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Abstract

Service computing has become the main theme in IT while Web services and cloud

services are widely adopted by the industry. An important characteristic of service

computing is that it turns IT capability into a service, and facilitates automatic service

delivery and consumption through the ubiquitous Internet. As such, it closely aligns

IT with business, which brings up the important issue of accountability that is largely

overlooked in traditional IT.

In a business context, accountability encompasses transparency, responsibility, re-

sponsiveness and willingness for assuming liability. Applying that concept in a service

computing context, it should mean a clear disclosure of service obligations; faithfully

honoring disclosed obligations, or otherwise assuming liability for the unsatisfactory

performance of the obligations.

A comprehensive study of the accountability literature reveals that the vast major-

ity of researchers in the IT community share a quite different view on accountability

than their counterparts in the business community. Most researchers in IT tend to

take some aspects of quality of service (QoS) or architectural concerns, such as se-

curity, provenance and auditability, as accountability, missing the crucial components

of disclosure, obligation fulfilment monitoring and liability assignment that concern

business more frequently.

This discrepancy in understanding can cause a significant gap between business’s

expectations of accountability and the actual accountability capability of an IT system.

While this gap may not manifest as a major concern in the traditional IT environment,

it will exert a serious negative impact on the development of service computing, since

a major theme of service computing is the close alignment of IT and business.

Three main objectives are set in this thesis. The first is to raise awareness of the

v



vi

accountability gap from both the conceptual perspective and the actual architectural

implementation perspective. The second is to clarify the confusion on the topic of

accountability in the service computing industry and, more importantly, to lay down

a foundation to strengthen accountability in service computing. The third is to de-

scribe approaches for building an advanced service accountability mechanism, aimed

at automating the accountability processes in a truly service-oriented environment.

Accordingly, the thesis is structured in a way that progressively meets the above

objectives. The Introduction chapter focuses on achieving the first objective, and sets

the theme for the rest of the thesis.

The second objective, is achieved through two steps. The first step is to clarify

the confusion around the topic of accountability through a thorough analysis of the

existing accountability literature. The second step involves a series of tasks for lay-

ing down the service accountability foundation by proposing a service accountability

framework, addressing the accountability weaknesses of the current Service-Oriented

Architecture.

The third objective, is achieved through three different approaches. The first ap-

proach is to represent a service contract using semantic web technology. The second

approach is to represent a service contract using dynamic logic and process algebra

techniques. The third approach provides a decentralised service contract management

scheme based on the blockchain technology, taking advantage of the irreversibility

and tamper-proof features of the blockchain, and presents a scheme for service con-

tract disclosure and obligation tracking.

We hope that through achieving these three objectives, a solid foundation can

be laid for strengthening accountability in service-oriented environments, which ad-

dresses business’s concerns on service accountability and boosts business’s confidence

in fully embracing cloud services.
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Chapter 1

Introduction

As early as the twentieth century B.C.E., the Code of Hammurabi already held the

builder of a house accountable to the house owner [143]. Since then, written history

indicates that accountability is the cornerstone for ensuring the proper functioning

of a business and a society. In cases where accountability is compromised, scandals

and loss would inevitably occur, as was witnessed in the first decade of the twenty-

first century when the likes of Enron and Worldcom made the headline news, and

later on with the overwhelming loss caused by the global financial crisis. There is

a major theme that is permeating the early twenty-first century, which is the strong

call for accountability in business from the general public, as people start to demand

answers to questions such as “what are the truths that have not been told?”, “who are

accountable?” and “how do we prevent those incidents from happening again?”

Traditionally, accountability is mainly a business or social concern and fewer peo-

ple pay attention to the accountability issues associated with technology. As informa-

tion technology (IT) development increasingly becomes a major driver for economic

growth and social transformation, the impact of accountability in IT becomes increas-

ingly significant. Since accountability in IT has not been systematically investigated

in the literature, it is chosen as the research direction of this thesis. More specifically,

this thesis will focus on the accountability mechanism for service computing, which is

the direction of the future IT.

First, we need to understand what accountability really means, and what problems

exist for accountability in IT. Then we need to explore what needs to be done in or-
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2 Introduction

der to build accountability mechanisms in a service computing environment and the

associated challenges that they may have.

1.1 Problem Statements

1.1.1 What is Accountability?

Although accountability has become a focal concern of the general public, there is

no commonly agreed definition for the term “accountability”. Oakes and Young note

that the accountability concept is broad and difficult to characterise precisely [145].

They find that while some researchers define accountability as “answerability” or an

“obligation to account for how well resources used to meet specified outcomes”, others

argue that accountability is either credit or blame or corporate scapegoating [145].

In this thesis, the definition of accountability at Wikipedia is adopted as the basic

definition, which references Schedler, who defines accountability as the “obligation to

inform other parties about actions and decisions, or justify them and to be punished in

the case of misconduct” [166].

1.1.2 Problems Exist for Accountability in IT

Starting from the latter half of the twentieth century, the Digital Revolution, also

known as the Third Industry Revolution, has brought sweeping changes to the econ-

omy and our society, and marked the beginning of the Information Age. As the key

driver of the Digital Revolution, Information Technology (IT) becomes a key differen-

tial tool that most people use to gain competitive advantage. One worrying sign is that

accountability in IT has been largely overlooked by society, as most people are will-

ing to forgo accountability in favour of early deployment of drastic new technologies.

In 1994, Nissenbaum voiced her concerns on accountability in an increasingly com-

puterised society and asserted that accountability is systematically undermined [143].

She suggests that a combination of factors working in unison leads to the erosion of
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accountability in IT, such as an extremely narrow understanding of the accountability

concept, a set of misplaced assumptions about the capabilities and shortcomings of IT

systems, and a willingness to accept that the vendors of computer systems do not need

to be answerable for the impacts of their products [143].

Nissenbaum’s findings highlight two problems: the first is that the accountabil-

ity topic has not been treated rigorously in the IT literature, and as a result there is a

general misconception about accountability in IT; the other is that the accountability

concern has not been widely accepted as a formal architectural concern in IT litera-

ture, contrasting to other concerns like security, integrity, performance and scalability.

Consequently, people have no alternative other than accepting IT products that may

compromise accountability.

Since then, the pace of IT technology development has further accelerated. Now

we are in an era where IT is truly ubiquitous. It is evident that people are increasingly

connected through social networking sites; billions of sensors are embedded in objects,

making the world more interconnected, instrumented and intelligent; and computing

resources can be virtualised as services and then be massively delivered and consumed

on the Internet. IT is entering a cloud computing era, where the boundary of business

and IT is blurring, i.e., business service is delivering through the IT platform, whereas

IT service becomes a kind of business service. IT is the key enabler for a global

integrated economy. Driven by the rapid development of IT technology, the world

economy is moving towards a service-centric economy. [29]

Unfortunately, in contrast to the rapid pace of technological advancement, account-

ability consideration in IT rarely changes and largely stays the same as a decade ago.

The consequence is quite obvious as the ever increasing fraud, spam and security at-

tack incidents in the Internet [91], and the huge financial loss caused by a large number

of IT project failures in the industries [98]. As IT plays an increasingly vital role in

today’s society and becomes deeply embedded into the fabric of business, the practice

of purely focusing on technology, while overlooking accountability, in the IT indus-

try will inevitably become unsustainable. The call for establishing an accountability
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mechanism in cloud services is becoming more compelling in the cloud computing

era.

Traditionally, accountability in service is achieved through the enforcement of a le-

gal and paper-based contract. In a cloud service context, using a paper-based contract

is no longer effective. The current practice is for service providers to publish a terms

and conditions page and a text-based SLA for their offerings on their web-site like

Amazon’s S3 does. In its plain-text form, a web-enabled paper-based contract can nei-

ther be interpreted by software agents, nor be used as a basis for monitoring the execu-

tion of a contract. Although policy management tools, such as Ponder and KAoS, can

be adopted to represent obligations in a formal manner, their strengths lie in specifying

policies on fine-grained objects, lacking generality [153] and an overarching process

view that is required in dealing with service participants’ obligations in service col-

laborations. While Service Level Agreement (SLA) is an extensively researched topic

and it can be represented formally by existing approaches, in essence, the service level

only covers non-functional requirements, missing the crucial functional requirements

for business. Thus, existing approaches neither enable the disclosure of service obliga-

tions, nor allow software agents to decide which party is responsible for what action,

and which party is liable for what result. This is evident in today’s cloud market,

where there are no formal policy-based or SLA languages used in representing service

contracts. Hence the consumer has no effective means to detect service obligation vio-

lation, and the service provider can hardly be held accountable. As such, currently the

accountability of cloud services on the market is a serious concern. This may become

a major obstacle for enterprise customers to take up those cloud services.

1.1.3 A Motivating Example in Cloud Service

We here use a traditional storage service and a typical cloud service - Amazon S3

storage service as an example to compare and contrast different accountability issues.

Suppose that a service provider offers a data storage managed service to enterprise
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consumers. The regular process for this kind of off-line service provision is described

as follows:

1. The provider prepares a statement of work (SOW) and a service-level agree-

ment (SLA) based on the requirements submitted by the consumer. The SOW

describes the rights and responsibilities of the provider and the consumer respec-

tively, specifying each party’s permitted activities, obligated activities including

deliverables, and acceptance criteria. For instance, the provider’s permitted ac-

tivities may include delivering data in either plain or compressed format; obli-

gated activities can be storage and retrieval of data objects while making sure

that the data are not lost, damaged or leaked to other people. The SLA stipulates

the committed service levels for the service activities and deliverables, i.e., a

99.9% availability of the overall storage service. Sometimes penalty clauses may

be attached if an obligation is violated, for example, not achieving the 99.9% of

the availability target.

