeuMF 0.566 0570 0435 | 0331 0334 0.247
OCFIF 0260 0249 0.203 | 0.135 0.129 0.107
Ours VRS-DWMOoE_8 | 0.608 0.603 0.602 | 0.354 0.358 0.353
Improvement percentages’ 6.10% 5.10% 37.4% | 470% 590% 42.9%

dresses preference drift while capturing long-term user preferences by wisely com-
plementing newly coming data with sampled historical data, and 2) DWMOoE better
learns the heterogeneous user preferences and item characteristics with two MoEs,
where each expert specialises in one underlying type of users or items.

Result 2 (for RQ2). The superiority of our DWMOE is verified by the cases where
5, = s, (1.e., s, = 256) in Table 3.2. In these cases, both our approach and baselines
utilise all the newly coming data to train recommendation models, thus their recom-
mendation accuracies only depend on their recommendation models. Therefore, the
superiority of DWMOE is confirmed by the highest recommendation accuracies deliv-
ered by VRS-DWMOE in these cases. The reason for this superiority is that DWMOoE
not only learns heterogeneous user preferences and item characteristics with two ded-

icated MoEs, respectively, but also allows each of their experts to specialise in one

§3.3 Experiments 65

Bsw-DWMoE_8 [IRR-DWMoE 8 | INDO-DWMoE_8 BllVRS-DWMOoE_8
0.8 0.54
075 S 05
b ® 0.46
g 08 3 0.34
T 0.55 Qo
05 = 03
0.26

MovieLens Netflix Yelp MovieLens Netflix Yelp
Datasets Datasets

Figure 3.2: Performance comparison for VRS

underlying type of users or items.

Experiment 2: Performance of VRS (for RQ3)

Setting. To answer RQ3, we replace our proposed VRS with existing sampling meth-
ods, including Newly coming Data Only (NDO) [140], Reservoir-enhanced Random
sampling (RR) [16] and Sliding Window (SW) [102], for comparisons. In this exper-
iment, we report the results in the underload scenarios only to save space while the
results in the overload scenarios are similar to the reported ones.

Result 3 (for RQ3). As Fig. 3.2 illustrates, our proposed VRS outperforms all the
other sampling methods. The improvements of VRS over the best-performing base-
line — NDO, range from 1.2% (on Netflix) to 2.0% (on Yelp) with an average of
1.9% in terms of HR@ 10, and range from 3.2% (on Netflix) to 4.3% (on Yelp) with
an average of 3.4% in terms of NCDG@10. The effectiveness of VRS comes from
wisely complementing newly coming data with sampled historical data while guaran-
teeing the proportion of newly coming data, and thus addressing preference drift while
capturing long-term user preferences.

Experiment 3: Effect of Number of Experts (for RQ4)

Setting. To answer RQ4, we compare the performance of VRS-DWMOoE when equipped
with different numbers (i.e., 2, 4, 6 and 8) of experts. In this experiment, we report the
results in the overload scenarios only to save space while the results in the underload

are similar to the reported ones.

§3.4 Chapter Summary 66

> Netflix - Yelp -©-MovieLens

078l b % e I —
o 0.75 = 0.48
= 0.61 ! Qo6 —
® 0.58 B/B/B(/[O 0.34 /B/E
o & 0.325
T 055 Z 03
052 ——O— 9 oger— O
2 4 6 8 2 4 6 8
Number of Experts Number of Experts

Figure 3.3: Effect of the number (n.) of experts for VRS-DWMoE

Result 4 (for RQ4). As Fig. 3.3 illustrates, our proposed VRS-DWMOoE delivers
higher recommendation accuracies when equipped with more experts. The improve-
ments of VRS-DWMOoE equipped with eight experts over that equipped with two ex-
perts range from 2.7% (on Netflix) to 6.5% (on Yelp) with an average of 4.4% in terms
of HR@10, and range from 4.0% (on Netflix) to 8.4% (on Yelp) with an average of
6.3% in terms of NCDG@10. The reason for the superiority of more experts is that
more experts better complement one another with their expertise to more effectively
learn the user preferences and item characteristics. Specifically, each expert model is
specified in learning the preferences of one underlying type of users or the character-
istics of one underlying type of items. Therefore, more experts improve the learning
processes as each of them can focus more on learning the preferences of fewer users
or the characteristics of fewer items, and thus contribute to increasing the recommen-

dation accuracies.

3.4 Chapter Summary

In this chapter, we have proposed a Variational and Reservoir-enhanced Sampling
based Double-Wing Mixture of Experts framework (VRS-DWMOoE) for delivering
accurate streaming recommendations. We first propose VRS to wisely complement

newly coming data with sampled historical data to address preference drift while cap-

§3.4 Chapter Summary 67

turing long-term user preferences. After that, with these sampled data, DWMOoE learns
heterogeneous user preferences and item characteristics with two MoEs: MoUE and
MolE, respectively, and then makes recommendations with learnt preferences and
characteristics. The superiority of VRS-DWMOoE has been verified by extensive ex-

periments.

Chapter 4

Stratified and Time-aware Sampling
based Adaptive Ensemble Learning

for Streaming Recommendations

Various SRSs! have been proposed to deliver recommendations w.r.t. data streams of
user-item interactions. These SRSs commonly assume that their data processing speed
equals the data receiving speed from the applications. However, in practice, the data
receiving speed varies over time and might not equal the data processing speed. This
leads to a new challenge that has been introduced in Subsection 1.2.3 and expressed by
CH3: ‘how to well deal with the underload scenarios where the data receiving speed
is lower than the data processing speed, and the overload scenarios where the data
receiving speed is higher than the data processing speed’.

Targeting CH3 mentioned above and CHI1 introduced in Subsection 1.2.1, this
chapter proposes a novel Stratified and Time-aware Sampling based Adaptive Ensem-
ble Learning framework, called STS-AEL, for higher accuracies of streaming recom-
mendations. STS-AEL contains two main components: 1) Stratified and Time-aware
Sampling (STS) and 2) Adaptive Ensemble Learning (AEL). Specifically, STS sam-
ples training data from both newly coming data and historical data both by assigning

higher sampling probabilities to newer data in the sample space. In addition, the sam-

'The SRSs in this chapter all refer to the Single-behaviour SRSs as multi-behaviour SRSs have not
been reported in the literature and are either not considered in the work reported in this chapter.

68

§4.1 Problem Statement 69

ple sizes of the newly coming data and reservoir are both determined based on the
characteristics and receiving speed of the streaming data. As for AEL, it first trains
multiple individual models in parallel with the sampled data and then fuses the results
of these trained models with a novel sequential adaptive mechanism. Note that AEL
is specifically devised for the streaming scenarios, where training processes and test
processes are iteratively conducted over each data stream. To be more specific, AEL
dynamically calculates the fusion weights with a sequential adaptive mechanism based
on the test accuracy achieved by each individual model in the last iteration to conduct
more effective fusions in the current iteration.

Although the target problem of this chapter is similar to the one of Chapter 3, the
works in these two chapters aim to address different challenges. Specifically, the work
in Chapter 3 focuses more on effectively learning the heterogeneous user preferences
and item characteristics by mixture-of-expert models, especially in the underload sce-
narios; while the work in this chapter focuses more on effectively dealing with the
overload scenarios concurrently with multiple individual recommendation models via
an ensemble learning method.

The remainder of this chapter is organized as follows. We first formulate our re-
search problem of streaming recommendations. Then, we introduce our proposed
STS-AEL framework and its two components (i.e., STS and AEL). After that, we
present the results of the experiments that are conducted to verify the effectiveness of

STS-AEL. Finally, we summarise this chapter.

4.1 Problem Statement

In this chapter, we focus on streaming recommendations with implicit user-item inter-
actions, e.g., users’ clicks on items. As the problem studied in this chapter is similar to
the one in Chapter 3, we briefly introduce this problem in this section, and readers can

refer to Section 3.1 for more details. Specifically, with the interaction set Y, user set U

2
u27v2’ ..

and item set V, let ¥ = {y}1 ..,y -, Y% ks - - - } be the list of currently received

§4.2 Our Proposed STS-AEL Framework 70

Algorithm 1: STS-AEL Framework
Input : New Data N, Reservoir R, Set of Individual Models IM
Output: Recommendations

1 if N is for training then

/* Stratified and Time-aware Sampling */

2 Sample [IM] sets of training data from N and R by Egs. (4.1) to (4.4)

/* Concurrent Training */

3 do in parallel for each model im in IM

4 Update im with sampled training data by optimising the loss
in Eq. (4.12)

5 else

/* Sequential Adaptive Fusing */
6 do in parallel for each model im in IM
7 L Get the prediction results of im, taking NeuMF as an example,
by Egs. (4.5) to (4.11)

8 Get the fusion weights fw for the models in IM by Egs. (4.13) to (4.18)

9 Get the final predictions $/7% by fusing the prediction results by Eq. (4.19)
10 Store the prediction accuracies
1 | returny/me

interactions, the task of the SRS is to predict the probability of a future interaction

between the given user v’ and item v’ based on the currently received interactions),

ie., Q = P(yu/7vx|y).

4.2 Our Proposed STS-AEL Framework

In this section, we first propose a novel Stratified and Time-aware Sampling based
Adaptive Ensemble Learning framework, called STS-AEL, and then introduce its two
key components: Stratified and Time-aware Sampling (STS) and Adaptive Ensemble
Learning (AEL).

4.2.1 Overall Structure

To perform accurate streaming recommendations, we propose Stratified and Time-

aware Sampling based Adaptive Ensemble Learning framework, called STS-AEL. As

§4.2 Our Proposed STS-AEL Framework

71

| imy im, im,, |

CZE’ ;'/Concurrent Training .) :
(Yo Yo Yoo
; }\ tralnlng y training y training
' /Tndividual Recommendation Models | Vi
N 1+ m, m, A

. o . - T /2
(Stratified and Time-aware Sampling |
| g || lia g || l-a a 1§ La |
I (/ 77777 S g] \l Sgg \} 000 |
| T T T T .
| {Time-aware New Data | Samlee-aMeservmr Sa :
I i SS ,lww SS ?zew e SS pr i E Ss his Ss his . his '
| \A/ i i\ % /
L new data N | -, reservoir R |
._\\:"_"-:"_"':_:':':"_'":"_'"; — — ‘_""_"':"_""_"':"_""_"':"_"“_“'y

imy: the " recommendation model acc: accuracy o: number of individual models

Px : set of prediction accuracies of im; g: size of Px SS*: set of sampled data for imy

SSk,., : set of sampled new data for imy SS#. : set of sampled historical data for imy
® multiplication E’\ sum /> fusion A fusion weight
operator operator \ﬁy/ weight 7 calculator

Figure 4.1: The structure of the STS-AEL Framework

Fig. 4.1 shows, the proposed STS-AEL mainly contains two components, i.e., STS

and AEL, which are introduced in detail in Section 3.3 and Section 3.4, respectively.

§4.2 Our Proposed STS-AEL Framework 72

Specifically, STS first samples representative data from both newly coming data and
the reservoir. After that, with the sampled data, AEL efficiently performs the concur-
rent training process for all individual recommendation models, and then effectively
fuses the results of all these models with a sequential adaptive fusion method to obtain
the final recommendation results.

To better introduce the workflow of STS-AEL, we have presented its high-level
procedure in Algorithm 1. Specifically, as Algorithm 1 illustrates, the training data are
first prepared by STS (line 2), with which the multiple individual models are trained
in parallel (lines 3 and 4). Then, when conducting the predictions, the trained in-
dividual models generate prediction results in parallel (lines 6 and 7). After that,
these prediction results from multiple individual models are fused into the final one
with the sequential adaptive fusion method, which elaborately calculates the fusion
weights based on the recommendation accuracies of the last batch of received interac-
tions (lines 8 and 9). Finally, the prediction accuracies are stored for calculating the
fusion weights regarding the next batch of received interactions (line 10). More details

about STS-AEL are presented in the following.

4.2.2 Stratified and Time-aware Sampling

Training the recommendation model with the entire dataset is impractical for SRSs,
as streaming data is continuous and infinite. Therefore, we propose STS to sample
representative data to reduce the training workload effectively.

To capture both short-term and long-term user preferences, STS elaborately incor-
porates both newly coming data and historical data while guaranteeing the proportion
of newly coming data. Specifically, STS contains five key steps: 1) maintain a reservoir
containing representative historical data, which is a widely-used technology [63, 127]
in the streaming processing area; 2) calculate the sample sizes of both this reservoir
and newly coming data; 3) calculate the probabilities to sample user-item interactions

from both the reservoir and newly coming data; 4) obtain sample sets SSy;s and SS,,..,

§4.2 Our Proposed STS-AEL Framework 73

bs
ss 0@ 0@
bs *(I-) j& bs * o

) O ss.
1r 17
discarded data (reservoir R ()new-
8l o
|

I |
t 15 ;¢

bs: the number of interactions in a training batch
«: the proportion of new data in the training batch
SS,.e: set of sampled new data SSyis: set of sampled historical data

Figure 4.2: Stratified and Time-aware Sampling (STS) approach

from the reservoir R and newly coming data N, respectively, with the sampling sizes
and sampling probabilities calculated in the preceded steps; and 5) merge SS;;s and
SS,.ew to form the final sample set SS as the input of the subsequent concurrent train-
ing process.

To better illustrate our proposed STS approach, we present its sample process
in Fig. 4.2, where the darker color indicates the newer data (i.e., the data received more
recently). As shown in Fig. 4.2, the whole data can be partitioned into three parts: the
newly coming data, reservoir, and discarded data, based on their coming time. During
reservoir maintenance, STS incorporates newly coming data and discards the oldest
data, as newer data contains more timely user preferences towards items.

To guarantee the proportion of the sampled newly coming data in the entire training
data, STS adopts a stratified sampling strategy and utilises parameter « to adjust the
proportion of the sampled newly coming data. With this proportion o and the training
batch size bs, STS first calculates the sample size of newly coming data: |SS,c..| =
bsxa and the sample size of the historical data from the reservoir: |SSy;s| = bsx(1—a).
And then, SS,,.,, and SS;,;; are sampled from newly coming data and reservoir, respec-
tively, both in a time-aware manner. Specifically, to assign newer data in the sample

space higher sampling probabilities, we employ decay ratios A\,e, (Anew > 1) and A5

§4.2 Our Proposed STS-AEL Framework 74

(Ares = 1) for the newly coming data N and the reservoir R, respectively. Next, we
present the sampling process for SS,,.,, in detail, while the sampling process for SSy,;
is similar. Given the sampling probability p;_; of the (k — 1) user-item interaction,

the sampling probability p; of the k" user-item interaction can be calculated as below,

Pr = Pg—1 * /\new' (41)

In this way, we can adjust the ratio (i.e., A, for new interactions and \,.s for in-
teractions in the reservoir) of the sampling probability of the k" received interaction
against that of the (k — 1) received interaction, and thus adjust the emphasis of our
approach on newer interactions with more flexibilities. After that, by iteratively per-
forming Eq. (4.1) and assuming the sampling probability of the earliest user-item in-

teraction is p;, we can get py, as follows,

k—1
"

Pk = D1 * 5\new * >\new Koewo Xk)\neuj =p1 ¥ (Anew>k_l- (42)

Based on Eq. (4.2), with the size |N| of newly coming data, we can infer the nor-
malised sampling probability of the k' user-item interaction by the following equa-

tion,

Pk _ Afz;ul; * (1 -)‘new)
2‘21;”1 Di 11—)\‘rgzlu '

Then, with P(k|\,ew, |N|), STS samples SS,,.,, from the newly coming data. Note

P(k|Anew, INJ) = (4.3)

that the sampling process is with replacement among the individual models, which
means that one user-item interaction can be possibly sampled by multiple individual
models. Using the similar method, STS samples SSy;; from the reservoir. Then, the
final sampled training data set SS can be obtained by merging SS,,.,, and SSy;, as
follows,

SS =SS, U SShis. 4.4)

The aforementioned parameters o, A, and A,..; provide STS with flexibilities

§4.2 Our Proposed STS-AEL Framework 75

to effectively handle data streams with various characteristics and receiving speeds.
For example, in the scenarios where the preference drift happens frequently, we can
increase the values of a, A, and \,.s to increase the proportion of sampled newly
coming data and the sampling probabilities of newer data in the sample space. In this
way, we can emphasize more on the newly coming data, and thus more accurately
capture the short-term user preferences for better handling the preference drift. Fur-
thermore, STS has a strong generalisation capability and can be easily derived to the
existing sampling approaches. For example, STS can be derived to the sliding window
based sampling [143] by setting « to % and setting both \,.,, and \,.s to large val-
ues, e.g., 1.5, and it has a similar effect to random sampling when randomly selecting
a from [0, 1] and setting both \,,.,, and A, to 1.

With the representative data sampled by STS from both newly coming data and
reservoir, the individual recommendation models can be trained by AEL, which will

be introduced in the following subsection.

Time Cost Analysis. The time cost of STS is acceptable, as the time complexities

of Egs. (4.1) to (4.4) are O(bs) for sampling a training batch of user-item interactions.

4.2.3 Adaptive Ensemble Learning

With the data sampled by STS, our proposed AEL first concurrently trains multiple
individual models, and then fuses the results of these trained models via an effec-
tive sequential adaptive fusion method to obtain the final recommendation results with

higher accuracies. More details about AEL are presented below.

Concurrent Training. AEL trains multiple individual recommendation models con-
currently for higher computational efficiency. This concurrent training process is pos-
sible, as the individual models are independent from one another during the training

process. Moreover, this feature of concurrency contributes to more effectively han-

§4.2 Our Proposed STS-AEL Framework 76

dling the streaming data, especially when confronting the excessive amount of data in
overload scenarios. Furthermore, AEL performs negative sampling, a technique that
has been widely used in the literature [76, 38], to overcome the natural absence of neg-
ative feedback in recommendations with implicit user-item interactions. In addition,
AEL utilises the aforementioned reservoir to check if a sampled interaction exists for
guaranteeing the effectiveness of negative sampling.

For individual recommendation models, AEL can employ existing monolithic SRSs
directly or adapt offline RSs to streaming scenarios by incrementally updating recom-
mendation models with an online update mechanism; for example, training recom-
mendation models with stochastic gradient descent [1]. In this work, AEL delivers the
best performance by adapting Neural Matrix Factorisation (NeuMF) proposed in [37]
to the streaming scenarios. Specifically, NeuMF is a neural network based RS, which
combines other two basic RSs, i.e., Generalized Matrix Factorisation (GMF) and Mul-
tiple Layer Perceptron (MLP), to achieve more accurate recommendations. As our
proposed STS-AEL achieves high recommendation accuracies when ensembling these
three monolithic models, i.e., GMF, MLP and NeuMF, we briefly introduce them in
the following.

As its name indicates, GMF is a generalised matrix factorisation model that en-
hances the original matrix factorisation model with non-linear transformation to achieve

stronger modelling capabilities. Specifically, GMF improves matrix factorisation with

a nonlinear activation function aS**" as follows,
GMF _ _GMF , ~GMF
2 ML Ha (4.5)
~GMF _ GMF (yT _GMF
Yup = Qout (WGMng + bGMF)u (46)

where p, and q, represent the embedding of user u and the embedding of item v,
respectively, ® denotes the element-wise multiplication, Wq /- denotes the weight
matrix, bey e denotes the bias vector, and 75" indicates the predicted probability

for an interaction between user v and item v. In such a way, through enhancing the

§4.2 Our Proposed STS-AEL Framework 77

conventional matrix factorisation with nonlinearity, GMF can achieve stronger fitting
ability, and thus make more accurate predictions.

Different from GMF that learns user preferences from the interactions based on
a fixed dot product between the user embedding and the item embedding, MLP aims
to improve modelling flexibilities with a multiple-layer-perception structure, and thus
achieve higher recommendation accuracies. Specifically, MLP first concatenates the

user embedding and item embedding as follows,
GULP — [pMLP. qMLP] 7 4.7

and then feeds the concatenated embedding to a L-layer perceptron for training with

interactions between users and items with the following equations,

TP =™ (Wig™ +by), (4.8)
WEP = @)™ (W™ + by,), (4.9)
gttt = ag " (W™ + by), (4.10)

where Wy, b, and a; denote the weight matrix, bias vector and activation function
for the k" (1 < k < L) layer, respectively. MLP obtains much flexibility from
the concatenated embedding and nonlinear perceptrons, and thus can capture the user
preferences more effectively.

To further improve recommendation accuracies, NeuMF fuses these two recom-
mendation models (i.e, GMF and MLP) for complementing each other to better learn
the user preferences towards items. Specifically, NeuMF first concatenates the features

learned by GMF and MLP, and then transforms the concatenated feature by a nonlinear

§4.2 Our Proposed STS-AEL Framework 78

NeuMF

function a,,;

as below,
gi\,TSUMF = a(])\;iu]\/[F (W17\;euMF [¢GMF; ¢1[V/I£[1)} + bNeuMF): (4 1 1)

where Wy, and bye,nsr denote the weight matrix and the bias vector, respec-
tively. Through such a process, NeuMF is expected to combine the advantages of both
GMF and MLP, and thus delivers more accurate recommendations.

For the training process, following the work in [37, 32, 126], we employ the binary

cross-entropy loss as the loss function,

€053<u,v> = _(y<u,v>10gg<u,v> + (1 - y<u7v>)10g(1 - g<u,v>))7 (412)

where v, ,, indicates if an interaction between user v and item v exists, and ¢, ,, is the
predicted probability for this interaction. Specifically, this loss function encourages
larger 7, if the interaction between user u and item v exists (i.e., y = 1), and en-
courages smaller ¥, ,, otherwise. With this binary cross-entropy loss function defined
in Eq. (4.12), the individual recommendation models can be trained via stochastic gra-

dient descent.

Sequential Adaptive Fusing. The proposed sequential adaptive fusion approach im-
proves fusion performance by assigning elaborately calculated weights to multiple
individual models in the streaming scenarios, where training processes and test pro-
cesses are iteratively conducted with data streams. Specifically, AEL contains four
key steps: 1) calculate and store the prediction accuracy for each interaction and the
corresponding user-item pair (i.e., the user and item related to this interaction) for each
individual model in the current iteration, 2) with the prediction accuracies and the cor-
responding user-item pairs stored in the last iteration, estimate the confidence of each
individual model to predict the interaction for the target user-item pair, 3) based on

the calculated confidence, use an AdaBoost-like method [102, 118] to calculate the

§4.2 Our Proposed STS-AEL Framework 79

fusion weights for all the individual models, and 4) fuse the predictions made by these
models with the fusion weights to obtain the ensembled prediction. More details are
presented below.

AEL maintains a set P containing tuples of prediction accuracies and the corre-
sponding user-item pairs in the last iteration for each individual model, taking the k*"

individual model as an example,
ko ko k koo ko k ko ko k
Py = {{acc,ur",v1"), -, (accy,u;", vi%), -+, {aceg, ug™, vg") }, (4.13)

where accﬁ? (1 < j < g) represents the accuracy of the k" individual model regarding

user-item pair (ué‘C , vf> and g is the size of P;. To predict the interaction between

user v and item v by the k%" individual model, AEL first calculates the similarity (we
employ cosine similarity in this work to achieve the best performance) between the
target user-item pair (u, v) and each of the user-item pairs (v, v') in Py based on their
embeddings,

([ps: as))” - [P qv]

Lk
COS_SIMY,, 1\ (0 vy = , (4.14)
N [Nl

where [p,; q,] indicates the concatenation of embeddings p, and q,, and || * ||o rep-
resents the L, norm. Then, based on these similarities, AEL creates subset S¥ C Py,
(taking the k" individual model as an example) for each individual model by extract-
ing the top e (a predetermined parameter representing the size of S*) tuples that have
the most similar user-item pairs to the target (u, v) from Pj. Then, we can estimate the
confidence of each model for the prediction of the interaction for (u, v). Specifically,
with Sy, AEL calculates the confidence cﬁ}v of the £ individual model to predict the

interaction for the target (u, v) as follows,

1
k= S > - (4.15)

k k k k
<pu/7qi/vaulyi/>esu,v

For the sake of simplicity, we use c,,, to represent the vector containing the confidence

§4.2 Our Proposed STS-AEL Framework 80

of all the individual models, i.e.,

Cunw = [Ch oy, 1T, (4.16)

u,v? AT

where o is the number of individual models. With this estimated confidence c,, ,,, the
fusion weights for the prediction of the interaction between user v and item v can be

calculated and normalised with an AdaBoost-like [12] method as below,

fw = wv 4.17)
' 1—cun

f fwi, 4.18

e = Tt (19

where || * ||; represents the L; norm and fw, , represents the fusion weights of the
individual models for (u,v). As shown in Egs. (4.17) and (4.18), AEL assigns higher
fusion weights to the models those with more confidence (i.e., larger c,,), for better
fusion effectiveness. Finally, AEL fuses the predictions § from the multiple individual

recommendation models with fw,, ,, to get the final prediction as follows,

ggjfga’ = fwivyu,v. (4.19)

Time Cost Analysis. The time cost of AEL mainly contains two parts: 1) the time cost
of the concurrent training process and 2) the time cost of the sequential adaptive fusion
method. As multiple individual models are trained in parallel in the concurrent training
process, the time complexity for the concurrent training is roughly equal to that of
the corresponding monolithic recommendation model. As for the sequential adaptive
fusion, the prediction processes of the individual models can also be parallel. Thus,
compared with the monolithic recommendation models, the extra time cost introduced
by AEL mainly comes from the calculation of fusion weights, which is described by

Egs. (4.14) to (4.18). The time complexities of Egs. (4.14) to (4.18) can be easily

§4.3 Experiments 81

calculated; they are O(|pu| * |qv| * [Sk|), O(|Sk|), O(1), O(0) and O(o0), respectively.
Obviously, the extra time cost mainly depends on Eq. (4.14), which is O(|py| * |qyv| *
|Sk|), since it is the highest one. This time complexity is acceptable for the following
two reasons: 1) it remains constant once the the sizes of latent factors |p,| and |qy|)
and the size of Si (i.e., a set of the interactions and corresponding recommendation
accuracies from the £*" individual model), are determined, and 2) it is not affected
by the number of users or the number of items. Although AEL has a higher time
complexity than the classic Bagging [2] based ensemble learning, which commonly
averages the results of multiple individual models for the fusion purpose with a time
complexity of O(1), our proposed AEL greatly improves the fusion performance by
fusing the results of multiple individual models with elaborately calculated weights.
As for the Boosting [27] based ensemble learning methods, they typically train the
individual models one by one, and thus need much more training time compared with

our proposed AEL that trains the individual models in parallel.

4.3 Experiments

In this section, we present the results of the extensive experiments that are conducted

to answer the following four Research Questions (RQs).

RQ1: How does our proposed STS-AEL perform when compared with the state-of-

the-art approaches?

RQ2: How does the number of individual models ensembled by STS-AEL affect the

recommendation accuracies?

RQ3: How does our proposed STS perform when compared with the existing sam-

pling methods?

RQ4: How does our proposed AEL perform when compared with the existing ensem-

ble methods?

§4.3 Experiments 82

4.3.1 Experimental Settings

Before presenting the results and analysis of the experiments, we first introduce the
experimental settings, including the datasets, evaluation policy, evaluation metrics and
comparison approaches, for better readability.

Datasets. In the experiments, we employ three real-world datasets, including Movie-
Lens (1M)?, Netflix* and Yelp?, all of which are widely used in the literature [127, 38].
Note that these three datasets all contain timestamps and thus can be utilized to simu-
late data stream for evaluating our proposed approach and baselines. Since the original
Netflix dataset contains over 100 million interactions, which is beyond our computa-
tion capacity, we extract the interactions of 5000 randomly selected users for the ex-
periments. In addition, we follow the common practice [38, 91] to retain the users who
have more than ten interactions on all three datasets to reduce the data sparsity. The
statistics of the tuned datasets are summarised in Table 3.1. Since this work focuses
on the recommendations with implicit user-item interactions, following the common
practice [140, 121, 38], we transform the explicit data (i.e., users’ ratings on items) in
all three datasets into the implicit ones, where it is 1 if an explicit interaction exists
and O otherwise.

Evaluation Policy. Similar to [38, 127], we first sort the data by their coming time,
and then divide them into a training set (where the data are used for incrementally
training the recommendation models) and a test set (where the data are first used for
testing and then used for incrementally training the recommendation models) to sim-
ulate the historical data and upcoming data, respectively, in the streaming scenarios.
After that, we select the first 85%, 90% and 95% of interactions from each dataset as
training sets, while the remainder serves as the corresponding test sets. Note that the
k-fold cross validation is infeasible in streaming scenarios, as only the latest interac-

tions (i.e., the interactions with the largest timestamps) can be utilised for the test to

Zhttps://grouplens.org/datasets/movielens/1m
3https://www.kaggle.com/netflix-inc/netflix-prize-data
“https://www.yelp.com/dataset

§4.3 Experiments 83

be consistent with the data coming order. In addition, following [38], we report the
results in the cases where the proportion of the training set is 90% while the results in
other two cases are similar to the reported ones. Moreover, to observe the performance
of our proposed STS-AEL and that of the baselines w.r.t. different workload intensi-
ties, we train all the models with a fixed number n,, (we set n, = 256 in this chapter)
of user-item interactions in each iteration and adjust the number n,. of user-item inter-
actions received in this training period to simulate the cases with different workload
intensities. For the sake of simplicity, we use n,, and n, to simulate the data processing
speed sp, and data receiving speed sp,, respectively, where sp, > sp, and sp, < sp,
indicate the underload scenarios and overload scenarios, respectively, via adjusting the
amount of data received during the training process in the last iteration. Note that this
work is among the first attempt in the literature to evaluate streaming recommender
systems in both the underload and overload scenarios, and the evaluation policies will
be improved in the future work.

Evaluation Metrics. We adopt the ranking-based evaluation strategy, which is widely
used for the evaluation of streaming recommendations with implicit data [127, 38].
Specifically, for each given interaction between a target user and a target item, we
randomly sample 99 items that are not interacted with this user as negative items, and
rank the target item among the 100 items (i.e., the target one plus the 99 negative ones).
Then, the recommendation accuracies are evaluated by two widely-used metrics: Hit
Ratio (HR) and Normalised Discounted Cumulative Gain (NDCG) [36, 38, 127]. In
this Chapter, we utilize HR@ 10 and NDCG@10 to evaluate the recommendation ac-
curacies. More details about HR and NDCG can be found in Subsection 3.3.1
Baselines. We compare the performance of our proposed STS-AEL framework with
that of nine baseline models, including one ensemble model (i.e., OCFIF) and eight
monolithic models (i.e., iBPR, iGMF, iMLP, iNeuMF, iTPMF-CF, RCD, eAls and

SPMF). The brief introduction of these baselines are as follows.

* Bayesian Personalised Ranking (BPR) is a representative pair-wise ranking ap-

proach proposed by Rendle et al. [91] to optimise the matrix factorisation. We

§4.3 Experiments 84

adapt this work to the streaming scenarios, named as iBPR, by incrementally

training the recommendation model with newly coming data.

Neural Matrix Factorisation (NeuMF) [37] is an advanced matrix factorisa-
tion model, which combines two recommendation models: Generalized Matrix
Factorisation (GMF) and Multi-Layer Perceptron (MLP) for higher recommen-
dation accuracies. We adapt these three offline recommendation models (i.e.,
NeuMF, GMF and MLP) to the streaming scenario, named as iNeuMF, iGMF

and iMLP, respectively, by feeding them with newly coming data continuously.

Time-window based probabilistic Matrix Factorisation for Collaborative Filter-
ing (TPMF-CF) [146] is a representative probabilistic matrix factorisation based
approach that adopts the time window technique to construct a 3D user-item-
time model. As the TPMF-CF was originally devised for the offline scenarios,
we adapt TPMF-CF to the streaming scenarios, named as iTPMF-CF, by incre-
mentally training the recommendation model with newly coming data. Further-
more, to keep the features of the TPMF-CF, we also employ a sliding window

based sampling approach to improve its recommendation accuracies.

Randomised block Coordinate Descent (RCD) and Element-wise Alternating
Least Squares (eAls) are two representative approaches employed by Devooght
et al. [15] and He et al. [38], respectively, to optimise the streaming matrix
factorisation. To be consistent with the proposed STS-AEL and other baselines,
we enhance eAls and RCD with abilities of batch processing to increase their

throughput.

Stream-centered Probabilistic Matrix Factorisation (SPMF) [127] is a state-of-
the-art monolithic SRS based on the probabilistic matrix factorisation, which im-
proves the work in [116]. SPMF was originally performed along with a ranking-
based sampling method. However, this ranking-based sampling method has ex-

cessive computation complexity since it evaluates all the user-item interactions

§4.3 Experiments 85

in the reservoir and rank them by the test accuracies for each sampling process,
and thus is not suitable for our evaluation policy where sampling needs to be
performed frequently. Therefore, we sample data for SPMF with our proposed

STS for fair comparisons.

* Online Collaborative Filtering with Implicit Feedback (OCFIF) [140] is the
only ensemble SRS, which combines multiple matrix factorisation models to
deliver more accurate streaming recommendations. It is specifically devised to
ensemble matrix factorisation models, and thus cannot ensemble other models

for the evaluation.

* Stratified and Time-aware Sampling based Adaptive Ensemble Learning (STS-
AEL) is our proposed SRS. For the evaluation, we take each of the top three
best-performing monolithic baselines — iNeuMF, iMLP and iGMF in Exper-
iment 1 as its individual model and set different numbers (i.e., 2, 4, 6 and 8)
of individual models to compose different forms of STS-AELs. For example,
STS-AEL_8-iNeuMF indicates an STS-AEL framework ensembling 8 iNeuMF

models.

Parameter Setting. For baselines, we initialise them with the parameters reported in
their papers and tune them based on our experimental scenarios to achieve the best
performance for fair comparisons. For our proposed STS-AEL, we empirically set
the learning rate to 0.001, and initialise the parameters in embedding layers with the
Gaussian distribution X ~ N (0,0.25), inner layers with Glorot initialisation [30] and
the output layer with LeCun initialisation [61]. Besides, we adopt L, regularisation
to avoid overfitting and Adaptive Moment Estimation (Adam) [53] for the regularisa-
tion. In addition, we manually adjust the parameters o, \,., and \,.s based on the
data receiving speed and the characteristics of the dataset to achieve the best perfor-
mance. Without loss of generality, following the common practice in [127, 32], all
the baselines and the proposed STS-AEL process data stream in batch to increase the

throughput.

§4.3 Experiments 86

Table 4.1: Performance comparison for STS-AEL (results on MovieLens)

Dataset MovieLens
Metric HR@10 NDCG@10
Data Receiving Speed 128 256 512 128 256 512

eAls 0.231 0.231 0.234 | 0.106 0.106 0.108
RCD 0.287 0.297 0.278 | 0.139 0.145 0.138
iBPR 0.303 0.303 0.279 | 0.147 0.147 0.134
Baseline Monolithic | iTPMF-CF| 0.408 0.401 0.426 | 0.222 0.216 0.229
SPMF 0472 0466 0.434 | 0.262 0.259 0.234
iGMF 0.525 0.529 0477 | 0.295 0.297 0.265
iMLP 0.538 0.539 0.488 | 0.304 0.303 0.272
iNeuMF | 0.551 0.546 0.496 | 0.311 0.307 0.275
Ensemble OCFIF 0.532 0.508 0.467 | 0.291 0.279 0.256
STS-AEL_8-iGMF 0.592 0.584 0.590 | 0.344 0.340 0.344
Olfl:alsnrl;i-(ﬁEL STS-AEL_8-iMLP 0.591 0.586 0.583 | 0.341 0.340 0.338
STS-AEL_8-iNeuMF 0.608 0.607 0.598 | 0.351 0.353 0.346

Improvement percentage

. . 10.3% 11.2% 20.6% | 12.9% 15.0% 25.8%
over the best-performing baseline

4.3.2 Performance Comparison and Analysis

Experiment 1: Performance Comparison with Baselines (for RQ1)

Setting. In this experiment, we take each of iGMF, iMLP and iNeuMF as the indi-
vidual model of STS-AEL and set the number of individual models to eight for the
evaluation. In addition, the proposed STS-AEL and nine baselines are evaluated on all
three datasets with a fixed data processing speed, i.e., sp, = 256, and three different
data receiving speed, i.e., sp, = 128 (simulating the underload scenario), sp, = 256
(simulating the ideal case where the data processing speed is equal to the data receiv-
ing speed) and sp, = 512 (simulating the overload scenario) to make comparisons in
different cases.