2. The provider negotiates with the consumer on the SOW and SLA. If a deal is

reached, normally an overarching contract is signed between the provider and

the consumer, specifying the general terms and legal clauses, plus company spe-

cific conditions. The SOW and SLA are normally attachments of the contract.

3. The provider starts the delivery of the service once the contract is in effect. When

issues arise during the execution of a contract, the provider and consumer can

meet face-to-face to resolve the issues, with legal proceedings as the last resort

for dispute resolution.

However, in a cloud service setting, accountability in general is much harder to

maintain. In the S3 storage cloud service case, Amazon provides only two web-based

contract documents. The first one is the “AWS Customer Service Agreement”, which

is effectively the overarching legal contract between Amazon and its customers [5].

The other contract document is the S3 SLA, which is a text document specifying the
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Figure 1.1: Current Cloud Service Contract Execution Process

committed availability target of 99.9%, and the service credit offering to the customer

if the target is not achieved [4].

The contract specification and execution process of S3 can be generalised and is

described in Fig. 1.1. Initially, a service provider publishes a text-based service terms

and conditions; then publishes the service APIs and the text-based manuals. When

a consumer accepts the terms and conditions, the provider and the consumer enter

into a legal contract. The next stage is contract execution. Normally, only the service

provider can monitor the service execution (in the AWS’ case, CloudWatch is used as a

monitoring tool). If the service does not meet the SLA (in S3’s case, 99.9% availability

is not achieved), the service provider provides a remedy (in AWS’s case, offering the

consumer some service credits) and the contract execution cycle goes on.

The major accountability problems in the S3 service in particular and other cloud

services in general are listed below:

Prob1: The cloud service contract does not have an SOW component as traditional ser-

vices do. Consumers need to thoroughly check service provider’s technical doc-

uments such as User Guides or API References in order to understand what

functions the service offers. Without an SOW, there is no clear service obli-

gation statement disclosed by the provider. For instance, Amazon’s customer

agreement only defines the customer’s responsibilities, plus indemnifications

and disclaimers that are mainly protecting the provider’s own interests rather

than those of customers;
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Prob2: There is no formal representation of the contract terms and conditions, SLA and

obligations in the current cloud service contracts. This prevents customers from

using a software agent to search and match services based on accountability

requirements;

Prob3: There is no precise process defined for service execution and thus it is not possi-

ble for customers to monitor the service behaviour automatically during service

consumption; and

Prob4: There is no mechanism to detect obligation violation and identify which party is

at fault during service execution.

1.1.4 What Needs to be done for Building Accountability Mecha-

nisms in Cloud Service

In order to establish an accountability mechanism in cloud service, the following tasks

need to be accomplished:

1. Defining a cloud service model that encompasses the accountability properties,

in particular, the service contract property that is ignored in the current literature.

Most cloud service models in the current literature only focus on modelling the

interface and implementation aspects of a service, missing the critical compo-

nent of the contractual relationship between the service provider and the service

consumer. Without the service contract component, there is in no way to hold

service participants accountable for their service contractual obligations.

2. Presenting a formal representation of a service contract that facilitates disclosure

of service obligations, service auto-discovery and matching, and assignment of

liability. One important aspect of accountability is to ensure transparency of the

obligations of service participants. In a cloud computing environment, services

are delivered and consumed automatically with virtually no human interven-

tion. Therefore, it is important that the service contract representation can be
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interpreted by machines, rather than only by humans. So service discovery and

matching can be done automatically based on a disclosed service contract. Fur-

thermore, the service contract representation should allow easy identification of

which party fails to meet its obligations.

3. Providing an approach for tracking and monitoring of the execution of a service

contract that is objective, fair and accurate. After a service contract is estab-

lished, a service contract can be executed multiple times. Current practice is for

each party to monitor the execution in their own environment, which can lead to

subjective and inconsistent results. An accountable service execution environ-

ment should provide a means to avoid the conflict of interest when it comes to

tracking and monitoring of the obligation fulfilment of each service participant.

4. Providing an arbitration protocol to resolve a dispute if it arises during the ex-

ecution of a service contract. Currently, if a dispute arises during the execution

of a service contract, there is no accurate way to judge which party is at fault, as

each party may provide their version of logs that support their claims and argu-

ments. Thus we need a protocol that can resolve disputes in a fair and accurate

fashion.

While Fig. 1.1 depicts the current cloud service contract specification and execu-

tion process, Fig. 1.2 illustrates an accountable approach, where the first step is for the

service provider to specify the obligations in a formal language; then validate them

to make sure they are free of contradictions. Next, for each obligation, it is decom-

posed into a collaboration process that specifies the interaction behaviours of both the

provider and the consumer. Then the provider can publish service APIs, manuals and,

more importantly, the obligations and collaboration processes specified in formal lan-

guages. The published obligations and collaboration process are effectively the cloud

service contract. Once the consumer accepts the obligations and the processes, the

provider and the consumer enter into a legally binding contract. During the execution

of the service contract, both the provider and the consumer can monitor the contract
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Figure 1.2: Accountable Cloud Service Contract Execution Process

execution respectively based on the published obligations and the collaboration pro-

cess model. If a deviation to the contract in execution is spotted, then they can decide

which party is liable, based on the published contract. In cases where the provider

and the consumer do not agree with each other on the liability assignment, a mutual

verification and resolution step will be needed. If the discrepancy cannot be reconciled

at the end, the contract may be ended prematurely; otherwise a remedy will be applied

by the liable party and the contract execution cycle continues.

1.1.5 Challenges for Accomplishing the Tasks

To accomplish the above tasks, the following challenges need to be overcome.

1. Traditionally, service modelling focuses on model elements in service interface

and implementation, abstracting out other details like accountability concerns.

Stemming from a business and management context, the concept of accountabil-

ity tends to be qualitative in nature. Thus how to precisely define and quantify it

in a cloud service context remains a challenge.

2. In order to meet the objectives of service contract obligation disclosure, au-

tomatically discovering and matching services based on service contracts, the

representation of a service contract must be interpretable by machines, which
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means that the representation language should provide both formal semantic as

well as syntactic capabilities. Therefore, the language’s underpinning logic sys-

tem must have sufficient expressive power; in the meantime, it must be decidable

with computation completeness. As obligation in a service has both static and

dynamic properties, it is a challenge to find an existing language or logic to fully

meet the representation requirements.

3. In a cloud environment, monitoring the execution of a service contract can be

a challenge. Neither the service provider’s monitoring log nor the service con-

sumer’s one can be taken as the source of truth. An obvious solution is to use

a trusted-third party (TTP) to provide centralised monitoring. However, this

model also has issues associated with centralisation, i.e., bias, performance bot-

tleneck and single-point of failure. On the other hand, a decentralised monitor-

ing solution also has challenges for establishing trust and consensus.

4. The same challenge as item [3] also exists in dispute arbitration. Apart from the

issues associated with centralised and decentralised models, how to incentivise

the arbiters and encourage them to make honest decisions is also a challenge.

1.2 Thesis Contributions and Roadmap

1.2.1 Contributions of the Thesis

Today, accountability is the most important concern in ethics, governance and busi-

ness. However, the linkage between accountability and technology is still yet to be ap-

preciated by most people, especially the technical community. This thesis aims at first

raising the awareness of accountability in service computing, highlighting the need

for an automated, intelligent way to build accountability mechanisms in the cloud era.

Secondly, it aims at laying down a foundation for building accountability mechanisms

in a cloud service environment. To achieve these two objectives, we not only need
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to overcome many technical challenges but, more importantly, we need to change the

way we view a cloud service. The traditional view of a cloud service is a pre-compiled

computer program that is static, reactive and lacks intelligence, whereas we argue that

a cloud service is driven by a service contract, it is dynamic, proactive and may be

armed with artificial intelligence. While this thesis focuses on the context of cloud

services, the accountability principles can certainly be extended to other online ser-

vices in general. Therefore, the contributions of the thesis can be summarised below:

1. The first contribution is to distil the essence of the accountability concept through

investigation in both the management discipline as well as the IT discipline, and

present a precise definition for accountability in IT. We have observed that there

are three levels of accountability work in IT: the technical protocol level, the

architectural level and the governance level. We have pointed out that, thus

far, there are two crucial aspects of accountability that have not been addressed

in the IT literature, which are the disclosure and service contract management

mechanisms.

2. The second contribution is to propose a novel service accountability model, tak-

ing into consideration of the accountability requirements. The key differentia-

tion of the service accountability model is that it incorporates the service contract

concept into the service model and positions the service contract as the first class

model element in a service.

(a) We outline the service contract properties, and present a new approach that

models a cloud service as a proactive system, rather than as a reactive sys-

tem like that in the traditional modelling approach. The proactive system

is concerned with the actors who conduct the activities and the exceptions

which occur during the action execution, plus the causality behind these.

These model elements are missing in the traditional reactive system mod-

elling approach. Due to the rapid growth of cloud service adoptions and the



12 Introduction

emergence of more intelligent agent applications, the issue of accountabil-

ity arising from those proactive systems is becoming ever more significant

than before;

(b) We analyse the accountability management requirements for cloud ser-

vices and define a formal construct for a pro-accountability service con-

tract model, proposing unique concepts, such as service contract execution

and action evidence, that are not seen in other service contract models;

(c) We present a semantic-web approach to modelling a service contract. The

semantic model adopts the decidable OWL-DL, coupling with the enhanced

action semantics and DL-Safe SWRL rules to represent the service con-

tract construct, namely OWL-SC. We also propose a novel approach to

map OWL-SC action semantics to a coloured Petri-nets model, namely

SC-CPN, and thus enable visual modelling, validation and simulation of

an action model in OWL-SC;

(d) We also present an alternative approach to modelling a service contract

based on a refined version of dynamic logic - Dynamic Logic for Account-

ability (DLA). DLA can represent the deontic semantic of a contract, which

is missing in the OWL-DL language;

(e) A graphical notation based on a reduced version of BPMN2.0 has been

proposed so that contract obligations can be further decomposed into col-

laborative activities between the service provider and the consumer;

(f) An action dependency chain has been proposed for obligation violation

detection, causality reasoning and liability assignment. In addition, an

Obligation Flow Diagram (OFD) has been proposed to allow easy conflict

resolution and consistency checking in the service contract model;

(g) Finally, we propose a novel Accountable Process Algebra (APA), which

extends the traditional process algebra to a form of process algebra suit-

able for proactive systems like cloud services. APA allows analysis of the
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execution behaviour of a cloud service contract based on an algebraic ap-

proach, which produces a more concise model to reflect the dynamics of

service accountability during the provision as well as the consumption of a

cloud service.

3. The third contribution is that we have proposed a centralised architecture for

monitoring the execution of a cloud service contract.

(a) We outline the architectural principles and decisions for enabling account-

ability in a cloud service environment.

(b) Secondly, guided by those principles and decisions, we propose a novel

Accountable State Transfer (AST) architecture with an accountable state

transfer protocol to enable service accountability, yet retain scalability of

REST architecture. The new architecture seamlessly integrates service

contract semantics into the traditional syntactic-based REST services.

(c) Thirdly we apply the formal OWL-SC service contract model to design

a Credit Check domain specific service contract with a hybrid reasoning

mechanism that leverages strengths from formalisms like DL, Rules and

traditional programming language. The hybrid reasoning mechanism pro-

vides capabilities like temporal reasoning and negation as failures that are

not found in normal DL and SWRL. Moreover, it separates reasoning in the

design-time stage and runtime stage, taking into account both the expres-

siveness and computational complexity of the underlying logic formalisms.

(d) Lastly we provide a prototype implementation for a Credit Check service

that demonstrates the practicality of AST architecture, proving that the new

AST architecture can be implemented with existing products and technolo-

gies.

4. The fourth contribution is that we have proposed a distributed accountability

mechanism that fits in the Internet environment and avoids the issues associated
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with centralisation like cost, scalability, resilience, fairness and objectivity [58,

137];

(a) We present a service contract management scheme to enable automatic

publication of a service contract, automatic service discovery and selec-

tion. This improves transparency and accountability in service computing

by eliminating the information asymmetry.

(b) We propose a service blockchain that can be used as an anti-tamper public

“activity ledger” for recording the interactions between the service provider

and the consumer, enabling monitoring of contract obligation fulfilment in

an open and objective environment.

(c) We propose a novel dispute arbitration protocol that uses anonymous Proof

of Work (POW) miners acting as arbiters to arbitrate a service contract

dispute. Coupling with the commitment scheme and the majority function

techniques, the protocol is designed to be fair, accurate and free from the

influence of any authorities.

(d) Finally, we study the dynamics of the key parameters of the arbitration

protocol through three experiments and various case studies. The optimal

parameter settings are studied, striking the balance of fairness, accuracy

and sustainability of the arbitration protocol.

1.2.2 Roadmap of this Thesis

This thesis is structured as follows.

Chapter 2 presents a comprehensive literature review of accountability, starting

from a management, governance perspective, then moving onto the IT technical and

architecture perspective, and finally centring around the overlaid area of IT and busi-

ness, i.e. accountability in cloud service as a result of the establishment of a service

contract. This chapter examines the existing work and highlights the key aspects of

service accountability that are missing in the current literature.
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Chapter 3 presents a foundational accountability model, providing precise defini-

tions for basic accountability concepts in IT service, outlining the service account-

ability processes, proposing a quantitative accountability measurement method and

designing a service accountability framework to address the elementary accountability

requirements. Part of this chapter is based on our papers published at ICEBE2008 and

ICEBE2009 (please refer to [9] and [10] on page xii).

Chapter 4 proposes an advanced service accountability approach based on a se-

mantic web approach. In order to automate the process of disclosure of a service

contract, and service discovery and matching based on a disclosed contract, the con-

tract specification language must have both semantic and syntactic capabilities. We

use OWL-DL to formally specify a service contract, building a service contract model

that is interpretable by machines. We also propose a graphical model SC-CPN based

on a coloured Petri-net to allow model visualisation and validation. Finally, we apply

the model to extend Representational State Transfer (REST) architecture to Account-

able State Transfer (AST) architecture, augmenting the mainstream SOA architecture

implementation with an accountability mechanism. The AST architecture is based on

a centralised service contract management approach that facilitates service obligation

disclosure, obligation tracking, and action justification in a stateless service environ-

ment. This chapter is based on our papers published at ICWS2010 and SCC2010

(please refer to [5] and [6] on page xi and page xii).

Chapter 5 presents an alternative advanced service accountability model based on

an algebraic approach. The approach brings in deontic semantics and process algebra

to the service contract model, enabling a contract representation that is more closely

aligned to the contract in the real world, and allowing more efficient service contract

disclosure and contract model validation. This chapter is based on our papers pub-

lished at ICWS2014 and IJWSR 2015 (please refer to [2] and [3] on page xi).

Chapter 6 proposes a distributed contract monitoring approach and a peer-to-peer

dispute resolution protocol based on the blockchain technology underlying the bitcoin

network. This chapter is based on our paper published at ICWS2016 (please refer to
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[1] on page xi).

Finally, Chapter 7 concludes the work in this thesis and discusses some directions

for future research opportunities.



Chapter 2

Literature Review

Traditionally, accountability is a term that is mainly used in management and law

literature, but has received considerably less attention in an IT context. In recent years,

while IT exerts an increasingly important role in society and business, a number of

scholars across different fields have studied accountability in IT and presented various

thoughts and arguments in the literature.

In this chapter, the literature review on the above aspects is organised as follows:

• Section 2.1 introduces the general concept of accountability in literature.

• Section 2.2 introduces the existing accountability work in the IT literature.

• Section 2.3 reviews the existing work on service contract, which is a key enabler

for accountability in service computing.

• Section 2.4 summarises the literature review on accountability.

2.1 Accountability in Management Literature

2.1.1 General Concept of Accountability

Accountability has been an extensively researched topic in the management literature.

While Oakes and Young note that the accountability concept is broad and difficult

17
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to characterise precisely [145], Johnson and Mulvey find that at least four meanings

can be distinguished: fault, i.e., what went wrong; causality, i.e., what caused the

problem; liability, i.e., what is the cost of the fault; and role assignment, i.e, who is to

blame [97].

Kaufman believes that technologies of accountability, from record keeping and

simple reporting to auditing and oversight have become essential ingredients in the

construction of any organised public or private endeavour where transparency, an-

swerability and responsiveness are deemed necessary for the sake of efficiency and

effectiveness [101, 102].

Dubnick and Justice provide a comprehensive review on the topic of accountability

in [54]. They distinguish accountability as a word (accountabilityw) versus account-

ability as a concept (accountabilityc). The accountabilityw resembles the meaning

defined in the Oxford English Dictionary, which is “the quality of being accountable;

liability to give account of, and answer for, discharge of duties or conduct; respon-

sibility, amenableness (to a person, for a thing) [53]”. The accountabilityc concept

that has emerged from the literature is meaningful in six interrelated contexts, as listed

below.

1) Cultural Frame: Accountability is a reflection of legitimised “certainties” within

a community [83];

2) Institutional Frame: Accountability is manifested as rules, norms and gram-

mars through which authority is “controlled” in order to render it “appropriately”

exercised [119, 103, 52];

3) Social Transactions: Accountability emerges as a way for individuals to re-

late to one another - an ongoing process of account-giving, excuse-making and

account-taking that is fundamental to the development or maintenance of trust [19,

48];

4) Organisational Frame: Accountability is the formation (“enactment”) of infor-
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mal and formal mechanisms for dealing with expectations and uncertainty [39,

195];

5) Task Environmental: In a complex task environment, accountability is a means

for managing an otherwise chaotic situation [162, 30]; and

6) Social Psychological: Accountability has emerged as a means by which we

“construct ourselves” and develop identities [181, 81].

The research from Dubnick and Justice reveals that the accountability concept in

literature can be complex with multifaceted meanings.

On the other hand, Schedler provides a definition that succinctly captures the

essence of accountability: “A is accountable to B when A is obliged to inform B about

A’s (past or future) actions and decisions, or justify them and to be punished in the

case of misconduct” [166]. Schedler situates accountability in a context of relation-

ship, emphasising the obligation for disclosure and the liability for misconduct. The

relationship is driven by social, contractual, hierarchical or other factors according to

Gibbins and Newton [70].

In [158], the authors outline eight types of accountability developed based on the

relationship formed in a specific context, namely: moral, administrative, political,

managerial, market, legal/judicial, constituency relation, and professional. In each

type of accountability, the accountable party is obliged to perform certain actions in

order to meet the other party’s expectation.

Koppell argues that the term “accountability” has five dimensions as listed be-

low [107]:

1. Transparency: did the organisation reveal the facts of its performance?

2. Liability: did the organisation face consequences for its performance?

3. Controllability: did the organisation do what the principal desired?

4. Responsibility: did the organisation follow the rules?
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5. Responsiveness: did the organisation fulfil the substantive expectation?

In [9], the authors conducted extensive research on the management literature, and

provided a definition of accountability in the context of service performance. This

definition is outlined in the table below.

Table 2.1: Accountability Definition for Service Performance

Accountability refers to the obligation a person, group, or organization
assumes for the execution of authority and/or the fulfillment of responsibility.
This obligation includes:

• Answering – providing an explanation or justification – for the execution
of that authority and/or fulfillment of that responsibility,

• Reporting on the results of that execution and/or fulfillment, and assuming
liability for those results.
• Assuming liability for those results.