Result. As Tables 4.1 to 4.3 show, in all the cases, STS-AEL_8-iNeuMF delivers the
highest recommendation accuracies (marked with bold font), and the improvement
percentages of STS-AEL_8-iNeuMF over the best-performing baseline (with the re-
sults marked by underline) in each case are introduced in the last rows, ranging from
4.0% (compared with iNeuMF on Netflix w.r.t. sp, = 256) to 51.8% (compared with
IMLP on Yelp w.r.t. sp, = 512) with an average of 17.1% in terms of HR@10, and

§4.3 Experiments 87

Table 4.2: Performance comparison for STS-AEL (results on Netflix)

Dataset Netflix
Metric HR@10 NDCG@10
Data Receiving Speed 128 256 512 128 256 512

eAls 0.395 0.389 0.362 | 0.211 0.207 0.192
RCD 0.447 0436 0435 | 0.226 0.226 0.219
iBPR 0.685 0.686 0.627 | 0.396 0.395 0.360
Monolithic | iTPMF-CF| 0.514 0.5231 0.540 | 0.290 0.298 0.309
SPMF 0.699 0.676 0.636 | 0.425 0.410 0.374
iGMF 0.747 0.748 0.577 | 0.482 0.482 0.352
iMLP 0.787 0.782 0.624 | 0.519 0.510 0.369
iNeuMF | 0.801 0.798 0.711 | 0.531 0.529 0.443
Ensemble OCFIF 0.745 0.734 0.606 | 0.457 0.453 0.357
STS-AEL_8-iGMF 0.789 0.783 0.785 | 0.524 0.517 0.518
Our STS-AEL| STS-AEL_8-iMLP 0.813 0.805 0.798 | 0.546 0.535 0.525
framework STS-AEL_8-iNeuMF 0.840 0.830 0.821 | 0.576 0.562 0.552
Improvement percentage
over the best-performing baseline

Baseline

4.80% 4.00% 15.5% | 8.40% 6.20% 24.6%

ranging from 6.2% (compared with iNeuMF on Netflix w.r.t. sp, = 256) to 64.0%
(compared with iMLP on Yelp w.r.t. sp, = 512) with an average of 22.9% in terms of
NDCG@10.
Analysis. The superiority of our proposed STS-AEL can be explained in the following
three aspects: 1) the proposed STS addresses preference drift while capturing long-
term user preferences by wisely incorporating both newly coming data and historical
data through a stratified and time-aware strategy, 2) ensembling multiple individual
models can not only avoid the limitations of monolithic models by complementing
one another, but also contributes to mining user preferences more effectively by the
concurrent training process, especially in overload scenarios, and 3) the proposed AEL
improves fusion effectiveness by assigning elaborately calculated fusion weights to
multiple individual models for effective fusion.

As Tables 4.1 to 4.3 show, OCFIF, which is the only existing ensemble SRS, de-
livers lower recommendation accuracies even than some monolithic baseline models,
e.g., iIGMF, iMLP and iNeuMF. This can be explained by the following three reasons:

1) OCFIF trains multiple individual models with the same data. This practice not

§4.3 Experiments 88

Table 4.3: Performance comparison for STS-AEL (results on Yelp)

Dataset Yelp
Metric HR@10 NDCG@10
Data Receiving Speed 128 256 512 128 256 512

eAls 0.287 0.289 0.290 | 0.167 0.167 0.169
RCD 0.454 0.452 0447 | 0.260 0.257 0.259
iBPR 0.307 0.295 0.188 | 0.180 0.172 0.108
Monolithic | iTPMF-CF| 0.172 0.174 0.186 | 0.089 0.090 0.098
SPMF 0.203 0.203 0.177 | 0.107 0.106 0.091
iGMF 0.499 0470 0.396 | 0.294 0.276 0.228
iMLP 0.573 0.574 0.438 | 0.338 0.338 0.246
iNeuMF | 0.566 0.570 0.435 | 0.331 0.334 0.247
Ensemble OCFIF 0.260 0.249 0.203 | 0.135 0.129 0.107
STS-AEL_8-iGMF 0.647 0.614 0.600 | 0.399 0.371 0.362
Our STS-AEL| STS-AEL_8-iMLP 0.676 0.671 0.639 | 0.414 0.402 0.378
framework STS-AEL_8-iNeuMF 0.717 0.677 0.665 | 0.456 0.415 0.405
Improvement percentage
over the best-performing baseline

Baseline

25.1% 17.9% 51.8% | 34.9% 22.8% 64.0%

only reduces the data processing speed, which affects the sufficient training of mod-
els, but also harms the diversities of individual models, which is essential for effective
ensemble learning, 2) OCFIF selects only one individual model for the final predic-
tion, which does not fully utilise all the individual models to obtain more accurate
recommendations and 3) OCFIF is specifically devised to ensemble matrix factorisa-
tion models, which only capture the linear relations with the dot product between the
user embedding and the item embedding, while the aforementioned three models (i.e.,
i1GME, iMLP and iNeuMF) all capture the more complex nonlinear relations with non-
linear operations (e.g., sigmoid function), and thus they can more accurately learn the
user preferences towards items.

Another observation from Tables 4.1 to 4.3 is that higher data receiving speed
commonly leads to the degradation of the recommendation accuracies. Taking STS-
AEL _8-iNeuMF on MovielLens as an example, the recommendation accuracies de-
crease 1.6% w.r.t. HR@10 and decrease 1.4% w.r.t. NDCG@10 when the data re-
ceiving speed increases from 128 to 512. The reason is that high data receiving speed

impedes the recommendation models from sufficiently learning the user preferences

§4.3 Experiments 89

towards the items from the data stream. Especially, the long-term user preferences
cannot be well learned from the historical data, as the new data arrives at a high speed.
Thus, this insufficient training process leads to the degradation of recommendation
accuracies when the data receiving speed is high.
Summary. Our proposed STS-AEL significantly outperforms all the baseline models
in all the cases, including the underload scenarios (sp, = 128) and overload scenarios
(sp, = 512).
Experiment 2: Effect of the Number of Individual Models (for RQ2)
Setting. To answer RQ2, we allow our proposed STS-AEL ensembling different num-
bers (i.e., 2, 4, 6 and 8) of individual models for comparison. In this experiment, we
report the results on all three datasets in both underload scenarios (i.e., the cases where
sp, = 128) and overload scenarios (i.e., the cases where sp, = 512).
Result. As shown in Fig. 4.3, on all three datasets in both underload scenarios and
overload scenarios, our proposed STS-AEL delivers higher recommendation accu-
racies when ensembling more individual models w.r.t. all three types of individual
models, i.e., iNeuMF, iMLP and iGMF.
Analysis. The improvements when ensembling more individual models can be ex-
plained in two aspects: 1) more individual models can better complement one another
through the fusion process when making recommendations, and 2) with the concur-
rent training process, the streaming data can be better exploited with more individual
models, both when complemented by the historical data in the underload scenarios
and when confronting the excessive amount of data in overload scenarios. In addition,
It can be observed that the improvement ratios generally decrease as the number of
individual models increases. This is because after having enough individual models to
effectively complement one another and to sufficiently mine streaming data in parallel,
getting more individual models will no longer increase the recommendation accuracies
much.

Since STS-AEL performs the best when ensembling eight individual models, as

shown in Fig. 4.3, we set the number of individual models to eight in the following

§4.3 Experiments 90
‘EFSTS—AEL_ N-iGMF -©-STS-AEL_ N-iMLP < STS-AEL N—iNeuMF‘
— o 0.72 [—
0.61 B o 4 - 084r 5 G 07 —
o059 —) éo.sz %o.ee
® 0.66
c 057, T 08 /@/-@//{] Qoss ﬁ]
0.55 orel — 0.62]
2 4 6 8 2 4 6 8 2 4 6 8
Number of Individual Models (N) Number of Individual Models (N) Number of Individual Models (N)
(a) HR@10 on MovieLens (b) HR@10 on Netflix (c) HR@10 on Yelp
w.L.t. sp, = 128 w.r.t. sp, = 128 w.L.t. sp, = 128
B 0.58 N — 0.46 ////,{}fi{
9 822 ///& — % ‘9 0.56 b — 8 ‘9 0.44
® _ ® 0.4
G 0.33 G 54 G 042
O [rnl O O
0 0.32 A : a 04]
2 4 6 8 2 4 6 8 2 4 6 8
Number of Individual Models (N) Number of Individual Models (N) Number of Individual Models (N)
(d) NDCG@10 on MovieLens (e) NDCG@10 on Netflix (f) NDCG@10 on Yelp
w.r.t. sp, = 128 w.r.t. sp, = 128 w.r.t. sp, = 128
0.6 082f 45— 0.65 o
= 058 2 08 = ?g/@/(
®™ ® ®
T .56 T o.78 //;1 c 0.6:/8/5//51
0.54% 0.76 0.551
2 4 6 8 2 4 6 8 2 4 6 8
Number of Individual Models (N) Number of Individual Models (N) Number of Individual Models (N)
(g) HR@10 on MovieLens (h) HR@10 on Netflix (i) HR@10 on Yelp
w.r.t. sp, = 512 w.r.t. sp, = 512 w.r.t. sp, = 512
0.56
o 08 //%,777%—7””4 o 04 777,,,,@/—/””’<
= 034 é 0.544— é) 0.38 /
8 0.33 8 052 /’] 8 0.36 W}
A 0.32 e [a)]
Z 31 z O.SE/E/B///{ z 0-34[
0.32
2 4 6 8 2 4 6 8 2 4 6 8
Number of Individual Models (N) Number of Individual Models (N) Number of Individual Models (N)
(j) NDCG@10 on MovieLens (k) NDCG@10 on Netflix (1) NDCG@10 on Yelp
w.r.t. sp, = 512 w.r.t. sp, = 512 w.r.t. sp, = 512

Figure 4.3: Effect of the number of individual models.

§4.3 Experiments 91

| EESTS-AEL_8-IM HEINDO-AEL_8-IM [TIRR-AEL_8-IM BSW-AEL 8IM |

0.6 0.8 006';
o .
20.58 20.75 2 06
®0.56 ® 47 ®
€ 0.54 c U o 0.55
> T 0.65 T 05
0.52 0.45
05 0.6 .
iGMF iMLP iNeuMF iGMF iMLP iNeuMF iGMF iMLP iNeuMF
Type of the Individual Model (IM) Type of the Individual Model (IM) Type of the Individual Model (IM)
(a) HR@10 on MovielLens (b) HR@10 on Netflix (c) HR@10 on Yelp
0.45
2 0.34 2 0052 2 0.4
90.32 80.45 %0'35
o o o
2 03 Q 04 a 03
z z Z o5
0.28 0.35 :
iGMF iMLP iNeuMF iGMF iMLP iNeuMF iGMF iMLP iNeuMF
Type of the Individual Model (IM) Type of the Individual Model (IM) Type of the Individual Model (IM)
(d) NDCG@10 on MovieLens (e) NDCG@10 on Netflix (f) NDCG@10 on Yelp

Figure 4.4: The superiority of STS

experiments to answer RQ3 and RQ4.

Experiment 3: Superiority of STS (for RQ3)

Setting. To answer RQ3, we replace the proposed STS with three representative sam-
pling methods for comparisons: Newly coming Data Only (NDO) [140] which only
uses the newly coming data for the training purpose, Reservoir-enhanced Random
sampling (RR) [16] which conducts random sampling with a reservoir and Sliding
Window (SW) [102] which uses the latest £ (a predetermined parameter) user-item in-
teractions received for the training purpose. Similar to the naming scheme in the pre-
ceding experiments, we use *-AEL (e.g., NDO-AEL) to indicate which fusion method
(e.g., NDO) is employed for the sampling purpose. In this experiment, we report the
results on all three datasets in the underload scenarios (i.e., sp, = 128) to show the
superiority of STS while the results in the overload scenarios (i.e., sp, = 512) are
similar to the reported ones.

Result. As Fig. 4.4 indicates, our proposed STS consistently outperforms all the other

sampling methods on all three datasets. Taking the individual model of iNeuMF as

§4.3 Experiments 92

an example, with which our proposed approach achieves the best overall performance,
the improvements of our proposed STS over the best-performing baseline — NDO,
range from 1.7% (on Netflix) to 4.3% (on Yelp) with an average of 2.8% in terms of
HR @10, and range from 2.6% (on Netflix) to 7.1% (on Yelp) with an average of 4.3%
in terms of NDCG@10.

Analysis. The superiority of STS can be explained by elaborately incorporating both
newly coming data and historical data in a time-aware manner while guaranteeing the
proportion of newly coming data. Thus, STS can well address preference drift while
capturing long-term user preferences. Besides, it can be observed that NDO, which
takes newly coming data only to train the recommendation models, outperforms two
other baselines: RR and SW, which both take the historical data into consideration.
This indicates that improperly incorporating historical data may reduce the recommen-
dation accuracies with our experimental settings. It is possibly caused by an insuffi-
cient emphasis on newly coming data, which hinders effectively addressing preference
drift, and ineffectual sampling for historical data, which impedes effectively capturing

long-term user preferences.

Experiment 4: Superiority of AEL (for RQ4)

Setting. To answer RQ4, we replace the sequential adaptive fusion in AEL with
three representative fusion methods for comparisons; they are 1) Attentive Weight-
ing (AttW) [96] which adopts an attention mechanism for the fusion, 2) AVeraG-
ing (AVG) [83] which simply averages the results of the individual models and 3)
AdaBoost-like Weighting (AdaW) [12] which considers the previous recommendation
accuracies of individual models when conducting the fusion process. Similar to the
naming scheme in the preceding experiments, we use STS-* (e.g., STS-AVG) to indi-
cate which sampling method (e.g., AVG) is employed for the fusion purpose. In this
experiment, we report the results on all three datasets in the overload scenarios (i.e.
sp, = 512) while the results in the underload scenarios (i.e. sp, = 128) are similar to

the reported ones.

§4.3 Experiments 93

\ I sTS-Attw_8-IM Il STS-AVG_8-IM [1STS-Adaw_8-IM [STS-AEL_8-IM \

0.6 0.82 0.66
o 0.59 © 0.81 © 0.64
= 0.58 & 08 ®0.62
g 0.57 g 0.79 g 6 6
T 0.56 T0.78 v
0.55 0.77 0.58
0.76 0.56
iGMF iMLP iNeuMF iGMF iMLP iNeuMF iGMF iMLP iNeuMF
Type of the Individual Model (IM) Type of the Individual Model (IM) Type of the Individual Model (IM)
(a) HR@10 on MovielLens (b) HR@10 on Netflix (c) HR@10 on Yelp
0.56 0.41
o 035 o 0.55 o 04
. 0.34 ~.0.54 =~ 0.39
(0.33 %0_53 %8'23
8032 8052 8 0.36
= 0.31 = 0.51 = 0.35
) 0.5 0.34
iGMF iMLP iNeuMF iGMF iMLP iNeuMF iGMF iMLP iNeuMF
Type of the Individual Model (IM) Type of the Individual Model (IM) Type of the Individual Model (IM)

(d) NDCG@10 on MovieLens (e) NDCG@10 on Netflix (f) NDCG@10 on Yelp

Figure 4.5: The superiority of AEL

Result. As Fig. 4.5 indicates, our proposed AEL significantly outperforms all the
baselines on all three datasets. Taking the individual model of iNeuMF as an example,
with which the ensembling approach achieves the best overall performance, the im-
provements over the best-performing baseline — AdaW, range from 1.7% (on Netflix)
to 6.6% (on Yelp) with an average of 4.2% in terms of HR@10, and range from 2.2%
(on Netflix) to 6.6% (on Yelp) with an average of 4.7% in terms of NDCG @ 10.

Analysis. The superiority of AEL mainly comes from the elaborately calculated fu-
sion weights, which leads to effective fusion for higher recommendation accuracies.
Specifically, when calculating the fusion weights, AEL not only considers the previous
recommendation accuracies of individual models but also takes the specific character-
istic of the target user-item pair into account. Besides, it can be observed that AttW
does not deliver good performance in this experiment, and the possible reason is that
AttW was originally devised for the mixture of expert model [96] and is not suitable

for our proposed framework.

§4.4 Chapter Summary 94

4.4 Chapter Summary

In this chapter, we have proposed a Stratified and Time-aware Sampling based Adap-
tive Ensemble Learning framework, called STS-AEL, for delivering accurate stream-
ing recommendations. Our proposed STS-AEL addresses preference drift while cap-
turing long-term user preferences through wisely sampling the newly coming data and
historical data through a stratified and time-aware manner. Moreover, the incorpo-
ration of the sampled historical data also benefits addressing the underload problem.
Furthermore, STS-AEL addresses the overload problem by first training the multiple
individual models concurrently and then fusing the results of these trained models with
a sequential adaptive fusion method. The extensive experiments show that the pro-
posed STS-AEL significantly outperforms the state-of-the-art approaches. In addition,
the effectiveness of the two main components: Stratified and Time-aware Sampling
(STS) and Adaptive Ensemble Learning (AEL), have also been explicitly verified by

the experiments.

Chapter 5

MDbSRS: a Multi-behaviour Streaming

Recommender System

Various SRSs have been proposed to deliver recommendations in the streaming sce-
narios. However, all the existing SRSs are devised to deal with a single behaviour type
(e.g., purchases). These single-behaviour SRSs are restricted by the limited number of
such single-behaviour interactions, and thus commonly suffer from the data sparsity
problem. Therefore, the more sufficient multi-behaviour interactions (e.g., purchases,
add-to-carts and views) might be utilised for more accurate streaming recommenda-
tions. However, delivering streaming recommendations with multi-behaviour interac-
tions leads to another new challenge without any solution reported in the literature.
This has been introduced in Subsection 1.2.4 and expressed by CH4: ‘how to wisely
leverage multi-behaviour interactions for improving the accuracies of streaming rec-
ommendations’.

Targeting CH4, this chapter proposes the first Multi-behaviour Streaming Recom-
mender System, called MbSRS, for delivering more accurate streaming recommenda-
tions by utilising data streams of multi-behaviour interactions. Specifically, MbSRS

contains the following three key components.

1) Multi-behaviour Learning Module (MbLM), which not only leverages shared
embeddings to accurately learn shared user preferences and shared item char-
acteristics across multiple behaviour types, but also employs behaviour-specific

embeddings to learn behaviour-specific user preferences and behaviour-specific

95

96

item characteristics. Moreover, this module is trained with the newly coming

interaction data, and thus is able to capture the latest user preferences.

2) Attentive Memory Network (AMN), which effectively maintains the long-term
user preferences w.r.t. the primary behaviour. Specifically, AMN first mem-
orises the items interacted (w.r.t. all behaviour types) by users in a memory.
Then, AMN elaborately represents the long-term user preferences with these
memorised items using an attentive method to emphasize those items more rele-
vant to the target item. Specifically, this attentive method first learns the weights
of memorised items to indicate their relevance scales with the target item. After
that, with these calculated weights, the memorised items are elaborately com-

bined to represent the long-term preferences of the target user for the target item

3) User Preference Merging Module (UPMM), which wisely merges the short-term
user preferences and long-term user preferences with a gate mechanism. Specit-
ically, our proposed UPMM employs two gates to adaptively calculate the gate
weights of short-term user preferences and long-term user preferences, respec-
tively, based on the embeddings of the target user and target item. Then, the
short-term user preferences and long-term user preferences are merged based
on these gate weights. Through this way, UPMM not only considers the dif-
ferent contributions of short-term and long-term user preferences via these gate
weights, but also is more specialised in the target user and the target item during

the preference merging process.