This definition resembles Schedler’s definition in terms of obligation, transparency

and liability. Together with Koppell’s other accountability dimensions, i.e. controlla-

bility, responsibility and responsiveness, they form a basis for analysing the account-

ability attributes in business processes and practices.

2.1.2 Accountability through Quality Management

The quality movement led by Deming, Juran, Shewhart and Feigenbaum in the twen-

tieth century reflected the public demand for accountability for the quality of goods

and services. On the other hand, the increasing market competition also put intensive

pressure on business to continuously improve quality. Prominent methods such as To-

tal Quality Management (TQM), Quality Function Deployment (QFD) and Six Sigma

have emerged, advocating customer focus, quality design and a statistical approach to

quality control. These methods promote the controllability and responsiveness dimen-

sions of accountability. According to Brandon, the cornerstones of TQM are continu-
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ous improvement, employee empowerment, and customer focus, whereas the focus on

QFD is on comprehensive quality design and taking into account both the customer-

stated and unstated requirements. On the other hand, the emphasis of Six Sigma is to

adopt a statistical approach to quantify process quality improvement [27]. Insofar as

these methods can be mandated in the organisation, they can be effective in improv-

ing process quality, customer satisfaction and, ultimately, accountability. However,

evidence in recent years suggests that these methods gradually lose their effectiveness

due to environmental change [17]. A notable example is Toyota’s global recall of eight

million cars that were affected by unintended acceleration issues during 2009-2010,

despite the company having the reputation of being the role model for implementing

quality management best practices in business [168]. One obvious reason is that in an

environment where business has increasing dependency on out-sourcing, off-shoring

or the global supply-chain, it is virtually impossible to mandate those quality man-

agement processes across different organisations with different cultures in multiple

geographic regions.

2.1.3 Accountability through Regulatory Compliance

Traditionally, the areas that most demand accountability are in the public sector, such

as governments and schools, or institutions that may have a critical impact on peoples’

health and safety, such as hospitals and pharmaceutical companies. One example is

the enactment of The Health Insurance Portability and Accountability Act of 1996

(HIPAA) in the United States.1

Recently, accountability has become increasingly important in the private sector

since the fallouts of some big institutions in the early 2000s. Government and regu-

latory bodies have created regulations such as Basel II2, Sarbanes-Oxley Act3 and the

Anti-money Laundering (AML)4 to strengthen accountability in financial institutions

1https://www.ihs.gov/hipaa/
2http://www.bis.org/publ/bcbsca.htm
3http://www.soxlaw.com/
4http://www.finra.org/industry/aml
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and private enterprises, in responding to several high-profile scandals and large scale

accountability breakdowns in financial institutions and private enterprises. These regu-

lations impose stringent accountability requirements on various aspects of the business

operations. Regulatory compliance is an effective way to enforce accountability. The

down side is that it is slow to respond to change, and normally the regulations are

created after the event.

2.1.4 Summary of Accountability in Management Literature

In summary, the accountability concept in management literature has the following

attributes: obligation, transparency, liability, controllability, responsibility and respon-

siveness. Quality management and regulatory compliance are the main approaches to

strengthening accountability in business operations.

2.2 Accountability in IT Literature

2.2.1 Accountability Definitions

Accountability has received considerably less attention in the IT literature when com-

pared to that in the field of management research. The meaning of the term account-

ability in IT appears to vary considerably and is dependent upon the context.

Eriksen comprehensively explores the notion of accountability for information and

communication technologies [57], citing a general definition of the term accountability

as: “responsible for giving an account (as of one’s acts): answerable” or “capable of

being accounted for”.

In [202], based on the review of previous work from both the IT and the man-

agement literature, the authors propose an accountability meta-model, which has four

elements: identity, roles, responsibilities and outcome. The authors also extend the

accountability definition in Table 2.1 and provide a unified definition of service ac-

countability, covering both business and technological perspectives as follows.
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Table 2.2: Service Accountability Definition

Accountability in services refers to the obligation that several persons,
groups, or organizations assume for the execution and fulfillment of a service.
This obligation includes:

• answering, providing an explanation or justification, for the execution
of that authority and/or fulfillment of that responsibility;

• full disclosure on the results of that execution and/or fulfillment;

• undeniable liability for those results (non-repudiation); and

• obtaining trusted agreement of accountability from all entities involved
in the service who in turn are bound to the obligations set out above.

In this definition, answering, providing explanation, and full disclosure of results

are all relating to disclosure, which corresponds to what Schedler refers to as the obli-

gation of A informing B about actions and decisions, or justifying them, or to the

term transparency in Koppel’s accountability dimensions. Undeniable liability implies

a technical aspect of non-repudiation in addition to the normal sense of liability, as

in Koppel’s accountability dimensions, which is interpreted as punishment for mis-

conduct in Schedler’s definition. One aspect of accountability not seen in definitions

from Schedler, Koppel and Table 2.2 is illustrated by the term obtaining trusted agree-

ment, which highlights the notions of trust and contract in service accountability. It

also implies that service accountability in SOA is purely driven from a contractual

relationship, rather than social or hierarchical relationships. In summary, this defini-

tion incorporates the key elements of service accountability: disclosure, obligation in

trusted agreement and non-repudiation.

Generally, accountability in IT can be viewed from three levels. The first level

is a technical protocol level accountability, which focuses on delivering certain ac-

countability attributes by building the relevant technical capabilities in the technical

protocols. The second level is an architectural level accountability which promotes au-
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tomation of manual accountability tasks in business services and business processes.

This may involve utilising the protocol level accountability capabilities to build up

the accountability mechanisms on the IT architecture level. The third level is an IT

governance level accountability, which emphasises the overall accountability of the

IT organisation and its governance process. We briefly review accountability on each

level. In addition, as service-oriented architecture (SOA) gradually becomes the main-

stream IT architecture, as well as cloud computing emerging as the popular IT service

model, we also review the accountability capabilities in the Web service protocol stack

and existing work on accountability in cloud computing respectively.

2.2.2 Technical Protocol-Level Accountability

On the technical protocol level, traditionally researchers focused on accountability in

eCommerce transaction. According to Kailar, accountability is “the property whereby

the association of a unique originator with an object or action can be proved to a third

party” [99]. The definition implies non-repudiation in an eCommerce transaction.

Kailar also proposes a framework for the analysis of communication protocols that

require accountability [99, 100].

In the current literature, many accountability protocols address the issue of non-

repudiation and fairness in interactions amongst three parties: the sender, receiver and

trusted third party (TTP) [108]. Examples of the fair non-repudiation protocols with

online TTP are the Zhou-Gollman protocol [201] and the Certified Email Protocol [1].

There are also many fair exchange trusted-third party (TTP) protocols including on-

line TTP [18, 171, 156] and off-line TTP [188] that can manage dispute resolution

in e-Commerce. A further example that does not require a TTP is the Markowitch-

Roggeman protocol [126]. The work on fair exchange is assessed based upon both the

sender and receiver obtaining the expected items or neither receiving any additional

information about the other’s item [10]. Based on the Zhou-Gollman protocol, Robin-

son et al. propose WS-NRExchange to enable fair non-repudiable interactions with
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web services [161]. Fair non-repudiation protocols address the non-repudiation part

of the accountability requirements on the message or communication level, but do not

deal with the overall service accountability requirements.

In [43], Crispo and Ruffo propose a framework for the analysis of delegation pro-

tocols. Adopting the notion of “provability” from Kailar’s definition of accountability,

their framework allows analysis of how accountability is transferred (or kept) by the

delegators when they transfer some of their rights to the delegate.

In [40], Corin et al. present a language that allows agents to distribute data with

usage policies in a decentralised architecture. They propose two notions of account-

ability. The first notion, agent accountability, focuses on whether the actions of a given

agent were authorised. The second notion, data accountability, expresses that a given

piece of data was not misused. They design a logic underpinning the language that

allows audited agents to prove their actions, and to prove their authorisation to possess

particular data.

2.2.3 Architectural-Level Accountability

In a broad sense, the architectural-level accountability crosscuts a wide range of archi-

tectural concerns such as security and privacy, trust and reputation, quality-of-service

(QoS), provenance, traceability, visibility, trustworthy, logging, auditability, service-

level-agreement (SLA) performance measurement, reliability and recoverability, on

the overall IT solution. Although some of the researchers tend to use the accountabil-

ity term and some of the above terms interchangeably, the concepts behind them are

quite different, even though they are interrelated. A study of the literature below exam-

ines the relationship between accountability and various concepts in IT architecture.

2.2.3.1 Accountability versus Security and Privacy

Accountability has frequently been treated as part of security and privacy. However,

their meanings are quite different. In [25], the authors suggest that security can be de-
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Figure 2.1: Accountability versus Security [116]

fined as a state that is free from danger and not exposed to damage from accidents or

attack; or it can be defined as the process for achieving that desirable state. Privacy is

about ensuring appropriateness in handling of customer’s sensitive information [190].

On the other hand, accountability means obligation to inform other parties about ac-

tions and decisions, or justify them, and to be punished in the case of misconduct [166].

In the IT literature, the goal of security is to protect information assets. Security

has three aspects: confidentiality, integrity and availability [167]. Conversely, the goal

of accountability is to ensure justice in service or product consumption. It has both

ethical and legal aspects. A system with poor security can undermine its accountabil-

ity, however, a system with strong security does not necessarily have accountability.

For example, an online illegal drug store may have strong security built in, but it does

not have accountability, as it fails to disclose its licensing status for selling drugs [116].

Fig. 2.1 illustrates the relationship between accountability and security in the IT

context. Security fits in the technology domain. The service provider provides the

capabilities of authentication, authorisation, cryptography, audit and availability to

protect information assets while ensuring legitimate access to those assets. On the

other hand, accountability fits in the business domain. The service provider discloses
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identities, roles, responsibility and outcomes; and then delivers the service in accor-

dance with what has been disclosed. Security and privacy supports accountability:

authentication verifies identity; authorisation enforces authority of the roles; audit and

cryptography support non-repudiation; and availability and privacy form part of the

service provider’s obligations under the service contract. Effectively, without security,

the existence of accountability will be in doubt. However, security and privacy alone

are not sufficient to guarantee accountability [116].

Ensuring security and privacy through information hiding and access control mech-

anisms becomes less effective while the whole industry is moving towards an Internet-

based communication platform. In [190], Weitzner et al. raise the issue of information

accountability. In contrast to most people who think that secrecy and upfront control of

information will prevent the misuse of information, they promote instead that the use

of information should be transparent so it is possible to hold individuals or institutions

accountable for information misuse. The Wikileaks controversy in 2010 showed that

most people were confused with the very topic of information accountability. Should

the people who published classified information be punished? Or should the people

who leaked the secret information to publishers be punished? Or should the people

who misused the classified information be punished? People like US congress man

William Delahunt even hold the view that “secrecy is the trademark of totalitarianism”

whereas “Wikileaks provides the opportunity for ensuring transparency and openness”,

which is the essence of accountability [63]. Leading accountability researcher Simon

Zadek calls this kind of accountability “disruptive accountability” and points out that

disruptive accountability signals the failure of procedural accountability, in which rules

of conducts were designed by power as the means to enforce accountability [199].

In [190], Weitzner et al. argue that debates over online privacy, copyright, and

information policy questions have been overly dominated by the access restriction

perspective. They believe that in a world where information is ever more easily

copied and aggregated, and where automated correlations and inferences across mul-

tiple databases can uncover information even when it has not been explicitly revealed,
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accountability must become a primary means by which society addresses issues of ap-

propriate use. They propose an alternative to the “hide it or lost it” approach, which is

designing systems that are oriented toward information accountability and appropriate

use, rather than information security and access restriction.

The goal of Weitzner et al. is to extend the web architecture to support trans-

parency and accountability, so when information has been accessed, it is possible to

identify who accesses what and determine whether the access is inappropriate. They

name this extension Policy Awareness, which is a set of technical mechanisms that

augment Web information with meta-data about provenance and usage policies, and

provide automated means for maintaining that provenance and interpreting policies.

Policy Awareness allows all participants with accessible and understandable views of

the policies associated with information resources, provides machine-readable repre-

sentations of policies in order to facilitate compliance with stated rules, and enables

accountability when rules are intentionally or accidentally broken.

The Policy Awareness extension encompasses three capabilities: Policy Aware

transaction logs, Policy Language Framework and Policy Reasoning Tools. A policy-

aware transaction log will record data provenance and annotations about how the in-

formation was used, and what rules are known to be associated with that information,

in addition to the traditional network and database transaction logs. A policy language

framework is a common framework for describing policy rules and restrictions with re-

spect to the information being used. A policy reasoning tool assists users to determine

whether a piece of data is allowed to be used for a given purpose, providing a string of

inferences permissible for use in a given context, depending on the provenance of the

data and the applicable rules.

A critical consideration in enabling Policy Awareness is whether to re-architect the

basic Internet and Web protocols, or build the capabilities on top of existing infras-

tructure. Weitzner et al. point out a possible latter approach, which uses a collection

of accountability appliances that are distributed throughout the web and communicate

using web-based protocols, both among themselves and with other web resources.
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The accountability appliances would serve as proxies to data sources, mediating ac-

cess to the data and maintaining provenance information and logs of data transfers,

and presenting accountability reasoning in human readable ways through client facing

services to browsers. The accountability appliances also allow annotation, editing, and

publishing of the data and the details of the reasoning.

There are significant technological challenges in implementing the Policy Aware-

ness extension at the moment. Some of the challenges are associated with reasoning

over heterogeneous policy expressions, mainly in the dilemma of trading off the lan-

guage expression power and the computation feasibility. In [77], Hanson et al. present

an algebraic approach called Data-Purpose Algebra, which formalises the properties of

the data, the organisations, and the trail of data transfers to guide automated inference

in a privacy information accountability solution area.

Although the technology for implementing the Policy Awareness extension is still

not mature, Weitzner et al. set out a new direction for greater accountability on the

web.

2.2.3.2 Accountability versus Trust and Reputation

Like accountability, there are a lot of definitions of trust and reputation in the current

literature. In [90], the authors have reviewed most of the published definitions of trust

and reputation available. Here we adopt the widely cited definitions proposed in [140]:

Trust: a subjective expectation an agent has about another’s future behaviour based

on the history of their encounters.

Reputation: perception that an agent creates through past actions about its inten-

tions and norms.

Based on these definitions, we can see that the trust and reputation concepts are

related to the accountability concept, but with significant differences. Trust values and

reputation ratings can be subjective; however, in some sense they can be the measure-

ment of the degree of fulfilment and the quality of service. Hence they can be used as

an indirect measurement of accountability [116].
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In [36], Chun and Bavier suggest trust management in federated systems must also

be accomplished with accountability. They present a layered architecture for address-

ing the end-to-end trust management and accountability problem. The accountability

layer in their system provides two services, with one providing continuous monitoring

on how trust relationships are being used by principals in the system, and the other

providing periodic logging of monitoring data to create historical traces of how prin-

cipals behave over time. The authors imply the accountability meaning as monitoring,

logging on principals’ behaviour.

2.2.3.3 Accountability versus QoS Properties

QoS properties, such as performance and reliability, are normally categorised as the

non-functional requirements (NFR) of a system. These NFRs can be captured in a

special form of contract called Service Level Agreement (SLA) as part of the respon-

sibilities that the service provider needs to fulfil. The inconsistency between the qual-

ity of service in runtime and the disclosed SLA can contribute to the consumer’s low

expectation and poor perception of a service, and is therefore reflected in low trust val-

ues and reputation ratings. Hence monitoring SLAs is an important means that service

providers use to manage accountability. However, SLA mainly targets non-functional

requirements and normally does not have provisions on functional requirements. So

similar to the security/accountability relationship, SLA management does not suffi-

ciently address accountability [116].

In summary, integrity, security, privacy, trust, reputation and QoS monitoring all

contribute to accountability. However, one important theme that is missing in those

concepts is disclosure. Disclosure is the basis for accountability. Integrity, security,

privacy and QoS are all service properties with specific target measures that need to

be achieved by the service providers as part of their binding contracts with the service

consumers. Service consumers will compare the metrics of those properties against

what had been disclosed to them and form perceptions and expectations based on the

result. These perceptions and expectations may feed the trust and reputation engines,
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which produce a trust value or reputation rating as indicators of the service providers

accountability. While trust values or reputation ratings may put pressure on service

providers to improve accountability, a systematic way to address the accountability

issue in service is to build up accountability mechanisms in the service-oriented archi-

tecture.

2.2.3.4 Provenance and Traceability

Provenance means the process of tracing or recording the origin, derivation, history,

ownership, or movement of a data object, also known as lineage [32, 33, 92]. In

particular, Buneman et al. generalise the provenance problem as below.

Suppose a database (a view) V = Q(D) is constructed by a query D applied to

database D, and the question is finding the provenance of some piece of data d in

Q(D), i.e., what parts of database D contributed to d?

Cui et al. [45] address the above problem in a data warehouse environment. They

present a lineage tracing algorithm for relational views with aggregation. Based on

their tracing algorithm, they propose a number of schemes for storing auxiliary views

that enable consistent and efficient lineage tracing in a multi-source data warehouse.

Buneman et al. further classify provenance into two types: why-provenance and

where-provenance. Why-provenance refers to the source data that had some influ-

ence on the existence of the data; whereas where-provenance refers to the location(s)

of the databases from which the data was extracted [33]. They suggest that Cui has

only addressed the why-provenance in a relational database setting, whereas they pro-

pose a Deterministic Query Language (DQL) to allow query of both why-provenance

and where-provenance in a more general context, rather than limited to the relational

database context. In the DQL data model, the location of any piece of data can

be uniquely described by a path. They have described a system of rewrite rules in

which why-provenance is preserved over the class of well-defined queries and where-

provenance is preserved over the class of traceable queries.

In [92], Ikea et al. have conducted a survey on data lineage. They formalise
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Figure 2.2: An Example of Transformation Graph [92]

provenance as below:

Input data sets I1, ..., Ik are fed into a graph of transformations T1, ..., Tn (an ex-

ample is illustrated in Fig. 2.2) to produce output data sets O1, ..., Om.

Normally, the transformations form a directed acyclic graph(DAG) and the input

and output data sets consist of individual items. Given a transformation graph, the

provenance question can be described as:

Q1) Given some output, which inputs did the output come from?

Q2) Given some output, how were the inputs manipulated to produce the output?

These questions delineate two types of lineage: where-lineage (Q1) and how-

lineage (Q2). Each type of lineage has two granularities:

1) Schema-level (coarse-grained)

2) Instance-level (fine-grained)

Schema-level where-lineage answers questions such as which data sets were used

to produce a given output data set, while schema-level how-lineage answers questions

such as which transformations were used to produce a given output data set. In con-

trast, instance-level lineage treats individual items within a data set separately, so more

fine-grained questions can be asked such as which tuples from a set of base tables are

responsible for the existence of a given tuple in a derived table (where-lineage).

Ikea et al. treat the why-lineage category of Buneman’s definition as an instance-

level where-provenance, whereas the where-provenance category of Buneman’s defi-
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nition is a more fine-grained of where-lineage.