The remainder of this chapter is organized as follows. We first formulate the re-
search problem studied in this chapter. Then, we introduce our proposed MbSRS and
its three key components (i.e., MbLM, AMN and UPMM). After that, we present the
results of the experiments that are conducted to verify the effectiveness of MbSRS.

Finally, we summarise this chapter.

§5.1 Problem Statement 97

5.1 Problem Statement

In this section, we formulate our research problem of streaming recommendations
w.r.t. multi-behaviour interactions as follows. First, we utilise U = {u1, ua, ..., ujy|},
V = {v1,v2,...,9v}, and B = {by, by, ..., b,} (n = | B|) to represent the user set, the
item set and the set of behaviour types, respectively. Note that, for b; € B, we use the
subscript 1 to (n — 1) for denoting the first type of auxiliary behaviour to the (n — 1)
type of the auxiliary behaviour, respectively, and use the subscript n for denoting the
primary behaviour. Moreover, these subscripts also indicate the priority levels of the
corresponding behaviour types among the total behaviour types in terms of to what
degree these behaviour types reflect user preferences towards to an item. Taking the
behaviour types in online shopping as an example, purchase behaviour can best reflect
user preferences and thus is always assigned to the largest subscript (i.e., n). Similarly,
the view behaviour is usually with the smallest subscript (i.e., 1) and the add-to-cart
behaviour is usually with a subscript between 1 and n.

With the notations presented above, an interaction between user v and item v
w.r.t. behaviour type b is denoted as ¢ = {u,v,b}, where u € U, v € V and
b € B. Consequently, a data stream of multi-behaviour interactions is denoted as
s = {t}, 12, ...,tF ..}, where t* = {u* v* b*}. Note that the order of these interac-
tions in each data stream is determined by their receiving timestamps and marked by
their superscripts (e.g., t* indicates the k" received interaction). Moreover, similar to
the real-world cases, adjacent interactions are not necessarily from the same user (e.g.,
user u” is possibly different from user «**1). In this work, without loss of generality,
we consider the implicit behaviours (e.g., purchases and views) only, which are more
common and more difficult to deal with than the explicit ones (e.g., ratings).

Then, given the currently received data stream s’ of multi-behaviour interactions,
the task of a multi-behaviour SRS is to predict the probability ¢ of a future interaction
t" w.r.t. the primary behaviour; that is, y = P(t|s’). Similar to the single-behaviour

SRSs, multi-behaviour SRSs should learn both short-term user preferences and long-

§5.2 Our Proposed Multi-behaviour Recommender System 98

term user preferences to deliver accurate streaming recommendations. Moreover, the
multi-behaviour SRSs are also expected to well exploit the interactions w.r.t. auxil-
iary behaviours while eliminating their negative interference for further increasing the
accuracies of streaming recommendations. Thus, our research problem of streaming

recommendations w.r.t. data streams of multi-behaviour interactions is challenging.

5.2 Our Proposed Multi-behaviour Recommender Sys-
tem

In this section, we propose the first Multi-behaviour Streaming Recommender Sys-
tem, called MbSRS. Specifically, we first present its overall structure. Then, we intro-
duce its three key components: Multi-behaviour Learning Module (MbLM), Attentive
Memory Network (AMN) and User Preference Merging Module (UPMM). Finally,

we introduce its prediction process and training process.

5.2.1 Overall Structure

Aiming at delivering accurate streaming recommendations w.r.t. data streams of multi-
behaviour interactions, we propose the first Multi-behaviour Streaming Recommender
System, called MbSRS. As Fig. 5.1 illustrates, our proposed MbSRS contains three
key components: MbLM, AMN and UPMM, along with the prediction process and the
training process. The details about these three components are presented in Subsec-
tions 5.2.2 to 5.2.4, respectively, while the prediction process and the training process
are introduced in Subsection 5.2.5. Here, we provide a brief introduction for each of
them as follows.

Firstly, MbLM accurately learns short-term user preferences and stable item char-
acteristics via both the shared embeddings across multiple behaviour types and behaviour-
specific embeddings of users and items, respectively. Secondly, AMN effectively

maintains the long-term user preferences w.r.t. the primary behaviour by first mem-

929

§5.2 Our Proposed Multi-behaviour Recommender System

"SUSAIA JO 21monns Y, :1°G 211

10Ke] xeunjog [XeWwyos | 1Ke] 1Y [/~ | 1oke| prowsis [0 | 1o4e] uoneuazedu0d (J8IU0))) IR SUIPPaqUd W [T |

14e] pajoduuod A[[ny E

Yiom1au K10wau Surppaquud 3 Surppaquud o Ioiaeyaq ,/ oy 10§ 3 sooua19jaId dn Io1Aeyaq 1 oyg) d soouaoyard
aanuape ur 7 dojs ! [euISLIo payrun SONSLIA)IBILYD W)L Jasn pajrun 10J saouarayaxd 1asn JIosn wId)-3uof
I9sn B 10J PIZLIOWW siolaeydq uonesrdnnu @ wmns @ uone[noed @ 129e1 199e] Aniqeqoad
STWId)I JO Iaquunu 1 Jo Ioquinu Jefeos ISIM-JUIWI[AjLre[ruiis duIsod JAne3au aanisod A pajorpaxd
.\
p
. o 1 19sn A W JaAeT ndu
[4 3 € I 1 ! =
35 o AN — :
D - .
F 7| xeuyos @) ' fa | -[faaialeeia] | [- ffa e [P ke S
% I v 3 7 vy
8 | Uy Cy Iy poivys u = e WppAqUE o
| _:NQQ _ :& W n9 n9 A9 9 9 a9 m
B G N By A | N S — T A BN vy =
Nk, : -
wy e jeoU0))) (1BOU0)) =
J /" v v REYNU | m
Za WQQ MQQ uoyeudEIU0) "~
yr =)
ra © i
>
||||||||||||||||||||||||| <
JA0M)9 _m
MI0M)IN O | sk &
%.:::02 & pardouuo) A[ng =
—
AU Y 9 m
3)er) UAIYIIJ
|||||||||||||||||||||| 1
uonegmd[E) ! |
IUWIIJIIJ pPIen) I _
llllllllllllllll _
I I
SUISIIA] IUAIJIIJ _ “ M:mﬁm-w IL
IIIIIIIIIIIIIIIIIIIIIIII | |
I[NPOJA wﬁmwhuz ISIOTABYQq _muo_\/maoa_ _ PuE
SR1IERE)EX B I ENp | Arewnd) Y) [reqxne AU Y WY L | uondIpaId

|

@)

§5.2 Our Proposed Multi-behaviour Recommender System 100

orising the items that interacted by users in the memory, and then representing the
long-term preferences of the target user with these memorised items via an attentive
method. After that, UPMM elaborately merges the short-term user preferences learnt
by MbLM and the long-term user preferences learnt by AMN into the unified user
preferences w.r.t. the primary behaviour. Finally, the predictions are conducted based
on the user preferences and item characteristics learnt by the above three components.
As for the training process, Stochastic Gradient Descent (SGD) is employed to train

MDbSRS with newly coming interaction data in a timely manner.

5.2.2 Multi-behaviour Learning Module

We propose MbLLM to accurately learn the short-term user preferences and stable item
characteristics. To achieve this purpose, MbLM first learns the shared embeddings
across multiple behaviour types and behaviour-specific embeddings for both users and
items. After that, these shared embeddings and behaviour-specific embeddings for
users (or items) are concatenated and then transformed with fully connected layers to
obtain both the shared user preferences (or item characteristics) and the behaviour-
specific user preferences (or item characteristics). Note that, in MbLLM, we not only
devise the shared layers to enhance the learning process for user preferences (or item
characteristics) w.r.t. the primary behaviour by that w.r.t the auxiliary behaviours, but
also devise the behaviour-specific layers to highlight the unique user preferences (or
item characteristics) w.r.t. each behaviour type.

Input Layer. MbLM takes data streams of multi-behaviour interactions as the input.
For each interaction, the target user and target item serve as the direct input to learn
user preferences and item characteristics for streaming recommendations, while the
target behaviour type is utilised to activate the corresponding behaviour-specific layers
for learning such preferences and characteristics w.r.t. this target behaviour type. For
better readability, we utilise the subscripts in the names to indicate which behaviour-

specific layers are activated by the target behaviour type. Taking an embedding layer

§5.2 Our Proposed Multi-behaviour Recommender System 101

with the name of EL,; as an example, it will be activated when an interaction w.r.t. the
i" behaviour type is received.

Embedding Layer. We not only devise shared user (or item) embedding layers to
learn the shared user (or item) embeddings for reinforcing the learning process of user
prferences (or item characteristics) among multiple behaviour types, but also deivse
behaviour-specific user (or item) embedding layers to learn the behaviour-specific user
(or item) embeddings to reflect the unique latent features of users (or items) w.r.t. each

behaviour type. Specifically, taking the user embeddings w.r.t. the i*" behaviour type

u
share

as an example, shared user embedding e 4 and behaviour-specific user embedding

u

Yhareq and the behaviour-

e for user u are learnt by the shared user embedding layer EL
specific user embedding layer ELY', respectively. Similarly, the shared item embedding
€41areq a0d the behaviour-specific item embedding e for item v w.r.t. the j th behaviour
type are learnt by the shared item embedding layer EL?, ., and the behaviour-specific
item embedding layer ELY, respectively.

Concatenation Layer. This layer concatenates the shared user embedding (or item
embedding) and the corresponding behaviour-specific user embedding (or item em-
bedding) to incorporate both shared latent features and behaviour-specific latent fea-

tures of users (or items). For example, the concatenated user embedding ce}' of user «

w.r.t. the i*" behaviour type is obtained as follows,
ce;‘ - [e?hared; e?] ! (51)

With a similar calculation process to the one presented in Eq. (5.1), the concatenated

item embedding cej of item v w.r.t. the 4" behaviour type can be obtained as follows,

cej = [eé’hmd; e”;] : (5.2)

Fully Connected Layer. In this layer, the concatenated user embeddings ce" (or item

§5.2 Our Proposed Multi-behaviour Recommender System 102

embeddings ce’) are taken as the input to learn both the shared preferences (or char-
acteristics) and the behaviour-specific preferences (or characteristics) via a fully con-
nected layer. Taking the user preference p! of user u w.r.t. the i** behaviour type as an

example, this fully connected layer can be experssed as follows,
pt = ol (WP celt +bP"e)), (5.3)

where a7/, Wrre!

and b? "¢/ denote the activation function, weight matrix and the
bias vector, respectively. With similar notations, the item characteristic q; w.r.t. the

4" behaviour type is calculated as follows,
q) = ai"" (W' ce} + b§™). (5.4)

Note that we have tried different numbers of fully connected layers for learning these
user preferences and item characteristics in this step, but found that more layers can
hardly improve the overall recommendation accuracies and introduce more compu-
tational complexities. Therefore, we employ a single fully connected layer here to
perform this transformation process.

In addition, notations a, W and b are also utilised in the remainder of this chapter
for the similar meaning with different subscripts and superscripts to represent fully
connected layers. Besides, MbLM is trained by SGD with the newly coming inter-
action data to ensure that the cpatured user preferences are the latest. As for the item
characteristics, they are relatively stable in essential, and thus can be well learend from

the newly coming interaction data.

5.2.3 Attentive Memory Network

Besides the short-term user preferences captured by MbLLM, the long-term user prefer-
ences w.r.t. the primary behaviour should also be effectively maintained for delivering
accurate streaming recommendations. Therefore, we propose AMN to first memorise
the items that are interacted by users in a key-value memory, where the users serve as

the keys and the corresponding items serve as the values of the corresponding users.

§5.2 Our Proposed Multi-behaviour Recommender System 103

After that, the long-term preferences w.r.t. the primary behaviour of the target users
are represented by their interacted items memorised in the memory via an attentive
method. Specifically, AMN utilises the following eight steps to maintain the long-
term user preferences.
Step 1. The AMN module is activated when an interaction w.r.t. the primary behaviour
is received. Specifically, the memorised items are read with the key of the target user
u in this received interaction. Note that, in this step, the memorised items interacted
by the target user w.r.t. all the behaviour types are read to more effectively represent
the long-term user preferences.
Step 2. Then, these read items are transformed into their concatenated embeddings
(which contain both the shared embeddings and behaviour-specific embeddings, see
Subsection 5.2.2 for more details) w.r.t. the primary behaviour to serve as the input for
the following steps.
Step 3. After that, we assign higher weights to the read items that are more similar to
the target item for emphasizing more on these similar items. Specifically, we measure
such similarities with the cosine similarities between the embeddings (the embeddings
all refer to the concatenated embeddings w.r.t. the primary behaviour in this step) of
these read items and the embedding of the target item. Taking the similarity s’ between
the embedding ce’ of the i*" read item and the embedding ce’ of the target item as an
example, 4

s' = cosine_similarity(ce', ce') = M, (5.5)

lce?{|af|ce’][
where (x)T and || * || denote the transposition and L, norm, respectively, of a vector.
Step 4. These calculatd similarities are then fed to a softmax layer to obtain normalized
similarities, taking the normalised similarity ns® in terms of the i** memorised item as
an example, .
, e(s")
ns' = W (5.6)
j=1

where ms denotes the memory size and e is the natural logarithm.

Step 5. After that, these normalised similarities are leveraged for calculating the

§5.2 Our Proposed Multi-behaviour Recommender System 104

weighted item embeddings. For example, the weighted item embedding we’ of the

it" read item is calculated as follows,
we' = ns' ® ce’, (5.7)

where ® denotes the scalar multiplication.
Step 6. These weighted item embeddings are then summed up to obtain the unified

item embedding ue as follows,

h
ue = Z we'. (5.8)
=1

Through this way, this unified embedding contains the overall latent features of the
memorised items for the target user.

Step 7. Finally, this unified item embedding ue is passed to a fully connected layer
for obtaining the long-term user preference Ip“ of the target user v w.r.t. the primary
behaviour,

lpu = Qlong (Wlongue + blong)~ (59)

Step 8. The last step of AMN is to write the target item to the memory with the
target user as the key for future usage. The memory size — the maximal number of
items w.r.t. each user can be memorised — is dynamically set based on the features of
data streams for achieving the best performance. For maintaining this memory, AMN
adopts a First-In-First-Out (FIFO) strategy where the earliest memorised item will be
discarded when the number of the memorised items exceeds the memory size. In the

future, we will study more advanced strategies for maintaining this memory.

5.2.4 User Preference Merging Module

In this section, we propose UPMM to elaborately merge the short-term user prefer-
ences learnt from MbLM and the long-term user preferences learnt from AMN both

w.r.t. the primary behaviour. Although the short-term user preferences and long-term

§5.2 Our Proposed Multi-behaviour Recommender System 105

user preferences are both essential for delivering accurate recommendations, it is not
an easy task to merge these two types of preferences. This is because the contributions
of short-term preferences (or long-term preferences) might be different for different
users, and even different for the same user towards different items. To address this is-
sue, UPMM conducts this merging process via a gate mechanism. Specifically, UPMM
first employs embeddings of both target users and target items to dynamically calcu-
late the gate weights, and then leverages the calculated gate weights for effectively
merging these two types of preferences. More details are presented in the below.

Preference Gate. First, the concatenated embedding ce;. of the target user v and
the concatenated embedding ce’, (ce;' and ce; are both learnt in MbLM, see Subsec-
tion 5.2.2 for more details) of the target item v w.r.t. the primary behaviour are further

concatenated as follows,

cel, .~ = [cez;ceg} : (5.10)

Then, inspired by the cell structure in LSTM, UPMM calculates the gate weights
JWepory @and gwyg, . for the short-term user preferences and long-term user preferences
to reflect their contributions to the overall user preferences. Specifically, gw?, ., and

gWi,,, are calculated by the following Eq. (5.11) and Eq. (5.12), respectively,

gw:hort = Singid(WgZZertce;u,v> + bShOT‘t)’ (511)
GWiong = sigmoicl(ng(f;che’@ﬂ)> + biong), (5.12)

where the sigmoid function serves as the activation function.
Gated Preference Calculation. With these gate weights, the gated short-term prefer-
ence gp.,,,. and the gated long-term preference gp;.,, . of user u are calculated by the

long

following Eq. (5.13) and Eq. (5.14), respectively,

gpghort - gwsuhort ® pjfm (513)

€Plong = JWien, @ 1p*, (5.14)

§5.2 Our Proposed Multi-behaviour Recommender System 106

where the short-term preference p) and the long-term preference lp“ are learnt by
Eq. (5.3) in MbLM and Eq. (5.9) in UPMM, respectively.
Preference Merging. Finally, the unified user preference up" of user u is obtained by

summing gpg,,,, and gpj,,,, up as follows,

up® = 2P,0rt D EPiong: (5.15)

where & denotes the element-wise addition. This unified user preferences are later be
utilised to recommend items to the users w.r.t. the primary behaviour in the following

Subsection 5.2.5.

5.2.5 Prediction Process and Training Process

In this subsection, we introduce the prediction process and training process of Mb-
SRS. Our proposed MbSRS deliver streaming recommendations w.r.t. the primary be-
haviour by predicting the probabilities of interactions w.r.t. the primary behaviour. In
addition, we also allow MbSRS to predict the probabilities of interactions w.r.t. auxil-
iary behaviours as well as train MbSRS using these interactions. This practice benefits
improving the accuracies of streaming recommendations w.r.t. the primary behaviour,
as exploiting the more sufficient additional interactions w.r.t. auxiliary behaviours help

more accurately learn the shared user preferences and shared item characteristics.

5.2.5.1 Prediction Process

The prediction is conducted by learning the relevance scales between the preferences
of the target users and the characteristics of the target items. In this chapter, we utilise
the cosine similarity to measure this relevance scale for calculating the predicted prob-
abilities of interactions. Note that user preferences w.r.t. the primary behaviour and the
auxiliary behaviours are calculated in two different ways. Specifically, the user pref-
erence of user v w.r.t. the primary behaviour is represented by up“ calculated through

Eq. (5.3) in UPMM, while the preference of user v w.r.t. the k" (1 < k < n — 1)

§5.2 Our Proposed Multi-behaviour Recommender System 107

type auxiliary behaviour is represented by p; calculated through Eq. (5.15) in MbLM.
Differently, the item characteristic q¢ of item v w.r.t. the k™ (k = n for the primary
behaviour) behaviour type is calculated by Eq. (5.4) in MbLM for both the primary
behaviour and auxiliary behaviours.

With these well learnt user preferences and item characteristics, the predicted prob-
ability g~*~ of the interaction between user v and item v w.r.t. the primary behaviour

is calculated by the following equation,

AU, 0> (upu)qu

<wv> — _Tuw Rv (5.16)
[up, [2/lq7 |2

<®Y> of the interaction between user u

In a similar way, the predicted probability
and item v w.r.t. the k* (1 < k < n — 1) type of auxiliary behaviour is calculated as

follows,
AU, 0> (pf)Tqﬁ
A = TR (5.17)
1% 12/l 12
Then, the recommendations are performed based on these predicted probabilities. For
example, item v might be recommended to user u w.r.t. the primary behaviour b if an

interaction of < u,v,b > gets a high predicted probability.

5.2.5.2 Training Process

MDbSRS is trained with the interactions related to each behaviour type independently
to learn from the continuous data stream effectively. To be more specific, 1) when
an interaction w.r.t. the primary behaviour is received, AMN, UPMM and the neural
network layers related to the primary behaviour in MbLM will be trained; and 2) when
an interaction w.r.t. the i type of auxiliary behaviour is received, only the neural
network layers related to the i*" type of auxiliary behaviour in MbLM will be trained.
Through this independent training process, compared with the joint training process
employed in some literature [28, 77], the parameters in MbSRS can be updated once an

interaction is received and thus performs more accurate streaming recommendations.

§5.3 Experiments 108

We employ the cross-entropy loss to measure the differences between the predicted
probabilities and the corresponding real labels for interactions. For example, the cross-

entropy loss 605(9;“’”> w.r.t. the interaction of < w, v, k > is calculated as follows,

Cossy ™™ = —(yp """ log(gik=""7) + (1 — y " Yog(1 — 41, <""7)), (5.18)

where 7). <"~ denotes the predicted probability of the interaction between user u and

item v w.r.t. the k" (1 < k < n) behaviour type, while y,f“’w represents the real label

of this interaction; that is y, "~ is 1 if this interaction exists and 0 otherwise.

Then, SGD is employed to minimise the above loss by training MbSRS once a
new interaction is received. Through this way, our proposed MbSRS is able to cap-
ture the latest user preferences towards items, and thus make more accurate streaming
recommendations.

In addition, inspired by the work in [37, 38, 32], we employ the negative sampling
strategy to more effectively train our proposed MbSRS. Specifically, for each target
interaction, the corresponding negative interactions are sampled from both the unob-
served interactions and interactions w.r.t. behaviour types that are with lower priority
levels than the target behaviour type (e.g., views < add-to-carts < purchases). Then,

these negative interactions are utilised to more effectively train MbSRS along with the

target one.

5.3 Experiments

In this section, we present the results of extensive experiments that are conducted to

answer the following five Research Questions (RQs).

RQ1: How does our proposed MbSRS perform when compared with the state-of-the-

art baselines?

RQ2: How does each component in our proposed MbSRS contribute to the perfor-

mance improvement?

§5.3 Experiments 109

Table 5.1: Statistics of the tuned datasets for MbSRS

Dataset Beibei Taobao | Tmall

#Total 2,108,192 | 442,254 | 735,356
#Purchase 166,883 | 96,237 | 179,035

#Add-to-cart n.a. 30,203 n.a.
#Favorite n.a. 11,484 n.a.
#Collect n.a. n.a. 24,681

#View 1,941,309 | 304,330 | 531,640
#User 10,000 13,777 | 12,921
#ltem 49,488 27,652 | 22,570

The symbol # in this table denotes the number (e.g., #item represents the number of items).
RQ3: How do the sizes of embeddings affect the recommendation accuracies?
RQ4: How does the memory size affect the recommendation accuracies?

RQS5: How does the number of incorporated behaviour types affect the recommenda-

tion accuracies?

5.3.1 Experimental Settings

Datasets. For the experiments, we employ three real-world datasets, including Beibei,
Taobao and Tmall, all of which are widely utilised in the literature [19, 21, 7]. These
three datasets are suitable for evaluating our proposed MbSRS and baselines. This
is because these datasets all contain more than one behaviour types and provide the
timestamps of the interactions, and thus can be utilised to simulate data streams of
multi-behaviour interactions for the evaluation of streaming recommender systems.
Note that real-world datasets that contain both multi-behaviour interactions and times-
tamps are not common, and these three datasets are the most suitable ones we have

found for our experiments. More details about these three datasets are as follows.

1) Beibei! provided and tunned by Ding et al. [19]. It records interactions w.r.t.

Thttps://github.com/dingjingtao/NegativeSamplerBPR/tree/master/BPRplus View/data

§5.3 Experiments 110

the purchase and view from Beibei, which is a popular Chinese E-commerce

platform for maternal and infant products.

2) Taobao? released on Tianchi by Alibaba. This dataset contains interactions w.r.t.
the purchase, add-to-cart, favourite and view collected from Taobao, which is

another popular Chinese E-commerce platform.

3) Tmall® tuned by Ding et al. [21] based on the original version that is released for
the IJCAI-15 competition. This dataset records interactions w.r.t. the purchase,

collect and view from Tmall, i.e., the Chinese version of Amazon.

As processing the original Taobao dataset, which contains more than 100 million in-
teractions, is beyond our computational capacity, we tune this dataset with the method
that is utilised in [19, 21] for tunning the Beibei dataset and Tmall dataset. Specifically,
we first merge the repetitive purchases between the same user and the same item us-
ing the earliest timestamp, and then filter out the users’ auxiliary behaviours involving
their purchased items to avoid the information leak. Moreover, following the practice
in [150, 38], we also filter out the users and items that are not involved in an interaction
w.r.t. the primary behaviour (i.e., purchase), and then extract the interactions of users
who conduct more than ten purchases and of items that are involved in more than one
purchases. The statistics of the tunned datasets are presented in Table 5.1.

Evaluation Policy. To simulate data streams of multi-behaviour interactions for the
evaluation of our proposed MbSRS, following the work in [150, 38], we first sort the
interactions based on their timestamps in the ascending order for each of the afore-
mentioned three datasets. After that, we divide each dataset into a training set (which
simulates the historical interactions used to incrementally train recommendation mod-
els) and a test set (which simulates the upcoming interactions first used for the evalu-
ation and then used to incrementally train recommendation models). Specifically, we

select the first 85%, 90% and 95% of interactions from each dataset as training sets,

2https://tianchi.aliyun.com/dataset/dataDetail ?datald=649
3https://github.com/dingjingtao/Auxiliary_enhanced_ALS/tree/master/data/tmall

§5.3 Experiments 111

while the remainder serves as the corresponding test sets. Note that the k-fold cross
validation is infeasible in streaming scenarios, as only the latest interactions (i.e., the
interactions with the largest timestamps) can be utilised for the test to be consistent
with the data coming order. In addition, following the work in [38, 150], we report the
results in terms of 90% split only for saving space, while the results in terms of other
cases are similar to the reported ones.

Evaluation Metrics. Following [37, 38], we employ the widely-used ranking-based
evaluation strategy in our experiments. Specifically, given each interaction between a
target user and a target item w.r.t. the primary behaviour, we first sample 99 items that
are not involved in the interactions w.r.t. the primary behaviour conducted by the target
user as negative items. Then, we rank the target item among these 100 items (i.e., the
target item plus the 99 negative items). Finally, the recommendation accuracies are
measured with Hit Ratio (HR) and Normalised Discounted Cumulative Gain (NDCG)
In this chapter, we utilize HR@5, HR@10, NDCG @35, and NDCG@ 10 to observe the
performance of our proposed MbSRS and that of baselines. More details about HR
and NDCG can be found in Subsection 3.3.1

Comparison Approaches. We have employed eight baselines, including six single-
behaviour SRSs (i.e., SPMF, iGMF, iMLP, iNeuMF, iDMF and DWMOoE) and two
multi-behaviour offline RSs (i.e., DCMF and NMTR), for the comparisons with our
proposed MbSRS. Note that no multi-behaviour SRSs are available for the compar-
isons, as our proposed MbSRS is the first SRS to exploit multi-behaviour interactions
for streaming recommendations. To evaluate the single-behaviour SRSs w.r.t. data
streams of multi-behaviour interactions, we extract the interactions w.r.t. the primary
behaviour only for both the training process and test process of these single-behaviour
SRSs. As for the multi-behaviour offline SRSs, we adapt them to streaming scenarios
while keeping their features described in their papers. The brief introduction of these

eight baselines is as follows.

* Stream-centered Probabilistic Matrix Factorisation (SPMF) [127] is a repre-

sentative SRS that is based on the probabilistic matrix factorisation model. The

§5.3 Experiments 112

original SPMF is trained along with a ranking-based sampling strategy. How-
ever, this ranking-based sampling strategy causes long delays during the training
process, and thus is not suitable for our experimental settings, where the recom-
mendations need to be performed in a timely manner. Therefore, similar to the
practice in [150], we train SPMF with newly coming interaction data in a timely

manner.

Incremental Neural Matrix Factorisation (iNeuMF), Incremental Generalized
Matrix Factorisation iGMF) and Incremental Multiple Layer Perception (iMLP)
are three representative SRSs devised in [150] to perform streaming recommen-
dations. Note that these three SRSs are adapted from NeuMF, GMF and MLP,
respectively, all of which are originally proposed in [37]. Specifically, these
transformed approaches are trained by SGD to learn from the newly coming

interaction data incrementally in the streaming scenarios.

Incremental Deep Matrix Factorisation (iDMF) is the streaming version of Deep
Matrix Factorisation (DMF) [138], which employs a double-wing MLP structure
to better learn the user-item relations from the user-item interactions. We train
iDMF with newly coming data incrementally by SGD for streaming recommen-

dations.

Double-wing Mixture of Experts (DWMOE) [150] is a state-of-the-art SRS that
employs the mixture of experts to accurately learn user preferences and item
characteristics for more accurate recommendations. Note that, in its original
paper, DWMOE is trained using different methods in different scenarios, while

we train DWMOoE with newly coming interaction data only for fair comparisons.

Deep Collective Matrix Factorisation (DCMF) [77] is a state-of-the-art multi-
behaviour offline RS that enhances CMF [100] with the deep learning technique,
and thus can capture the complex and non-linear user-item relations from multi-

behaviour interactions. The original DCMF is devised to be jointly trained with

§5.3 Experiments 113

interactions w.r.t. all behaviour types, and thus is not suitable for our experi-
mental settings where interactions are received one-by-one and in random order.
Therefore, we adapt DCMF to streaming scenarios by decoupling its training
process, so that it can be trained with the interactions w.r.t. each behaviour type

independently.

* Neural Multi-task Recommendation (NMTR) [28] is a state-of-the-art multi-
behaviour offline RS, which utilises a multi-task learning technique for the of-
fline recommendations with multi-behaviour interactions. The original NMTR
needs to be trained with interactions w.r.t. all behaviour types based on the pri-
ority level (e.g., a purchase behaviour must be preceded by a view behaviour).
Thus, the original NMTR is not suitable for our experimental settings where the
interactions of different behaviours are received in an arbitrary order. To adapt
NMTR to our experimental settings, we tailor its cascaded prediction module,
so that NMTR can be independently trained with the interactions w.r.t. each be-
haviour type. In addition, inspired by the practice in its original paper, we equip
NMTR with NeuMF for delivering the best performance in our experimental

settings.

Note that we have not considered some earlier SRSs, including eAls [38] and RCD
[15], as baselines, since they have been significantly outperformed by DWMOoE [150],
which has been employed as our baseline. As for the ensemble learning based single-
behaviour SRSs, such as OCFIF [140] and STS-AEL [149], they rely on ensembling
multiple individual recommendation models to improve the recommendation accura-
cies, and thus are not suitable to serve as our baselines. In addition, some recently
proposed multi-behaviour offline RSs, such as EHCF [7] and MATN [133], have ei-
ther not been considered as baselines, as they are essentially devised for the offline
scenarios, and cannot be well adapted to streaming scenarios while keeping their fea-
tures described in their papers.

Simplified Versions of MbSRS. To clearly demonstrate the contributions of all three

§5.3 Experiments 114

components of MbSRS, i.e., MbLM, AMN and UPMM, we have devised six sim-
plified versions of MbSRS and conducted experiments to evaluate these simplified
versions for the ablation analysis. Specifically, each of these six simplified versions
simplifies or replaces one target component of MbSRS while keeping the other two
components unchanged to verify the effectiveness of the target component. More de-

tails about these six simplified versions are introduced as follows.

* MbSRS_MbLM BsE and MbSRS MbLM SE are both devised to verify the
effectiveness of MbLM. The original MbLM employs shared embeddings and
behaviour-specific embeddings for users (or items) to learn shared user prefer-
ences (or item characteristics) and behaviour-specific user preferences (or item
characteristics), respectively. For comparisons, MbSRS_MbLM BsE employs
the behaviour-specific embeddings only and MbSRS_MbLM _SE employs the

shared embeddings only for learning user preferences and item characteristics.

* MbSRS_AMN_AVG and MbSRS_AMN_MAX are both devised to verify the
effectiveness of AMN, which represents the long-term user preferences by com-
bining the embeddings of historical items with an attentive method. Specifically,
MbSRS_AMN_AVG combines the embeddings of historical items simply with
an average-pooling layer, while MbSRS_AMN_MAX combines these embed-

dings simply with a max-pooling layer.

 MbSRS_UPMM _AVG and MbSRS _UPMM _MAX are both devised to verify
the effectiveness of UPMM, which merges the short-term user preferences and
long-term user preferences with a gated merging process. Specifically, Mb-
SRS_UPMM_AVG replaces UPMM with an average-pooling layer to merge
the short-term and long-term user preferences, while MbSRS_UPMM _MAX re-

places UPMM with a max-pooling layer to conduct this merging process.

Parameter Setting. For fair comparisons, the baseline RSs are first initialised with

the parameters reported in their papers and then tuned on our datasets and evaluation

§5.3 Experiments 115

Table 5.2: Performance comparison for MbSRS (results on Beibei)

Dataset Beibei

Metric HR@5 | NDCG@5 | HR@10 | NDCG@10
SPMF 0.338 0.266 0.390 0.283
Single-behaviour i.GMF 0.356 0.276 0.403 0.301
streaming . iMLP 0.461 0.391 0.516 0.409
baseline iNeuMF 0.461 0.390 0.518 0.408
iDMF 0.470 0.392 0.526 0.410
DWMOoE 0.475 0.402 0.534 0.418
Multi-behaviour DCMF 0.515 0.421 0.618 0.449
offline baseline NMTR 0.531* 0.432%* 0.633* 0.465%
MbSRS_MbLM _BsE 0.439 0.365 0.493 0.382
Simplified MbSRS_MbLM_SE 0.552 0.448 0.656 0.481
version of MbSRS_AMN_AVG 0.553 0.454 0.659 0.488
our MbSRS MbSRS_AMN_MAX | 0.535 0.434 0.639 0.467
MbSRS_UPMM_AVG | 0.534 0.436 0.638 0.470
MbSRS_UPMM_MAX | 0.537 0.430 0.647 0.466
Full version of our MbSRS 0.559 0.461 0.665 0.495
Improvement perfzentage Qver the 597% 6.71% 5.06% 6.45%

best-performing baseline

policy to achieve the best performance. As for our proposed MbSRS, we empirically
initialise its weight matrixes with the Glorot initialiser [30] and initialise the bias vec-
tors with zeros for neural network layers. Moreover, we adopt the Adam optimiser
[53] to more effectively train MbSRS with the learning rate of 0.001. Furthermore,
to achieve the best performance, we set the sizes of shared embeddings to 64 for all
three datasets; and set the sizes of behaviour-specific embeddings to 64 for the Taobao
dataset and Tmall dataset, and to 32 for the Beibei dataset. As for the memory size, it
is set to 100 for all three datasets. Note that, these embedding sizes and the memory
size are set based on the results from Experiment 3 and Experiment 4, respectively. In
addition to these general settings, specific settings for a certain experiment are intro-

duced in the first part of the corresponding content for that experiment.

§5.3 Experiments 116

Table 5.3: Performance comparison for MbSRS (results on Taobao)

Dataset Taobao
Metric HR@5 | NDCG@5 | HR@10 | NDCG@10

SPMF 0.068 0.044 0.122 0.061

Single-behaviour i.GMF 0.072 0.047 0.126 0.064
streaming . iMLP 0.158 0.108 0.218 0.128
baseline iNeuMF 0.161 0.112 0.222 0.132
iDMF 0.156 0.108 0.221 0.129

DWMoE 0.160 0.115 0.226 0.134

Multi-behaviour DCMF 0.171 0.124 0.248 0.142
offline baseline NMTR 0.177* 0.126* 0.254* 0.151*
MbSRS_MbLM _BsE 0.142 0.097 0.212 0.120

L. MbSRS_MbLM_SE 0.185 0.129 0.263 0.155

Simplified

version of MbSRS_AMN_AVG 0.190 0.133 0.266 0.158
our MbSRS MbSRS_AMN__MAX | 0.194 0.136 0.27 0.161
MbSRS_UPMM_AVG | 0.189 0.133 0.262 0.157
MbSRS_UPMM_MAX | 0.181 0.128 0.255 0.152

Full version of our MbSRS 0.198 0.141 0.276 0.167
Improvement percentage over the 11.86% | 11.90% | 8.66% | 10.60%

best-performing baseline

5.3.2 Performance Comparison and Analysis

Experiment 1: Performance Comparison with Baselines (for RQ1)

Setting. To answer RQ1, in this experiment, we compare our proposed MbSRS
with all eight baselines, including six single-behaviour streaming ones and two multi-
behaviour offline ones on all three datasets.