Based on their categorization matrix, Ikea et al. survey eight papers, they find that

in [31], Buneman et al. address how-lineage in both schema-level as well as instance-

level; Heinis et al. [80] address schema-level for both where-lineage and how-lineage;

whereas most majority papers [33, 46, 47, 89, 157, 191] address the instance-level of

where-lineage.

The study of provenance mainly focuses on the source of the data and the transfor-

mation of the data. It is an important tool for ensuring the authenticity, integrity and

traceability of the data, which are important aspects of the data accountability. How-

ever, the provenance topic does not address the actor and the obligation aspects of the

accountability.

2.2.3.5 Logging, Monitoring and Auditing

While provenance mainly deals with the traceability of data in databases, the emphasis

of service accountability is mainly on recording who does what from a collaboration

process perspective. Therefore, tamper-evident logging, monitoring and authentic au-

diting are important aspects of service accountability.

Traditionally the mechanism to improve accountability in IT is by deploying IT

monitoring (ITM) solutions which typically use a centralised monitoring server plus

distributed monitoring agents or probes to monitor the health and Quality of Service

(QoS) of the IT infrastructure, providing information on service level and alerting IT

operators on abnormal events [173].

In [95], Jagadeesan et al. propose a logic for designing accountability-based dis-

tributed systems. Actors in the system are modelled as agents, including honest actors,

dishonest actors, auditors and Trusted-third parties. Behaviours of all agents are de-

scribed as process in process algebra with discrete time. Their approach supports both

the design of accountability systems and the validation of auditors for finitary account-

ability systems.

In recent years, BPM has emerged as the latest trend in process management with
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the aim to improve process accountability. There are two interrelated BPM acronyms.

One stands for business process management, which designates the automation and

digitisation of processes. The other stands for business performance management,

which expands on the performance of business process management. BPM systems

typically include business process activity monitoring (BAM) and performance anal-

ysis capabilities [55]. For example, process is monitored in real time, with key per-

formance indicators (KPIs) displayed on a dashboard. Business rules can be defined

and automatically invoked when critical performance measures move out of control

targets.

In [198], Yumerefendi and Chase promote accountability as a central design goal

in network services by introducing a round processing framework. The authors sug-

gest that an accountable system is undeniable, certifiable and tamper-evident. The

accountability aspects are based upon the storage of digitally signed records or actions

to detect inappropriate behaviour and to assign responsibility when things go wrong.

While these techniques address the exchange of items, the work does not address ac-

countability outside the transaction, such as full disclosure, maintaining confidentiality

and the reputation of the parties.

In [182], Tseng et al. position accountability as the ownership of the responsibility

to meet requirements in an end-to-end business process. The authors propose an Ac-

countability Centered Approach (ACA) for business process engineering. The ACA

approach suggests iterative decomposition of accountability to appropriate levels and

mapping of sub-accountabilities into activities.

While ITM and BPM focus on proactive performance monitoring, they do not

directly address other aspects of accountability, for example, disclosure, trust and rep-

utation.

2.2.3.6 Defect Detection, Diagnosis and Recoverability

Some researchers treat accountability as the capabilities to detect system defects, diag-

nose the root cause of a service failure and recover automatically from service break-
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down. One example is that Zhang et al. propose a 3-D approach (Detect, Diagnose,

and Defuse) in their accountability model to discover and eliminate the root cause

of problems when violations of service-level agreement (SLA) occur in business pro-

cesses [200]. The approach adopts Bayesian Network reasoning for root cause analy-

sis and a service reputation model to address problematic web services. In [115], Lin,

Panahi and Zhang have created a prototype of Intelligent Accountability Middleware

Architecture (LLAMA), which provides a dynamic and efficient service infrastruc-

ture to support service monitoring, root cause analysis and reconfiguration of service

process after problem diagnosis.

Fig. 2.3 illustrates the LLAMA architecture. In the LLAMA-based system, two

Trusted-Third Party (TTP) components are used: the Accountability Authority (AA)

and Accountability Agents. They collaborate to perform service process monitoring,

fault diagnosis, service process recovery, and service network optimisation. Multiple

Agents are selected by AA to address scalability requirements. Each Agent is put

in charge of monitoring a subset of services (as depicted by the circles in Fig. 2.3)

during the execution of the service process. When undesirable process outcomes are

detected during monitoring, Agents provide AA relevant service status information

as evidence for AA to diagnose the run-time process problems. After diagnosis is

confirmed, AA then follows with Defuse operations. The 3D approach emphasises the

integrity, traceability, recoverability, trust and reputation aspects of accountability.

2.2.4 IT Governance-Level Accountability

On the IT governance level, the IT Governance Institute states that IT governance is

concerned with IT’s delivery of value to the business and mitigation of IT risks [93].

Weill and Woodham define IT governance as to specify the decision rights and ac-

countability framework that encourages desirable behaviour in the use of IT [189].

COBIT (control objectives for information and related technology), developed and is-

sued by Information Systems Audit and Control Association (ISACA) in 1996, has
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Figure 2.3: System Architecture of LLAMA Accountability Framework [115]

been adopted by corporations and governmental entities around the world and has be-

come the de-facto standard for IT governance [184].

Since COBIT is largely used for governing the IT related processes, for business-

focused SOA processes the term SOA governance has emerged. Moreover, SOA gov-

ernance refers to the organisation, processes, policies, and metrics required to manage

an SOA successfully [127]. SOA governance specifies and enforces conformance to

SOA policies, which set the rules to govern the entire service lifecycle (i.e., design, de-

velopment, test, publish, discovery, runtime execution and sunset) and the behaviour

of involved parties as well. SOA governance can be a challenging process for many

organisations, as currently there is no standard model to evaluate accountability at the

individual service level.

In the product development area, maturity models have been very successfully

used in many different disciplines to improve process accountability [16]. Capability

Maturity Models (CMMs) contain the essential elements of effective processes for one

or more bodies of knowledge [178].

The Software Engineering Institute (SEI) at Carnegie Mellon University developed

a Capability Maturity Model (CMM) [150], which defined key performance areas from
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an initial level of maturity to a level of optimisation. The CMM establishes a yard stick

against which it is possible to judge in a repeatable way, the maturity of an organisation

software process and compare it to the state of the practice of the industry [110]. It is

developed to present sets of recommended practices in a number of key process areas

that have been shown to enhance software development and maintenance capability.

The CMM was designed to help developers select process-improvement strategies by

determining their current process maturity and identifying the issues most critical to

improving their software quality and process [110].

CMM defines five levels of maturity; each level is described below [150]:

Level 1 : Initial Maturity Level. In the first level of CMM, performance of

an organisation is driven by the competence and heroics of the people doing the

work. High quality and exceptional performance is possible so long as the best

people can be hired. Unpredictability exists everywhere, for good or ill. The

major problems faced by software organisations are managerial, not technical.

Level 2 : Repeatable Maturity Level. At this stage, the critical need is to estab-

lish effective software project management. Software project management pro-

cesses are documented and followed. Organisational policies merely guide the

projects in establishing management processes which are more project specific.

Thus top management involvement is partial and does not drive the initiative. To

be able to repeat best practices of the earlier successful projects requires these

to be documented adequately. At this level , the focus is primarily on projects.

Level 3 : Defined Maturity Level. At level 3, the emphasis shifts to the or-

ganisation. Best practices are gathered across the organisation and Organisation

Standard Software Processes are defined and tailored to projects, if required.

The organisation now supports the projects by establishing common processes

for software engineering and management, measurements and training. The pro-

cess capability is based on a common, organisation wide understanding of the
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activities, roles and responsibilities. At this level, measurements have been de-

fined and collected systematically.

Level 4 : Managed Maturity Level. At level 4, decisions are made based

on data collected. The organisation sets quantitative goals for both software

products and processes. The process performance and the project progress is

controlled quantitatively. At this level, all organisational processes are mapped

to a common measurement and assessed using a base line.

Level 5 : Optimising Maturity Level. At level 5, continuous process improve-

ment is a way of life. The focus is on preventing the occurrence of defects and

inducing innovations. In immature organisations, no one may be responsible

for process improvement. Mature organisations usually have 70-80% participa-

tion in improvement activities at any given point in time- every one is involved.

Continuous process improvement means controlled change and a measured im-

provement in process capability.

From what we can see, the progression of maturity level also reflects the level of

accountability of the organisation.

Since 1991, CMMs have been developed for a myriad of disciplines. Some of the

most notable include models for systems engineering, software engineering, software

acquisition, workforce management and development, and Integrated Product and Pro-

cess Development. The use of multiple models has been problematic. Many organ-

isations would like to focus their improvement efforts across the disciplines within

their organisations. Thus The CMM IntegrationSM project was formed to sort out the

problem of using multiple CMMs. [178]

The CMMI addresses some of the efficiency issues associated with CMM, chang-

ing the “waterfall” mentality to an “iterative” mentality of software development [163].

In [16], Baskarada et al. propose a TDQM based Capability Maturity Model

(CMM) for Information Quality Management (IQM). They argue that the maturity

model may assist organisations in assessing and enhancing their IQM capability, by
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addressing a wide range of Information Management (IM) and IQM process areas and

organising those process areas into staged levels. This process ensures that every per-

son is accountable for the quality of his or her work and does not send poor quality

information to the next person in the process.

The maturity models are mainly used at the organisation level to govern the prod-

uct development process in order to improve product quality and organisational per-

formance, and thus improve accountability of both personnel and organisation level.