Result. As Tables 5.2 to 5.4 demonstrate, on all three datasets, our proposed MbSRS
delivers the highest recommendation accuracies (marked with the bold font). Specifi-
cally, the improvement percentages of MbSRS over the best-performing baseline (with
the results marked by ‘*’), i.e., NMTR, on each dataset are introduced in the last rows,
ranging from 5.27% (on Beibei) to 11.86% (on Taobao) with an average of 8.72%
w.r.t. HR@35, ranging from 6.71% (on Beibei) to 12.43% (on Tmall) with an average
of 10.35% w.r.t. NDCG @5, ranging from 5.06% (on Beibei) to 8.66% (on Tmall) with
an average of 6.76% w.r.t. HR@10 and ranging from 6.45% (on Beibei) to 10.72%
on (Taobao) with an average of 9.26% w.r.t. NDCG @ 10. Moreover, Tables 5.2 to 5.4

§5.3 Experiments 117

Table 5.4: Performance comparison for MbSRS (results on Tmall)

Dataset Tmall
Metric HR@5 | NDCG@5 | HR@10 | NDCG@10
SPMF 0.089 0.058 0.147 0.076
Single-behaviour i.GMF 0.097 0.064 0.157 0.083
streaming . iMLP 0.444 0.333 0.549 0.367
baseline iNeuMF 0.450 0.337 0.569 0.371
iDMF 0.461 0.341 0.567 0.375
DWMOoE 0.466 0.345 0.572 0.382
Multi-behaviour DCMF 0.473 0.352 0.589 0.390
offline baseline NMTR 0.488%* 0.362% 0.609* 0.401%*
MbSRS_MbLM _BsE 0.295 0.198 0.437 0.244
Simplified MbSRS_MbLM_SE 0.502 0.377 0.627 0.418
version of MbSRS_AMN_AVG 0.527 0.398 0.642 0.436
our MbSRS MbSRS_AMN__MAX | 0.522 0.394 0.638 0.433
MbSRS_UPMM_AVG | 0.512 0.384 0.637 0.425
MbSRS_UPMM_MAX | 0.513 0.377 0.639 0.418
Full version of our MbSRS 0.532 0.407 0.649 0.444
Improvement perf:entage over the 9.02% 12.43% 6.57% 10.72%
best-performing baseline

show that multi-behaviour RSs consistently outperform the single-behaviour RSs in
all the cases.

Analysis. The superiority of our proposed MbSRS can be mainly explained from
the following three aspects, i.e., 1) our proposed MbLM accurately learns the short-
term user preferences and stable item characteristics via both shared embeddings (for
enhancing the modelling of the primary behaviour with the auxiliary ones) and the
behaviour-specific embeddings (for highlighting the unique latent features w.r.t. the
primary behaviour) in the streaming scenarios; 2) our proposed AMN elaborately rep-
resents the long-term preferences of users with their interacted (w.r.t. all behaviour
types) items via an attentive method; and 3) our proposed UPMM effectively merges
the short-term user preferences learnt from MbLLM and the long-term user preferences
learnt from AMN via a gated merging process. By learning the relevance scales of
between these well-learnt user preferences and item characteristics, MbSRS achieves

significantly higher recommendation accuracies than the baselines do.

§5.3 Experiments 118

Moreover, the advantages of multi-behaviour RSs over the single-behaviour RSs
lie in that the multi-behaviour ones are able to incorporate more sufficient multi-
behaviour interactions to enhance the recommendations w.r.t. the primary behaviour.
This practice benefits addressing the data sparsity problem suffered by the single-
behaviour RSs and caused by the limited number of single-behaviour interactions, and
thus leads to higher accuracies of streaming recommendations.

Experiment 2: Ablation Analysis (for RQ2)

Setting. To answer RQ2, in this experiment, we compare all six simplified versions
of our proposed MbSRS with the full version to verify the effectiveness of all three
components: MbLM, AMN and UPMM in MbSRS, on all three datasets.

Results. As presented in Tables 5.2 to 5.4, the full version of MbSRS outperforms
all the simplified versions in all the cases. Moreover, the simplified version Mb-
SRS_MbLM_BsE performs even much worse than other simplified versions.
Analysis. These experimental results verify that MbLM, AMN and UPMM are all es-
sential for delivering accurate streaming recommendations. Specifically, MbSRS out-
performs MbSRS_MbLM _SE and MbSRS_MbLM BsE, as MbLM accurately learns
the short-term user preferences and stable item characteristics. Additionally, Mb-
SRS delivers more accurate streaming recommendations than MbSRS_AMN_AVG
and MbSRS_AMN _MAX do, since AMN effectively maintains the long-term user
preferences. Besides, MbSRS achieves higher recommendation accuracies than Mb-
SRS_UPMM_AVG and MbSRS_UPMM _MAX do, because UPMM wisely merges the
short-term user preferences and long-term user preferences. In addition, the reason
for the unsatisfactory recommendation accuracies achieved by MbSRS_MbLM _BsE is
that it fails to leverage the shared embeddings to exploit the interactions w.r.t. auxiliary
behaviours for improving the recommendation accuracies. This practice of exploiting
the single-behaviour interactions only significantly reduces the accuracies of stream-
ing recommendations.

Experiment 3: Effect of Embedding Sizes (for RQ3)

Setting. To answer RQ3, in this experiment, we evaluate our proposed MbSRS with

§5.3 Experiments 119

020,
0 0.19 |
Q0.18 | 4
T 0.17 9

0.16
64

S
Re

2 16
Ofe 8 8
&

gize

(e) HR@5 on Taobao

8 W
/?@ Ofe 1 6 e 32
6‘8 8 8 5'\16 o

(b) NDCG@5 on Beibei

NDCG@10
OOOO0OOO

(d) NDCG @10 on Beibei (h) NDCG @10 on Taobao (1) NDCG@10 on Tmall

Figure 5.2: Effect of the size of behaviour-specific Embedding (BsE) and the size of
Shared Embedding (SE).

§5.3 Experiments 120

different sizes (i.e., 8, 16, 32 and 64) of both the Shared Embeddings (SE) and the
behaviour-specific Embeddings (BsE) to compare the overall recommendation accu-
racies delivered by MbSRS with various embedding sizes.

Result. Fig. 5.2 demonstrates that larger sizes of the shared embeddings benefit im-
proving the recommendation accuracies delivered by MbSRS in all the cases. As for
the behaviour-specific embeddings, the recommendation accuracies increase consis-
tently with larger sizes of the behaviour-specific embeddings on the Taobao dataset
(see Figs. 5.2e to 5.2h) and Tmall dataset (see Figs. 5.2i to 5.21), while peak when the
sizes of the behaviour-specific embeddings reach 32 on the Beibei dataset (see Figs.
5.2ato 5.2d).

Analysis. Larger sizes of the shared embeddings help better represent the shared user
preferences and shared item characteristics, and thus benefit more effectively leverag-
ing the interactions w.r.t. the auxiliary behaviours for improving the recommendation
accuracies w.r.t. the primary behaviour. This explains why larger sizes of the shared
embeddings lead to higher recommendation accuracies in all the cases. Moreover,
this reason also partially explains the effect of the sizes of behaviour-specific embed-
dings. That is larger sizes of behaviour-specific embeddings generally benefit more
accurately representing the behaviour-specific user preferences, and thus commonly
lead to higher recommendation accuracies. However, too large sizes of embeddings
might cause the overfitting problem in some cases, such as the case when the sizes
of behaviour-specific embeddings reach 64 on the Beibei dataset, which reduces the

recommendation accuracies.

Experiment 4: Effect of the Memory Size (for RQ4)

Setting. To answer RQ4, in this experiment, we allow the memory size to range from
40 to 140 with an interval of 20 to compare the overall recommendation accuracies
delivered by MbSRS with different memory sizes.

Result. As Fig. 5.3 illustrates, the recommendation accuracies delivered by MbSRS

first increase with larger memory sizes, and then keep stable after the memory size

§5.3 Experiments 121

\—*—Beibei “-Taobao - Tmall

A 046 4 »—+——+—%

OQ.SFWA—A—% 0.15‘?—&/&%_%
0.18 0.13 ! !

40 60 80 100 120 140 40 60 80 100 120 140
memory size memory size

o 0494 % —+— 1
— 0.47
O] 0'459———6———6’9_9“@
Q0.43]

ZO.17WA

0.15

40 60 80 100 120 140 40 60 80 100 120 140
memory size memory size

Figure 5.3: Effect of the memory size.

exceeds 100 on all three datasets w.r.t. all four evaluation metrics.

Analysis. Larger memory sizes benefit memorising more historical items, which com-
prise richer long-term user preferences. This explains why recommendation accuracies
improve with increasing memory sizes when these sizes are small. However, too many
historical items (e.g., more than 100 items in our cases) might exceed the modelling
capability of AMN, and thus do not benefit further improving the recommendation ac-

curacies.

Experiment 5: Effect of the Number of Behaviour Types (for RQ5)

Setting. To answer RQS, in this experiment, we let MbSRS incorporate different num-
bers of behaviour types to compare the overall recommendation accuracies achieved
by MbSRS with different numbers of behaviour types. Specifically, the number of be-
haviour types is set from 1 to the total number (i.e., two for Beibei, four for Taobao and

three for Tmall) of behaviour types contained in the corresponding datasets. Moreover,

§5.4 Chapter Summary 122

\ Bl One B Two MM Three Bl Four
0.55¢1 0.45
S
0.5 0.4
& 15}
i Q.35]
0.15* 0.1
Beibei Taobao Tmall Beibei Taobao Tmall
datasets datasets
0.5
0.65
06 © 0.45
O ™~
= ® 04
®fesl O
% 0.55 8
0.2t 0.1
Beibei Taobao Tmall Beibei Taobao Tmall
datasets datasets

Figure 5.4: Effect of the number of behaviour types.

we add the behaviour types based on their priority levels; for example, the purchase
behaviour is the first behaviour type we add while the view behaviour is the last one
we add for all three datasets.

Result. Fig. 5.4 demonstrates that our proposed MbSRS achieves higher recommen-
dation accuracies when incorporating more behaviour types in all the cases.
Analysis. Incorporating more behaviour types allows MbSRS to exploit more suffi-
cient multi-behaviour interactions to better learn the user-item relations, and thus leads

to higher accuracies of streaming recommendations.

5.4 Chapter Summary

In this chapter, we have proposed the first Multi-behaviour Streaming Recommender

System, called MbSRS, for delivering accurate streaming recommendations by utilis-

§5.4 Chapter Summary 123

ing data streams of multi-behaviour interactions. First, we propose a Multi-behaviour
Learning Module (MbLLM) to wisely exploit multi-behaviour interactions for learn-
ing the short-term user preferences and stable item characteristics. Then, we propose
Attentive Memory Network (AMN) to effectively maintain the long-term user prefer-
ences w.r.t. the primary behaviour. After that, the short-term user preferences learnt
by MbLLM and the long-term user preferences learnt by AMN are carefully merged by
our proposed User Preference Merging Module (UPMM). Finally, the recommenda-
tions are delivered by learning the relevance scales between the learnt user preferences
and the learnt item characteristics. The superiority of our proposed MbSRS has been

verified by extensive experiments on three real-world datasets.

Chapter 6

Conclusions and Future Work

6.1 Conclusions

Recommender Systems (RSs) have been widely studied for improving the satisfaction
of users and increasing the revenue of enterprises. However, the conventional offline
RSs cannot well deal with the ubiquitous data stream for streaming recommendations.
This is because the offline RSs periodically train recommendation models with large-
volume historical interaction data, and thus cannot well capture the latest user prefer-
ences embedded in the recent interaction data. Therefore, single-behaviour SRSs have
emerged to train recommendation models with newly coming data of single-behaviour
interactions in a timely manner, and thus capture the latest user preferences for accu-
rate streaming recommendations.

Although efforts have been made, the following three challenges still need to be
well addressed to further improve the recommendation accuracies of single-behaviour
SRSs; they are CH1: ‘how to capture long-term user preferences while addressing
the preference drift issue’, CH2: ‘how to well handle the heterogeneity of both users
and items’ and CH3: ‘how to well deal with the underload problem and the overload
problem’. Moreover, to the best of our knowledge, no multi-behaviour SRSs have been
reported in the literature. Nevertheless, multi-behaviour interactions are pervasive in
streaming scenarios and reflect the users’ preferences for items. Thus, multi-behaviour
interactions should be well leveraged for further improving the accuracies of streaming

recommendations. This leads to the fourth challenge in this research area — CH4:

124

§6.1 Conclusions 125

‘how to wisely leverage multi-behaviour interactions for improving the accuracies of

streaming recommendations’.

To address these four challenges, this thesis has proposed the following three ap-

proaches:

1y

2)

Targeting CH1 and CH2, in Chapter 3, we have proposed a Variational and
Reservoir-enhanced Sampling based Double-Wing Mixture-of-Experts frame-
work, called VRS-DWMOE, to deliver accurate streaming recommendations
w.r.t. data streams of single-behaviour interactions. Specifically, we first pro-
pose reservoir-enhanced sampling to wisely complement new data with sam-
pled historical data to serve as the training data for capturing long-term user
preferences while addressing the preference drift issue. Then, we propose a
double-wing mixture-of-experts model to learn the heterogeneous user prefer-
ences and item characteristics with two mixture-of-experts models (i.e., mixture-
of-user-experts model and mixture-of-item-experts model), respectively, from
the prepared training data. After that, we make recommendations by merging
these learned user preferences and item characteristics. The superiority of VRS-
DWMOE has been verified by extensive experiments that are conducted on three

real-world datasets.

Targeting CH1 and CH3, in Chapter 4, we have proposed a Stratified and Time-
aware Sampling based Adaptive Ensemble Learning framework, called STS-
AEL, to improve the accuracies of streaming recommendations w.r.t. data streams
of single-behaviour interactions. Specifically, our proposed STS-AEL captures
long-term user preferences while addressing the preference drift issue through
wisely sampling from both the historical data and new data with an elaborately
devised stratified and time-aware sampler. Moreover, incorporating the histor-
ical data also benefits addressing the underload problem. Furthermore, STS-
AEL addresses the overload problem by first training the multiple individual

models concurrently, and then fusing the results of these trained models with a

§6.2 Future Work 126

sequential adaptive fusion approach. Extensive experiments conducted on three
real-world datasets have demonstrated that our proposed STS-AEL significantly

outperforms the state-of-the-art approaches.

3) Targeting CH4, in Chapter 5, we have proposed the first Multi-behaviour Stream-
ing Recommender System, called MbSRS, to wisely leverage multi-behaviour
interactions for further improving the recommendation accuracies in streaming
scenarios. Specifically, by wisely exploiting data streams of multi-behaviour
interactions, our proposed MbSRS first accurately captures the short-term user
preferences and stable item characteristics, then effectively maintains the long-
term user preferences via an attentive memory network, and afterwards elabo-
rately merges the learned short-term user preferences and long-term preferences
through a gated merging process. Extensive experiments conducted on three
real-world datasets have demonstrated that our proposed MbSRS significantly

outperforms the state-of-the-art approaches.

6.2 Future Work

This thesis has mainly focused on studying the single-behaviour and multi-behaviour
SRSs to improve the recommendation accuracies in streaming scenarios. We have pro-
posed three approaches to address the four challenges of streaming recommendations.
Moreover, extensive experiments have been conducted to demonstrate the effective-
ness and superiorities of our proposed three approaches. However, the following three

issues still need to be well studied in the future work.

1) Chapter 3 proposes a double-wing mixture-of-experts framework for streaming
recommendations. Currently, all the individual expert models are employed for
dealing with every interaction, even if some of these individual expert models
do not specialise in some types of interactions. In the future, researchers should

propose approaches that allow individual expert models to deal with their spe-

§6.2 Future Work 127

2)

3)

cialised types of interactions. Through this way, we might not only further im-
prove the recommendation accuracies by reducing the negative interference of
unspecialised expert models, but also possibly more efficiently deal with data
streams as specialised experts can concurrently deal with multiple types of in-

teractions.

Chapter 4 proposes an ensemble learning based framework, which ensembles
multiple individual recommendation models to learn the user-item relations from
data streams in parallel. Currently, this framework ensembles the same types
of individual recommendation models only, and its effectiveness might be re-
stricted by such single types of individual models. In the future, approaches
should be proposed to elaborately ensemble multiple complementary types of
individual models, so that these individual models can better reinforce one an-

other for delivering more accurate streaming recommendations.

Chapter 5 proposes a multi-behaviour SRS to address the long-standing data
sparsity issue by incorporating multiple behaviour types. However, this data
sparsity issue might not be completely solved by this proposed multi-behaviour
SRS, as the interactions w.r.t. all available behaviour types might be still quite
sparse. In the future, researchers could consider leveraging user profiles, item
properties and even social relations to further address this data sparsity issue,

and thus further improve the accuracies of streaming recommendations.

Appendix A

The Notations in the Thesis

Table A.1: The important notations in Chapter 3
Notation Description
o the proportion of SS,,.,, in SS
0 the loss coefficient
) the ratio of the sampling size from R
a the activation function
bs the batch size for training
NCY the newly received data from data stream
Pu and qy the user embedding, and the item embedding
the vector of user preferences,
Puand Qu and the vector of il'zem characteristics
RCY IESErvoir, i.'e., a §et that contains
representative historical data
sp, and sp, data processing speed, and data receiving speed
SS1is CR the set of sampled data from R

U= {ul,u2, ,um}

the set of users

V = {Ul,Ug, ...,Un}

the set of items

W and b

the weight matrix, and the bias vector

Yij € Y

the notation that indicates whether an interaction
exists, i.e., it is 1 if an interaction exists between
user u; and item v;, and O otherwise

the matrix of interactions between U and V

[* |

the size of a set

[1]

the L{ norm of a vector

[112

the Lo norm of a vector

[a; b]

the concatenation of vector a and vector b

128

129

Table A.2: The important notations in Chapter 4

Notation Description

o the proportion of SS,,.,, in SS

Mew and Ajeq the decay ratio for N, and the decay ratio for R

a the activation function

acc the recommendation accuracy

bs the size of training batch

ok the estimated confidence of imy, for the prediction
v of the interaction between user v and item v

fwy the fusion weights for imy,

im the k£ individual model

IM = {imy, imy, ..., im, } the set of individual models

m the number of users

n the number of items

NCY the newly received data from data stream

0 the number of individual models

Pu and qy the user embedding, and the item embedding

Pk - {<CLCC]1€, ulka Ulk>v

k
: ,<(ICC§,U9 7U9k>}

the set of recommendation accuracies from im; and
corresponding user-item pairs in last test iteration

reservoir, i1.e., a set that contains

RCY L
representative historical data
spp and sp, data processing speed, and data receiving speed
the set of top e tuples from P, those have most
Si C Py,

similar user-item pairs to the target user-item pair

SS,cv € N and SS;,;s C R

the set of sampled data from N, and the set of
sampled data from R

U= {ul,u2, ,um}

the set of users

V = {’Ul,Ug, ...,’Un}

the set of items

W and b the weight matrix, and the bias vector
the notation that indicates whether an interaction

vi; €Y exists, i.e., it is 1 if an interaction exists between
user u; and item v;, and O otherwise

Y € R™" the matrix of interactions between U and V

1 the transpose of a vector

| * | the size of a set

| *]]1 the L, norm of a vector

| *]2 the L, norm of a vector

[a; b] the concatenation of vector a and vector b

130

Table A.3: The important notations in Chapter 5

Notation Description

B = {b1,b,...,b;5} | the set of behavior types

n the number of behaviour types

Pu and qy the user embedding, and the item embedding

U = {uy,us, ..., ujy} | the set of users

V = {vi,vs,...,vjv|} | the set of items

W and b the weight matrix, and the bias vector
the notation that indicates whether an interaction

i w.r.t. the i*" behaviour exists, i.e., it is 1 if this inter-
action exists, and O otherwise

Ui the predicted value of y;

xT the transpose of a vector

| * | the size of a set

| * [|2 the L, norm of a vector

[a; b] the concatenation of vector a and vector b

Appendix B

The Acronyms in the Thesis

Table B.1: Main acronyms in all the chapters (part 1)

Acronyms Explanations

AEL adaptive ensemble learning

AMN attentive memory network

ASLI attentive sequential model of latent intent

AutoRec autoencoder-based recommender system

AVG averaging

BPR Bayesian personalised ranking

SII-{I;’a?;zC’H 4 challenges 1, 2, 3 and 4

CMF collective matrix factorisation

DCMF deep collective matrix factorisation

DIPN deep intent prediction network

DL-SBORS deeP learning-based single-behaviour
offline recommender system

DMF deep matrix factorisation

DWMOoE double-wing mixture of experts

eAls element-wise alternating least squares

FW fusion weights

GMF generalised matrix factorisation

GNN graph neural network

HR hit ratio

iBPR adapted Bayesian personalised ranking

131

132

Table B.2: Main acronyms in all the chapters (part 2)

Acronyms | Explanations

ALS alternating least square

ICF incremental collaborative filtering

1GMF adapted generalised matrix factorisation

IMLP adapted multiple layer perceptron

iNeuMF adapted neural matrix factorisation

“TPMF-CE adap'ted time.wir?dow-based probe%bilistic '
matrix factorisation for collaborative filtering

MATN memory-augmented transformer network

MbLM multi-behaviour learning module

MbORS multi-behaviour offline recommender system

MbSRS multi-behaviour streaming recommender system

ME-SBORS ma‘FriX factorisation-based single-behaviour
offline recommender system

MLP multiple layer perceptron-based

M-MLP multi-branch multi-layer perceptron

MoE mixture of experts

MolE mixture of item experts

MoUE mixture of user experts

NDCG normalised discounted cumulative gain

NDO new data only

NeuMF neural matrix factorisation

NMRN neural memory recommender network

133

Table B.3: Main acronyms in all the chapters (part 3)

Acronyms Explanations
OCFIF online collaborative filtering with implicit feedback
ORS offline recommender system
PMF probabilistic matrix factorisation
RCD randomised block coordinate descent
RNN recurrent neural network
RQ research question
RR reservoir-enhanced random sampling
RS recommender system
SBORS single-behaviour offline recommender system
SBSRS single-behaviour streaming recommender system
SGD stochastic gradient descent
SPMF stream-centred probabilistic matrix factorisation
SRS streaming recommender system
STS stratified and time-aware sampling
STS-AEL stratiﬁed and time—aware? sampling-based
adaptive ensemble learning
SVD singular value decomposition
SW sliding window
TPMF-CF time window—.based pr‘obabilistic matrix factorisation
for collaborative filtering
UPMM user preference merging module
VALS view-enhanced alternative least square
VRS variational and reservoir-enhanced sampling
VRS-DWMoE variational and reservoir-enhanced sampling-based

double-wing mixture of experts

Bibliography

[1]

(2]

[3]

[4]

S. Amari. Backpropagation and stochastic gradient descent method. Neuro-

computing, 5(3):185-196, 1993.
L. Breiman. Bagging predictors. Mach. Learn., 24(2):123-140, 1996.

P. Biihlmann, B. Yu, et al. Analyzing bagging. The Annals of Statistics,
30(4):927-961, 2002.

I. Cantador, A. Bellogin, and D. Vallet. Content-based recommendation in so-
cial tagging systems. In Proceedings of the 4th ACM Conference on Recom-
mender Systems, pages 237-240, 2010.

B. Chandramouli, J. J. Levandoski, A. Eldawy, and M. F. Mokbel. Stream-
rec: a real-time recommender system. In Proceedings of the ACM SIGMOD

International Conference on Management of Data, pages 1243—-1246, 2011.

S. Chang, Y. Zhang, J. Tang, D. Yin, Y. Chang, M. A. Hasegawa-Johnson, and
T. S. Huang. Streaming recommender systems. In Proceedings of the 26th

International Conference on World Wide Web, Perth, pages 381-389, 2017.

C. Chen, M. Zhang, Y. Zhang, W. Ma, Y. Liu, and S. Ma. Efficient hetero-
geneous collaborative filtering without negative sampling for recommendation.
In Proceedings of the 34th AAAI Conference on Artificial Intelligence, pages
19-26, 2020.

J. Chen, H. Li, Q. Xie, L. Li, and Y. Liu. Streaming recommendation algorithm
with user interest drift analysis. In Proceedings of the 4th Asia-Pacific Web and
Web-Age Information Management Joint International Conference on Web and

Big Data, volume 11642, pages 121-136, 2019.

134

Bibliography 135

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

L. Chen, G. Chen, and F. Wang. Recommender systems based on user reviews:

the state of the art. User Model. User Adapt. Interact., 25(2):99-154, 2015.

W. Chen, Z. Niu, X. Zhao, and Y. Li. A hybrid recommendation algorithm
adapted in e-learning environments. World Wide Web, 17(2):271-284, 2014.

H. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Ander-
son, G. Corrado, W. Chai, M. Ispir, R. Anil, Z. Haque, L. Hong, V. Jain, X. Liu,
and H. Shah. Wide & deep learning for recommender systems. In Proceedings

of the 1st Workshop on Deep Learning for Recommender Systems, pages 7-10,
2016.

F. Chu and C. Zaniolo. Fast and light boosting for adaptive mining of data
streams. In Proceedings of the 8th Pacific-Asia Conference on Advances in

Knowledge Discovery and Data Mining, volume 3056, pages 282-292, 2004.

S. Dara, C. R. Chowdary, and C. Kumar. A survey on group recommender

systems. J. Intell. Inf. Syst., 54(2):271-295, 2020.

Y. Deldjoo, T. D. Noia, and F. A. Merra. Adversarial machine learning in rec-
ommender systems: State of the art and challenges. CoRR, abs/2005.10322,
2020.

R. Devooght, N. Kourtellis, and A. Mantrach. Dynamic matrix factorization
with priors on unknown values. In Proceedings of the 21th ACM International

Conference on Knowledge Discovery and Data Mining, pages 189-198, 2015.

E. Diaz-Aviles, L. Drumond, L. Schmidt-Thieme, and W. Nejdl. Real-time top-
n recommendation in social streams. In Proceedings of the 6th ACM Conference

on Recommender Systems, pages 59-66, 2012.

J. Ding, F. Feng, X. He, G. Yu, Y. Li, and D. Jin. An improved sampler for
bayesian personalized ranking by leveraging view data. In Proceedings of the

27th International World Wide Web Conferences, pages 13—14, 2018.

Bibliography 136

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

J. Ding, G. Yu, X. He, F. Feng, Y. Li, and D. Jin. Sampler design for bayesian
personalized ranking by leveraging view data. [EEE Transactions on Knowl-

edge and Data Engineering, 2019.

J. Ding, G. Yu, X. He, F. Feng, Y. Li, and D. Jin. Sampler design for bayesian
personalized ranking by leveraging view data. IEEE Transactions on Knowl-

edge and Data Engineering, 2019.

J. Ding, G. Yu, X. He, Y. Quan, Y. Li, T. Chua, D. Jin, and J. Yu. Improving
implicit recommender systems with view data. In Proceedings of the Twenty-
Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 3343-3349, 2018.

J. Ding, G. Yu, Y. Li, X. He, and D. Jin. Improving implicit recommender
systems with auxiliary data. ACM Trans. Inf. Syst., 38(1):11:1-11:27, 2020.

M. Dong, FE. Yuan, L. Yao, X. Xu, and L. Zhu. MAMO: memory-augmented
meta-optimization for cold-start recommendation. In Proceedings of the 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Virtual
Event, pages 688—697, 2020.

X. Dong, Z. Yu, W. Cao, Y. Shi, and Q. Ma. A survey on ensemble learning.
Frontiers Comput. Sci., 14(2):241-258, 2020.

S. Dzeroski and B. Zenko. Is combining classifiers with stacking better than

selecting the best one? Mach. Learn., 54(3):255-273, 2004.

Y. Freund, R. Schapire, and N. Abe. A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14(771-780):1612, 1999.

Y. Freund and R. E. Schapire. Experiments with a new boosting algorithm. In

Proceedings of the 13th International Conference on Machine Learning, pages

148-156, 1996.

Bibliography 137

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line
learning and an application to boosting. J. Comput. Syst. Sci., 55(1):119-139,
1997.

C. Gao, X. He, D. Gan, X. Chen, F. Feng, Y. Li, T. Chua, and D. Jin. Neural
multi-task recommendation from multi-behavior data. In Proceedings of the
35th IEEE International Conference on Data Engineering, pages 1554—1557,
2019.

D. Gligorijevic, J. Gligorijevic, A. Raghuveer, M. Grbovic, and Z. Obradovic.
Modeling mobile user actions for purchase recommendation using deep mem-
ory networks. In Proceedings of the 41st International ACM SIGIR Conference
on Research & Development in Information Retrieval, pages 1021-1024, 2018.

X. Glorot and Y. Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the 13th International Conference on

Artificial Intelligence and Statistics, volume 9, pages 249-256, 2010.

L. Guo, L. Hua, R. Jia, B. Zhao, X. Wang, and B. Cui. Buying or browsing?:
Predicting real-time purchasing intent using attention-based deep network with
multiple behavior. In Proceedings of the 25th ACM SIGKDD International

Conference on Knowledge Discovery & Data Mining, pages 1984—1992.

L. Guo, H. Yin, Q. Wang, T. Chen, A. Zhou, and N. Q. V. Hung. Streaming
session-based recommendation. In Proceedings of the 25th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pages 1569—
1577, 2019.

Q. Guo, E. Zhuang, C. Qin, H. Zhu, X. Xie, H. Xiong, and Q. He. A survey on
knowledge graph-based recommender systems. CoRR, abs/2003.00911, 2020.

K. Gupta, M. Y. Raghuprasad, and P. Kumar. A hybrid variational autoencoder
for collaborative filtering. CoRR, abs/1808.01006, 2018.

Bibliography 138

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

G. Han, W. Que, G. Jia, and W. Zhang. Resource-utilization-aware energy
efficient server consolidation algorithm for green computing in [IOT. J. Netw.

Comput. Appl., 103:205-214, 2018.

X. He, T. Chen, M. Kan, and X. Chen. Trirank: Review-aware explainable
recommendation by modeling aspects. In Proceedings of the 24th ACM Inter-
national Conference on Information and Knowledge Management, pages 1661—

1670, 2015.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T. Chua. Neural collaborative
filtering. In Proceedings of the 26th International Conference on World Wide
Web, pages 173182, 2017.

X. He, H. Zhang, M. Kan, and T. Chua. Fast matrix factorization for online rec-
ommendation with implicit feedback. In Proceedings of the 39th International

ACM conference on Research and Development in Information Retrieval, pages

549-558, 2016.

B. Hidasi and A. Karatzoglou. Recurrent neural networks with top-k gains for
session-based recommendations. In Proceedings of the 27th ACM International

Conference on Information and Knowledge Management, pages 843—852, 2018.

B. Hidasi, A. Karatzoglou, L. Baltrunas, and D. Tikk. Session-based recom-
mendations with recurrent neural networks. In Proceedings of the 4th Interna-

tional Conference on Learning Representations, 2016.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback
datasets. In Proceedings of the 8th IEEE International Conference on Data

Mining, pages 263-272, 2008.

H. Huang, Q. Zhang, and X. Huang. Mention recommendation for twitter with
end-to-end memory network. In Proceedings of the 26th International Joint

Conference on Artificial Intelligence, pages 1872—1878, 2017.

Bibliography 139

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

J. Huang, W. X. Zhao, H. Dou, J. Wen, and E. Y. Chang. Improving sequential
recommendation with knowledge-enhanced memory networks. In Proceedings
of the 41st International ACM SIGIR Conference on Research & Development
in Information Retrieval, pages 505-514, 2018.

Y. Huang, B. Cui, W. Zhang, J. Jiang, and Y. Xu. Tencentrec: Real-time stream
recommendation in practice. In Proceedings of the 2015 ACM SIGMOD In-
ternational Conference on Management of Data, Melbourne, pages 227-238,

2015.

M. Jakomin, Z. Bosnic, and T. Curk. Simultaneous incremental matrix factor-
ization for streaming recommender systems. Expert Syst. Appl., 160:113685,
2020.

D. Jannach, A. Manzoor, W. Cai, and L. Chen. A survey on conversational

recommender systems. CoRR, abs/2004.00646, 2020.

K. Ji, Y. Yuan, R. Sun, K. Ma, Z. Chen, and J. Liu. A bagging-based ensemble
method for recommendations under uncertain rating data. In Proceedings of the
2018 International Conference on Security, Pattern Analysis, and Cybernetics,

pages 446-450, 2018.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom. A convolutional neural net-
work for modelling sentences. In Proceedings of the 52nd Annual Meeting of

the Association for Computational Linguistics, pages 655-665, 2014.

E. Kalyvianaki, M. Fiscato, T. Salonidis, and P. R. Pietzuch. THEMIS: fair-
ness in federated stream processing under overload. In Proceedings of the 42th

International Conference on Management of Data, pages 541-553, 2016.

A. A. Kardan and M. Ebrahimi. A novel approach to hybrid recommendation
systems based on association rules mining for content recommendation in asyn-

chronous discussion groups. Inf. Sci., 219:93-110, 2013.

Bibliography 140

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

B. Kepes. 30% of servers are sitting "Comatose” according to research. Forbes,

2015.

D. H. Kim, C. Park, J. Oh, S. Lee, and H. Yu. Convolutional matrix factorization
for document context-aware recommendation. In Proceedings of the 10th ACM

Conference on Recommender Systems, pages 233-240, 2016.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In

Proceedings of the 3rd International Conference on Learning Representations,

pages 1-15, 2015.

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD International Con-

ference on Knowledge Discovery and Data Mining, pages 426—434, 2008.

Y. Koren. Collaborative filtering with temporal dynamics. In Proceedings of
the 15th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pages 447-456, 2009.

Y. Koren, R. M. Bell, and C. Volinsky. Matrix factorization techniques for

recommender systems. Computer, 42(8):30-37, 2009.

D. Krotov and J. J. Hopfield. Dense associative memory for pattern recogni-
tion. In Proceedings of the 30th Conference on Neural Information Processing

Systems, pages 1172-1180, 2016.

A. Kumar, O. Irsoy, P. Ondruska, M. Iyyer, J. Bradbury, I. Gulrajani, V. Zhong,
R. Paulus, and R. Socher. Ask me anything: Dynamic memory networks for
natural language processing. In Proceedings of the 33nd International Confer-

ence on Machine Learning, volume 48, pages 1378—1387, 2016.

S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back. Face recognition: a con-
volutional neural-network approach. IEEE Trans. Neural Networks, 8(1):98—
113, 1997.

Bibliography 141

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

B. T. Le and R. Dieng-Kuntz. A graph-based algorithm for alignment of OWL
ontologies. In Proceedings of the 2007 IEEE / WIC / ACM International Con-
ference on Web Intelligence, pages 466—469, 2007.

Y. LeCun, L. Bottou, G. B. Orr, and K. Miiller. Efficient backprop. In Neural
Networks: Tricks of the Trade - Second Edition, volume 7700, pages 9-48.
2012.

G. Lee. Cloud networking: Understanding cloud-based data center networks.
2014.

L. Lefakis and F. Fleuret. Reservoir boosting : Between online and offline
ensemble learning. In Proceedings of the 27th Annual Conference on Neural

Information Processing Systems, pages 1412-1420, 2013.

D. Li, X. Li, J. Wang, and P. Li. Video recommendation with multi-gate mixture
of experts soft actor critic. In Proceedings of the 43rd International ACM SIGIR
conference on research and development in Information Retrieval, pages 1553—

1556, 2020.

J. Li, P. Ren, Z. Chen, Z. Ren, T. Lian, and J. Ma. Neural attentive session-
based recommendation. In Proceedings of the 26th ACM on Conference on

Information and Knowledge Management, pages 1419-1428, 2017.

K. Li, X. Zhou, F. Lin, W. Zeng, B. Wang, and G. Alterovitz. Sparse online col-
laborative filtering with dynamic regularization. Inf. Sci., 505:535-548, 2019.

Y. Li, J. Song, X. Li, and W. Liu. Gated sequential recommendation with dy-
namic memory network. In Proceedings of the International Joint Conference

on Neural Networks, pages 1-8, 2019.

J. Liu, C. Shi, B. Hu, S. Liu, and P. S. Yu. Personalized ranking recommenda-

tion via integrating multiple feedbacks. In Proceedings of the 21st Pacific-Asia

Bibliography 142

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

Conference on Advances in Knowledge Discovery and Data Mining, volume

10235, pages 131-143, 2017.

P. Lops, M. de Gemmis, and G. Semeraro. Content-based recommender sys-
tems: State of the art and trends. In Recommender Systems Handbook, pages

73-105. 2011.

J. Lu, D. Wu, M. Mao, W. Wang, and G. Zhang. Recommender system appli-
cation developments: A survey. Decis. Support Syst., 74:12-32, 2015.

H. Ma. An experimental study on implicit social recommendation. In Proceed-
ings of the 36th International ACM SIGIR conference on research and develop-

ment in Information Retrieval, pages 73-82, 2013.

H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King. Recommender systems with
social regularization. In Proceedings of the Forth International Conference on

Web Search and Web Data Mining, pages 287-296, 2011.

R. Ma, X. Qiu, Q. Zhang, X. Hu, Y.-G. Jiang, and X. Huang. Co-attention
memory network for multimodal microblog’s hashtag recommendation. /EEE

Transactions on Knowledge and Data Engineering, 2019.

R. Ma, Q. Zhang, J. Wang, L. Cui, and X. Huang. Mention recommendation for
multimodal microblog with cross-attention memory network. In Proceedings of
the 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, pages 195-204, 2018.

K. G. S. Madsen and Y. Zhou. Dynamic resource management in a massively
parallel stream processing engine. In Proceedings of the 24th ACM Interna-
tional Conference on Information and Knowledge Management, pages 13-22,

2015.

J. Manotumruksa, C. Macdonald, and I. Ounis. A deep recurrent collaborative

filtering framework for venue recommendation. In Proceedings of the 26th

Bibliography 143

ACM Conference on Information and Knowledge Management, pages 1429—
1438, 2017.

[77] R.Mariappan and V. Rajan. Deep collective matrix factorization for augmented

[78]

[79]

[80]

[81]

[82]

[83]

[84]

multi-view learning. Mach. Learn., 108(8-9):1395-1420, 2019.