2.2.5 Accountability in Service-Oriented Architecture

Service-Oriented Architecture is suggested to be the most important software archi-

tecture in enterprise computing [22]. The early focus of SOA is on interoperability,

reusability, flexibility and agility [149, 149]. In recent years the issue of governance

has become a major concern in SOA [75]. Effective SOA governance is a precursor

to promoting service accountability. However, the current focus of SOA governance

is more on organisational alignment and service lifecycle management, but less on

the accountability mechanism in the SOA architecture. Although some specifications

have been developed in areas such as QoS management and security, and some of

those specifications have even been implemented in the key SOA building blocks such

as enterprise service bus (ESB), registry/repository and process engine, accountability

as a whole has not been addressed by the current Web Services specifications and the

current SOA implementations. In the following two subsections, we will examine the

Web Services protocol stack and the accountability capabilities that the stack provides.

2.2.5.1 Web Services Protocol Stack

Since the release of the core Web Services protocols SOAP, WSDL and UDDI in 2000-

2001, Web Services has rapidly become the technology of choice for distributed com-

puting, replacing traditional technologies such as CORBA and DCOM [114]. These

three basic specifications do not address enterprise concerns such as security, trans-
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actionality and reliability. As a result, ever more and more WS-* specifications have

been developed by vendors to address those concerns.

In early 2006, HP, IBM, Intel and Microsoft jointly authored a Web Services road

map white paper, clarifying their positions on various Web Services specifications

for resources, events and management [37]. Based on [37], Fig. 2.4 shows the web

services protocol stack. We will use this protocol stack as the basis to examine the

accountability capability.

At the bottom of the stack, the standard internet transport protocols, like HTTP and

SMTP, plus the XML family of specifications form the foundation. Building upon this

foundation, the Web Services protocols like SOAP, ASAP, WS-Notification and WS-

Addressing provide the messaging and encoding capabilities for service communica-

tion. The next layer is service description and discovery, enabled by WSDL, UDDI,

WS-Policy and WS-MetadataExchange. Above that, the WS-Security family of spec-

ifications and WS-ReliableMessaging form the QoS layer. The next layer is business

process, transaction and management, consisting of WS-DM, WS-Coordination, WS-

ResouceFramework, WS-Transaction and BPEL. The top layer is the user experience,

which at the time had only one specification: WS-RemotePortal.

Note that other alternative Web Services specifications can also fall onto the re-

spective layer on the same stack. For example, WS-Reliability can replace WS-

ReliableMessage in the QoS layer; WS-Eventing can replace WS-Notification in the

Messaging and Encoding layer.

2.2.5.2 Accountability Capability of the Existing Web Services Protocol Stack

Accountability is directly related to the Description/Discovery and the QoS layers, and

to some extent, the business process, transaction and management layer of the Web

Services Protocol Stack. Although process management, transaction management,

security and QoS properties all contribute to accountability, they are not sufficient to

enable accountability. One missing critical capability is disclosure, which is the basis

for accountability. Disclosure is for the accountable party to disclose identities, roles,
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Figure 2.4: Web Service Protocol Stack

service responsibilities and the execution state and result of the service execution.

On the Description/Discovery layer, The WSDL is used to describe service defini-

tion, which includes service interface, location and binding details. WSDL document

is normally treated as the service interface contract. The service descriptions disclosed

by WSDL are technical in nature, without any accountability elements, such as roles,

identities, responsibilities and service outcome. Thus WSDL does not contribute to ac-

countability. UDDI is a registry standard that allows business to publish and discover

Web services. It allows service providers to disclose some accountability information

such as business entity, business services and taxonomy. However, due to the limita-

tion of the UDDI data model, it does not support disclosure of roles, responsibility,

execution state and outcome. WS-Policy provides a general purpose model and corre-

sponding syntax to describe and communicate the policies of a Web service. However,

WS-Policy is only a framework and does not define any specific policy. In theory, ac-

countability information can be expressed in a policy assertion language and disclosed

as service metadata through the WS-Policy framework and WS-MetadataExchange,

which defines three request/response message pairs to retrieve three types of meta-



42 Literature Review

data: WS-Policy, WSDL and XML schema. But there is no such assertion standard

language yet.

On the QoS layer, WS-SecurityPolicy and WS-ReliableMessaging can be used

as policy assertion languages in the WS-Policy framework to disclose non-functional

requirements on security and reliable messaging. But other QoS policy assertion lan-

guages are yet to be formally defined.

On the Business, Transaction and Management layer, BPEL may be used to dis-

close the orchestration of the services, which is part of the process logic that falls

into the functional aspect of responsibilities. But currently BPEL is used as a process

modelling and execution language, not a disclosure language.

After examining the accountability capability of the relevant layers on the Web

Services Protocol stack, we can see that the missing accountability capabilities are in

the area of disclosure and service contract management. In particular, it is the ability to

disclose roles, responsibilities (both functional and non-functional), service state and

outcome, and the ability to track service obligation performance of the service con-

tract. Hence it presents a capability gap in service accountability in Service-Oriented

Architecture that is implemented using the WS-* stack.

2.2.5.3 Accountability in the Cloud Environment

Cloud computing brings new accountability challenges due to the characteristics of the

cloud environment. The widely accepted definition of cloud computing is provided by

the National Institute of Standards and Technology, which points out the five character-

istics of cloud: on demand self-service, broad network access, resource pooling, rapid

elasticity, measured service [132]. While these characteristics bring convenience, flex-

ibility, high efficiency and low cost benefits to IT users, they also create new threats

to accountability. In 2010, the Cloud Security Alliance (CSA) published the “Top

Threats to Cloud Computing” report [44], which identifies the top seven threats as:

1. Abuse and Nefarious Use of Cloud Computing
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2. Insecure Application Programming Interfaces

3. Malicious insiders

4. Shared Technology Vulnerabilities

5. Data Loss/Leakage

6. Account, Service & Traffic Hijacking

7. Unknown Risk Profile

In [105], Ko et al. discuss the complexities involved in achieving cloud account-

ability in a cloud environment. Some examples are (1) tracking of virtual-to-physical

mapping and vice versa, (2) multiple operating systems, (3) logging from a file-centric

perspective, (4) live and dynamic system, (5) the scale, size and scope of the logging.

While acknowledging that the preventive controls through privacy protection and secu-

rity measures such as encryption are either not sufficient, or are some-times impracti-

cal, they suggest augmenting preventive controls with detective controls that promote

transparency, governance and accountability of the service providers. The detective

controls of tracing data and file movement in the cloud are the focus in the paper.

They propose the Cloud Accountability Life Cycle (CALC) and three abstraction lay-

ers (workflow, data and system) as a foundation to help researchers and practitioners

to design tools and approaches which address all areas of cloud accountability.

Cloud computing is based on models like cluster computing, distributed comput-

ing, utility computing and grid computing in general [164]. In [112], Lee et al. pro-

pose an XML-based language for the specification of accountability policies for the

grid computing system. They also design a distributed, agent-based system to enforce

the policies expressed in this language. In addition, they provide security and privacy

mechanisms for the storage of accountability data.

Commenced on October 1st 2012, A4Cloud (an Integrating Project in the EU’s 7th

Framework Programme (FP7)) focuses on accountability as the most critical prereq-
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uisite for effective governance and control of corporate and private data processed by

cloud-based IT services [151]. A4Cloud sets out four project objectives [94]:

1. control and transparency: enable cloud service providers to give their users

appropriate control and transparency over how their data is used;

2. facilitate choice: enable users to make choices about how cloud service providers

may use and will protect data in the cloud;

3. compliance: monitor and check compliance with users expectations, business

policies, and regulations;

4. recommendations and guidelines: implement accountability ethically and ef-

fectively.

In [144], Nunez et al. present a meta-model for defining metrics for accountability

attributes, as part of the A4Cloud project. The goal of this meta-model is to act as a

language for describing: accountability properties in terms of actions between entities

and metrics for measuring the fulfilment of such properties. It also allows the recursive

decomposition of properties and metrics, from a high-level and abstract world to a

tangible and measurable one. Finally, they apply their metamodel in modelling the

transparency property, and define the relevant metrics for it.

In [94], accountability in cloud computing is defined as:

“Accountability for an organisation consists of accepting responsibility for data

with which it is entrusted in a cloud environment, for its use of the data from the time

it is collected until when the data is destroyed (including onward transfer to and from

third parties). It involves the commitment to norms, explaining and demonstrating

compliance to stakeholders and remedying any failure to act properly”

The A4Cloud project also outlines a conceptual framework for accountability,

which elaborates the definition above by means of a set of accountability attributes,

accountability practices and accountability mechanisms. The core attributes of their
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accountability model are: transparency, responsiveness, remediability, responsibility,

verifiability, appropriateness and effectiveness.

In [196], Yao et al. propose a separate accountability domain for cloud service

providers to log the non-reputable evidences of their activities. The logging activities

can be incorporated into existing business processes defined with process descriptive

languages (e.g. BPEL5). A trusted-third party (TTP) will provide accountability as

a service to enforce compliance based on the accountability domain. The authors

further extend their approach in [197] and develop a quantitative model to represent the

horizontal and vertical structures of the collaborations involving multiple un-trusted

parties. Using this model, they classify four types of compliance and determine the

logging needed for their verification.

In [174], a Cloud Information Accountability (CIA) framework is proposed. The

CIA framework allows automatically logging any access to the data in the cloud to-

gether with an auditing mechanism. The authors of the CIA propose to extend the

programmable capability of Java Archives (JARs) to automatically log the usage of

the user’s data by any entity in the cloud. Users will send their data along with any

policies such as access control policies and logging policies that they want to enforce,

enclosed in JAR files, to cloud service providers. Any access to the data will trigger

an automated and authenticated logging mechanism local to the JARs. There are two

major components of the CIA, the first being the logger, and the second being the log

harmoniser. The logger is the component which is strongly coupled with the users’

data, so that it is downloaded when the data are accessed, and is copied whenever the

data are copied. The log harmoniser is responsible for auditing. It supports two audit-

ing strategies: push and pull. Under the push strategy, the log file is pushed back to

the data owner periodically in an automated fashion. The pull mode is an on-demand

approach, whereby the log file is obtained by the data owner as often as requested. The

CIA framework provides distributed logging and auditing capabilities that are suitable

to the cloud environment. However, it is overly reliant on the Java environment which

5http://www.ibm.com/developerworks/library/wsbpelcol1/
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may limit its applications.