S. Masoudnia and R. Ebrahimpour. Mixture of experts: a literature survey.

Artif. Intell. Rev., 42(2):275-293, 2014.

S. Masoudnia and R. Ebrahimpour. Mixture of experts: a literature survey.

Artif. Intell. Rev., 42(2):275-293, 2014.

F. Mi and B. Faltings. Memory augmented neural model for incremental
session-based recommendation. In Proceedings of the Twenty-Ninth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2020, pages 2169—
2176, 2020.

T. Mikolov, S. Kombrink, L. Burget, J. Cernocky, and S. Khudanpur. Exten-
sions of recurrent neural network language model. In Proceedings of the IEEE

International Conference on Acoustics, Speech, and Signal Processing, pages

5528-5531, 2011.

J. C. Nufiez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F. Vélez. Con-
volutional neural networks and long short-term memory for skeleton-based hu-

man activity and hand gesture recognition. Pattern Recognit., 76:80-94, 2018.

N. C. Oza. Online bagging and boosting. In Proceedings of the 2005 IEEE
International Conference on Systems, Man and Cybernetics, pages 23402345,
2005.

R. Pan, Y. Zhou, B. Cao, N. N. Liu, R. M. Lukose, M. Scholz, and Q. Yang.
One-class collaborative filtering. In Proceedings of the 8th IEEE International
Conference on Data Mining, pages 502-511, 2008.

Bibliography 144

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

W. Pan, H. Zhong, C. Xu, and Z. Ming. Adaptive bayesian personalized ranking
for heterogeneous implicit feedbacks. Knowl. Based Syst., 73:173-180, 2015.

M. Papagelis, 1. Rousidis, D. Plexousakis, and E. Theoharopoulos. Incremental
collaborative filtering for highly-scalable recommendation algorithms. In Pro-
ceedings of the 15th International Symposium on Methodologies for Intelligent
Systems, volume 3488, pages 553-561, 2005.

S. Park, Y. Kim, and S. Choi. Hierarchical bayesian matrix factorization with
side information. In Proceedings of the 23rd International Joint Conference on

Artificial Intelligence, pages 1593-1599, 2013.

M. J. Pazzani and D. Billsus. Content-based recommendation systems. In The
Adaptive Web, Methods and Strategies of Web Personalization, volume 4321 of
Lecture Notes in Computer Science, pages 325-341, 2007.

I. Porteous, A. U. Asuncion, and M. Welling. Bayesian matrix factorization
with side information and dirichlet process mixtures. In Proceedings of the

24th AAAI Conference on Artificial Intelligence, 2010.

M. Quadrana, A. Karatzoglou, B. Hidasi, and P. Cremonesi. Personalizing
session-based recommendations with hierarchical recurrent neural networks. In
Proceedings of 11th ACM Conference on Recommender Systems, pages 130—
137, 2017.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR:
bayesian personalized ranking from implicit feedback. In Proceedings of the

25th Conference on Uncertainty in Artificial Intelligence, pages 452—461, 2009.

S. Rendle and L. Schmidt-Thieme. Online-updating regularized kernel matrix
factorization models for large-scale recommender systems. In Proceedings of

the 2nd ACM Conference on Recommender Systems, pages 251-258, 2008.

Bibliography 145

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

H. Roger and R. Mayer. A comprehensive survey on parallelization and elastic-

ity in stream processing. ACM Comput. Surv., 52(2):36:1-36:37, 2019.

R. Salakhutdinov and A. Mnih. Probabilistic matrix factorization. In Proceed-
ings of the 21st Annual Conference on Neural Information Processing Systems,

pages 1257-1264, 2007.

F. Scarselli, M. Gori, A. C. Tsoi, M. Hagenbuchner, and G. Monfardini. The
graph neural network model. IEEE Trans. Neural Networks, 20(1):61-80, 2009.

P. Schwab, D. Miladinovic, and W. Karlen. Granger-causal attentive mixtures
of experts: Learning important features with neural networks. In Proceedings

of the 33th AAAI Conference on Artificial Intelligence, pages 4846—4853, 2019.

S. Sedhain, A. K. Menon, S. Sanner, and L. Xie. Autorec: Autoencoders meet
collaborative filtering. In Proceedings of the 24th International Conference on

World Wide Web Companion, pages 111-112, 2015.

J. G. Silva and L. Carin. Active learning for online bayesian matrix factoriza-
tion. In Proceedings of the 18th ACM International Conference on Knowledge
Discovery and Data Mining, pages 325-333, 2012.

F. Simon. Funksvd. In https://sifter.org/simon/journal/20061211.html, 2006
(accessed December 14, 2020).

A. P. Singh and G. J. Gordon. Relational learning via collective matrix factor-
ization. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 650—658, 2008.

J. Snoek, H. Larochelle, and R. P. Adams. Practical bayesian optimization of
machine learning algorithms. In Proceedings of the 26th Annual Conference on

Neural Information Processing Systems, pages 2960-2968, 2012.

Bibliography 146

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

S. G. Soares and R. Aradjo. An on-line weighted ensemble of regressor models

to handle concept drifts. Eng. Appl. Artif. Intell., 37:392-406, 2015.

B. Song, Y. Cao, W. Zhang, and C. Xu. Session-based recommendation with
hierarchical memory networks. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management, pages 2181-2184,
2019.

G. W. Stewart. On the early history of the singular value decomposition. SIAM
Rev., 35(4):551-566, 1993.

M. Stonebraker, U. Cetintemel, and S. B. Zdonik. The 8 requirements of real-
time stream processing. SIGMOD Rec., 34(4):42-47, 2005.

F. Strub, R. Gaudel, and J. Mary. Hybrid recommender system based on au-
toencoders. In Proceedings of the 1st Workshop on Deep Learning for Recom-
mender Systems, DLRS @RecSys 2016, Boston, MA, USA, September 15, 2016,
pages 11-16, 2016.

K. Subbian, C. C. Aggarwal, and K. Hegde. Recommendations for streaming
data. In Proceedings of the 25th ACM International Conference on Information
and Knowledge Management, pages 2185-2190, 2016.

S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus. End-to-end memory net-
works. In Proceedings of the 28th International Conference on Neural Infor-

mation Processing Systems, pages 2440-2448, 2015.

S. Sun, Y. Tang, Z. Dai, and F. Zhou. Self-attention network for session-based
recommendation with streaming data input. /EEE Access, 7:110499-110509,
2019.

Y. Tai, J. Yang, X. Liu, and C. Xu. Memnet: A persistent memory network for
image restoration. In Proceedings of the 16th IEEE International Conference

on Computer Vision, pages 4549-4557, 2017.

Bibliography 147

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

D. Tang, B. Qin, and T. Liu. Aspect level sentiment classification with deep
memory network. In Proceedings of the 2016 Conference on Empirical Meth-

ods in Natural Language Processing, pages 214-224, 2016.

L. Tang, B. Long, B. Chen, and D. Agarwal. An empirical study on recom-
mendation with multiple types of feedback. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 283-292, 2016.

M. M. Tanjim, C. Su, E. Benjamin, D. Hu, L. Hong, and J. J. McAuley. Atten-
tive sequential models of latent intent for next item recommendation. In WWW
"20: The Web Conference 2020, Taipei, Taiwan, April 20-24, 2020, pages 2528—
2534, 2020.

K. M. Ting and I. H. Witten. Stacking bagged and dagged models. In Proceed-

ings of the 14th International Conference on Machine Learning, pages 367—
375, 1997.

A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, N. Bhagat, S. Mittal, and D. V. Ryaboy.
Storm@twitter. In International Conference on Management of Data, SIGMOD
2014, Snowbird, UT, USA, June 22-27, 2014, pages 147-156, 2014.

J. Vinagre, A. M. Jorge, and J. Gama. Fast incremental matrix factorization for
recommendation with positive-only feedback. In Proceedings of 22nd Interna-

tional Conference on User Modeling, Adaptation, and Personalization, volume

8538, pages 459-470, 2014.

J. Vinagre, A. M. Jorge, and J. Gama. Online bagging for recommender sys-

tems. Expert Syst. J. Knowl. Eng., 35(4), 2018.

H. Wang, W. Fan, P. S. Yu, and J. Han. Mining concept-drifting data streams

Bibliography 148

[119]

[120]

[121]

[122]

[123]

[124]

[125]

using ensemble classifiers. In Proceedings of the 9th ACM International Con-

ference on Knowledge Discovery and Data Mining, pages 226-235, 2003.

N. Wang, S. Wang, Y. Wang, Q. Z. Sheng, and M. A. Orgun. Modelling local
and global dependencies for next-item recommendations. In Proceedings of
the 21st International Conference on Web Information Systems Engineering,

volume 12343 of Lecture Notes in Computer Science, pages 285-300, 2020.

Q. Wang, S. Li, and G. Chen. Word-driven and context-aware review modeling
for recommendation. In Proceedings of the 27th ACM International Conference

on Information and Knowledge Management, pages 1859-1862, 2018.

Q. Wang, H. Yin, Z. Hu, D. Lian, H. Wang, and Z. Huang. Neural memory
streaming recommender networks with adversarial training. In Proceedings
of the 24th ACM International Conference on Knowledge Discovery & Data
Mining, pages 24672475, 2018.

S. Wang and L. Cao. Inferring implicit rules by learning explicit and hidden
item dependency. IEEE Trans. Syst. Man Cybern. Syst., 50(3):935-946, 2020.

S. Wang, L. Cao, and Y. Wang. A survey on session-based recommender sys-

tems. CoRR, abs/1902.04864, 2019.

S. Wang, L. Hu, Y. Wang, L. Cao, Q. Z. Sheng, and M. Orgun. Sequential
recommender systems: challenges, progress and prospects. In Proceedings of

the 28th International Joint Conference on Artificial Intelligence, pages 6332—
6338, 2019.

S. Wang, L. Hu, Y. Wang, X. He, Q. Z. Sheng, M. Orgun, L. Cao, F. Ricci, and
P.S. Yu. Graph learning based recommender systems: a review. In Proceedings

of the 30th International Joint Conference on Artificial Intelligence, pages 1-9,
2021.

Bibliography 149

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

S. Wang, L. Hu, Y. Wang, Q. Z. Sheng, M. A. Orgun, and L. Cao. Model-
ing multi-purpose sessions for next-item recommendations via mixture-channel
purpose routing networks. In Proceedings of the 28th International Joint Con-

Jerence on Artificial Intelligence, pages 3771-3777, 2019.

W. Wang, H. Yin, Z. Huang, Q. Wang, X. Du, and Q. V. H. Nguyen. Streaming
ranking based recommender systems. In Proceedings of the 41st International

ACM Conference on Research & Development in Information Retrieval, pages

525-534, 2018.

W. Wang, W. Zhang, S. Liu, Q. Liu, B. Zhang, L. Lin, and H. Zha. Beyond
clicks: Modeling multi-relational item graph for session-based target behavior
prediction. In Proceedings of the 29th International World Wide Web Confer-
ences, pages 30563062, 2020.

H. Wen, X. Liu, C. Yan, L. Jiang, Y. Sun, J. Zhang, and H. Yin. Leveraging mul-
tiple implicit feedback for personalized recommendation with neural network.

In Proceedings of the 1st International Conference on Artificial Intelligence and

Advanced Manufacturing, pages 6:1-6:6, 2019.

J. Weston, S. Chopra, and A. Bordes. Memory networks. In Proceedings of the

3rd International Conference on Learning Representations, 2015.

S. Wu, Y. Tang, Y. Zhu, L. Wang, X. Xie, and T. Tan. Session-based recommen-
dation with graph neural networks. In Proceedings of the 33th AAAI Conference
on Artificial Intelligence, pages 346-353, 2019.

Y. Wu, C. DuBois, A. X. Zheng, and M. Ester. Collaborative denoising auto-
encoders for top-n recommender systems. In Proceedings of the 9th ACM In-

ternational Conference on Web Search and Data Mining, pages 153—-162, 2016.

L. Xia, C. Huang, Y. Xu, P. Dai, B. Zhang, and L. Bo. Multiplex behavioral rela-

tion learning for recommendation via memory augmented transformer network.

Bibliography 150

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

In Proceedings of the 43rd International ACM SIGIR conference on research

and development in Information Retrieval, pages 2397-2406, 2020.

S. Xing, F. Liu, X. Zhao, and T. Li. Points-of-interest recommendation based

on convolution matrix factorization. Appl. Intell., 48(8):2458-2469, 2018.

G. Xu, Z. Wu, Y. Zhang, and J. Cao. Social networking meets recommender

systems: survey. Int. J. Soc. Netw. Min., 2(1):64-100, 2015.

W. Xu, G. Xu, Y. Wang, X. Sun, D. Lin, and Y. Wu. Deep memory connected
neural network for optical remote sensing image restoration. Remote. Sens.,

10(12):1893, 2018.

Y. Xu, Y. Zhu, Y. Shen, and J. Yu. Leveraging app usage contexts for app
recommendation: a neural approach. World Wide Web, 22(6):2721-2745, 2019.

H. Xue, X. Dai, J. Zhang, S. Huang, and J. Chen. Deep matrix factorization
models for recommender systems. In Proceedings of the 26th International

Joint Conference on Artificial Intelligence, pages 3203-3209, 2017.

H. Yin, B. Cui, X. Zhou, W. Wang, Z. Huang, and S. W. Sadiq. Joint model-
ing of user check-in behaviors for real-time point-of-interest recommendation.

ACM Trans. Inf. Syst., 35(2):11:1-11:44, 2016.

J. Yin, C. Liu, J. Li, B. Dai, Y. Chen, M. Wu, and J. Sun. Online collaborative
filtering with implicit feedback. In Proceedings of the 24th International Con-

ference on Database Systems for Advanced Applications, volume 11447, pages

433-448, 2019.

F. Yu, Q. Liu, S. Wu, L. Wang, and T. Tan. A dynamic recurrent model for next
basket recommendation. In Proceedings of the 39th International ACM SIGIR
conference on Research and Development in Information Retrieval, pages 729—

732, 2016.

Bibliography 151

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

S. E. Yuksel, J. N. Wilson, and P. D. Gader. Twenty years of mixture of experts.
IEEE Trans. Neural Networks Learn. Syst., 23(8):1177-1193, 2012.

U. Yun and G. Lee. Sliding window based weighted erasable stream pattern
mining for stream data applications. Future Gener. Comput. Syst., 59:1-20,

2016.

W. Zaremba, 1. Sutskever, and O. Vinyals. Recurrent neural network regular-

ization. CoRR, abs/1409.2329, 2014.

H. Zeng and Q. Ai. A hierarchical self-attentive convolution network for review

modeling in recommendation systems. CoRR, abs/2011.13436, 2020.

P. Zhang, Z. Zhang, T. Tian, and Y. Wang. Collaborative filtering recommen-
dation algorithm integrating time windows and rating predictions. Appl. Intell.,

49(8):3146-3157, 2019.

S. Zhang, L. Yao, A. Sun, and Y. Tay. Deep learning based recommender sys-
tem: A survey and new perspectives. ACM Comput. Surv., 52(1):5:1-5:38,
2019.

Y. Zhang and X. Chen. Explainable recommendation: A survey and new per-

spectives. Found. Trends Inf. Retr., 14(1):1-101, 2020.

Y. Zhao, S. Wang, Y. Wang, and H. Liu. Stratified and time-aware sampling
based adaptive ensemble learning for streaming recommendations. Appl. Intell.,

pages 1-21, 2020.

Y. Zhao, S. Wang, Y. Wang, H. Liu, and W. Zhang. Double-wing mixture of ex-
perts for streaming recommendations. In Proceedings of the 21st International
Conference on Web Information Systems Engineering, volume 12343 of Lecture

Notes in Computer Science, pages 269-284, 2020.

Bibliography 152

[151]

[152]

[153]

[154]

L. Zheng, V. Noroozi, and P. S. Yu. Joint deep modeling of users and items us-
ing reviews for recommendation. In Proceedings of the 10th ACM International

Conference on Web Search and Data Mining, pages 425-434, 2017.

J.Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun. Graph neural networks:
A review of methods and applications. CoRR, abs/1812.08434, 2018.

X. Zhou, C. Mascolo, and Z. Zhao. Topic-enhanced memory networks for per-
sonalised point-of-interest recommendation. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining,
pages 3018-3028, 2019.

Z. Zhu, S. Sefati, P. Saadatpanah, and J. Caverlee. Recommendation for new
users and new items via randomized training and mixture-of-experts transfor-
mation. In Proceedings of the 43rd International ACM SIGIR conference on

research and development in Information Retrieval, pages 1121-1130, 2020.

	Abstract
	Acknowledgments
	Publications
	Introduction
	Background and Significance
	Challenges of Streaming Recommendations
	Preference Drift and Long-term User Preferences
	Heterogeneity of Users and Items
	Underload Problem and Overload Problem
	Multi-behaviour Interactions for Streaming Recommendations

	Thesis Contributions
	Thesis Structure

	Literature Review
	Single-behaviour Offline Recommender Systems
	Representative SbORSs
	Memory network enhanced SbORSs
	Ensemble Learning based SbORSs
	Single-behaviour Offline Recommender Systems: A Summary

	Single-behaviour Streaming Recommender Systems
	Adaptation-based SbSRSs
	Stream-oriented SbSRSs
	Single-behaviour Streaming Recommender Systems: A Summary

	Multi-behaviour Offline Recommender Systems
	2-behaviour Offline Recommender Systems
	n-behaviour Offline Recommender Systems
	Multi-behaviour Offline Recommender Systems: A Summary

	Chapter Summary

	Double-Wing Mixture of Experts for Streaming Recommendations
	Problem Statement
	Our Proposed VRS-DWMoE Framework
	Overall Structure
	Variational and Reservoir-enhanced Sampling
	Double-Wing Mixture of Experts

	Experiments
	Experimental Settings
	Performance Comparison and Analysis

	Chapter Summary

	Stratified and Time-aware Sampling based Adaptive Ensemble Learning for Streaming Recommendations
	Problem Statement
	Our Proposed STS-AEL Framework
	Overall Structure
	Stratified and Time-aware Sampling
	Adaptive Ensemble Learning

	Experiments
	Experimental Settings
	Performance Comparison and Analysis

	Chapter Summary

	MbSRS: a Multi-behaviour Streaming Recommender System
	Problem Statement
	Our Proposed Multi-behaviour Recommender System
	Overall Structure
	Multi-behaviour Learning Module
	Attentive Memory Network
	User Preference Merging Module
	Prediction Process and Training Process

	Experiments
	Experimental Settings
	Performance Comparison and Analysis

	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Future Work

	The Notations in the Thesis
	The Acronyms in the Thesis
	Bibliography