2.2.6 Summary of Accountability in IT

Accountability is a term used loosely in the IT literature, referring to a variety of

desired attributes in various aspects of IT. These attributes can be security, privacy, in-

tegrity, provenance, traceability, recoverability, trust and non-repudiation on the tech-

nical or architectural levels, or can be maturity on the governance level.

In [179, 180], Techapanupreeda et al. take an integrated view of accountability,

proposing an accountability model and protocol in Internet transaction that satisfies

essential security properties: confidentiality, integrity, authorisation, authentication,

non-repudiation, liability and responsiveness. The protocol is designed using asym-

metric cryptography and a hash function to ensure that it meets all the above account-

ability properties.

So far in this chapter, we have discussed the general concept of accountability,

touching on the common practices of achieving accountability through quality man-

agement and regulatory compliance. Then, we briefly reviewed accountability from

the management literature, outlining the accountability dimensions and accountability

definition for service performance. Next, we described accountability related work

in the IT literature. We observed that there are three levels of accountability work in

IT: the technical protocol level, the architectural level and the governance level. We

noticed that, thus far, there are two crucial aspects of accountability that have not been

addressed in the IT literature: the disclosure and service contract management mech-

anisms. Following that, we clarified from an architectural concern perspective, how

the accountability concern related to other architectural concerns, such as integrity,

security, privacy, monitoring of QoS properties, trust and reputation. Next, we have

examined the accountability capabilities in the current Web Service protocol stack and

finally identified the gaps in accountability capabilities, which exist in the areas of

disclosure and service obligation tracking based on the underlying service contract.
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2.3 Service Contract-based Accountability

In a business environment, accountability is normally upheld through the enforcement

of a legal contract. In a service arrangement, both the service provider and the service

consumer are bound to the service contract, i.e. they are accountable to the fulfilment

of the service contract. One major theme in current accountability research in IT is

that it focuses too much on technical properties and rarely addresses the accountability

concerns in the underlying business contract. While a Service Level Agreement (SLA)

is a kind of contract, it normally only records the non-functional aspect of obligations

and falls short on the functional aspect of service obligations, which is normally in the

Statement-of-Work (SOW) scope. SOW deals with the issues of roles and responsi-

bilities including obliged activities, deliverables and acceptance criteria, which are the

key concerns for business.

2.3.1 Traditional Contract Concept in IT

Applying the contract concept in component and service design has been a widely

adopted practice since the early days of the Object-Oriented movement. It was first

implemented under the name of “design by contract” in the Eiffel language [134].

In [20], Beugnard, Jezequel et al. propose four levels of contracts for components:

syntactical, behavioural, synchronisation and quality-of-service. The authors also pre-

sented a survey after ten years and found that contract-aware components are becoming

mainstream in several domains such as embedded systems and Service-Oriented archi-

tecture [21]. These practices enhance integrity, reliability and, hence, accountability

of components and services. The limitation of the existing approaches is that they

only borrow the concept of contracts and apply technical constraints on fine-grained

components, rather than treating contracts in a legal and business sense, which is a

crucial requirement for accountable cloud services. They miss another level of ab-

straction that is required to deal with the Statement of Work (SOW), which is another

prominent component of service contracts after the SLA.
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In 1994, Szabo proposed the concept of the “smart contract”6. He suggested that

many kinds of contractual clauses (such as collateral, bonding, delineation of property

rights, etc.) can be embedded in the hardware and software, in such a way as to make

breach of contract expensive for the breacher. In his view, a vending machine is an

example of a smart contract. He further suggested that contracts can be embedded in

all sorts of property that is valuable and controlled by digital means. Such contracts are

smart contracts, which reference that property in a dynamic, often proactively enforced

form, and provide much better observation and verification where proactive measures

must fall short [175].

Although Szabo’s idea of the smart contract was proposed more than 20 years ago,

it has largely been ignored by the industry, as there was no platform that could enforce

them, until the emergence of the Bitcoin system in 2009. In the Bitcoin system, a

distributed contract is a method of using Bitcoin to form agreements with people via

the blockchain. It executes automatically, taking human judgements totally out of the

loop [24].

In 2014, Buterin published a whitepaper on the Ethereum project. The intent of

Ethereum is to create an alternative protocol to Bitcoin for building decentralised ap-

plications. Ethereum provides a blockchain with a built-in Turing-complete program-

ming language, allowing anyone to write smart contracts and decentralised applica-

tions where they can create their own arbitrary rules for ownership, transaction formats

and state transition functions [34].

In a strict sense, a smart contract is not a service contract. It is a set of rules that are

embedded into a property. A smart contract can enforce a functional implementation

of a particular requirement, and can show proof that certain conditions were met or not

met [139].

6http://www.virtualschool.edu/mon/Economics/SmartContracts.html
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2.3.2 Contract Representation

On the other hand, contract representation is an extensively researched area in the IT

literature. IBM’s Trading Partner Agreement (TPA) defines a service contract as an

XML document (TPAml) that stipulates the general contract terms, conditions, partic-

ipant roles, communication and security protocols, and business process [49]. How-

ever, like many other XML based approaches, the contract meta-model lacks the for-

mal semantics to enable reasoning and verification which a logic-based model could

afford.

Policy management frameworks such as Ponder and KAoS have been widely used

in access control and security management. Although a policy can be treated as a form

of rules in a contract, in a strict sense, it deals with action rules on a fine-grained ob-

ject, rather than the high-level obligations of service participants. In contrast, service

accountability requires a high-level abstraction that allows decomposition and delega-

tion. Also, policy-based approaches only provide a rule view on contract obligations

and miss the crucial process view. In [153], the authors conduct a survey on policy-

based management approaches like Ponder, KAoS, Rei and WS-Policy. The survey

concludes that, while these approaches can be partially adopted in SOA, none of them

can be readily applied in service management. It is evident that none of these policy

frameworks have been applied in today’s cloud services.

In [194], Xu proposes a multi-party e-contract model that maps a paper-based con-

tract into contract actions and contract commitments. An algorithm is outlined to

detect contract violation based on the commitment graph. But it does not address the

state of the commitment, i.e., how to test whether a commitment is successfully ful-

filled or not. The only way to detect contract violation is to test whether there is any

action missing. The action is defined as a tuple of name, sender, receiver and dead-

line, lacking other acceptance criteria such as state condition or QoS attributes like

availability.

In [125], Marjanovic and Milosevic propose a formal service contract model based
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on deontic and temporal constraints. It provides verification of deontic consistency and

temporal consistency of an e-contract, plus a visualisation tool for action verification

and scheduling. However, the service contract model is still based on an “ought-to-

do” model rather than an “ought-to-be” model, therefore it is not suitable for modelling

accountability requirements.

In [82], Herrest and Krogh provide a logical analysis on directed obligation, pro-

hibition and permission. The paper discusses directed obligation in light of the ben-

efit theory and the claimant theory with its conclusion supporting the benefit theory.

In [177], the authors refine Herrest and Krogh’s counterparty definition and present

formal definitions for directed obligations and permissions in trade contracts. These

approaches do not address the paradoxes associated with the standard deontic logic.

In [50], a service contract model based on Modal Action Logic, Deontic Logic

and Subjective Logic is presented. In [72], a Business Contract Language (BCL)

and Formal Contract Language (FCL) are proposed using Defeasible Logic and De-

ontic Logic. Other approaches include applying Event Calculus to service contracts

(ecXML) [60] and extending First Order Logic (FOL) to handle the dynamic aspect of

service contracts [51].

Most of the above approaches use some variant of FOL to represent service con-

tracts, which is not easy to seamlessly integrate into the SOA architecture and, more-

over, most of these approaches favour expressiveness at the expense of decidability -

as we can see that FOL is not decidable. Moreover, these models do not provide an

execution process diagram and complementary methods for obligation decomposition,

as well as lacking methods to detect contract violation.

In [118], the authors outline a logic framework that incorporates concrete domain

and action theory into an expressive DL called ALCQO(Q∗). The logic frame-

work has the expressive power to describe both the static information and dynamic

behaviour aspects of a service contract But it does not show how to detect contract

violation. Grosof and Poon propose a service contract model by combining RuleML

and DAML+OIL in [74]. They use DAML+OIL to represent MIT Process Handbook’s
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process ontology and also present a contract ontology for the process. Then they out-

line an approach to specifying RuleML rules “on top of” DAML+OIL ontology to en-

able the specification of more complex situations in the contract. While their approach

has more expressiveness, the implication of the decidability issue was not discussed.

How to apply the contract model in a service oriented architecture environment was

not covered either.

In [187], Wang et al. propose a contract-based accountability service model. The

model uses federated accountability services to audit interactions between service con-

sumers and service providers so that misbehaviours can be detected with undeniable

evidence. A contract is prepared by a service provider according to a pre-defined

schema, which is not a formal representation of a service contract. The contract mainly

defines how operations in the service interface may change data states and how to track

these changes.

2.4 Conclusions on Literature Review

A general overview of the research on accountability has been provided in this chap-

ter. We have first briefly reviewed accountability in the management literature, in-

cluding the general concept of accountability and the accountability mechanisms built

through the quality management and compliance management perspectives. Through

the review, we have distilled the essences of the general accountability concept, being

disclosure, obligation fulfilment and liability assignment.

Second, we have provided a more detailed review of accountability in the IT liter-

ature. We have examined most existing work entitled “accountability”. One finding is

that the technical community share a quite different view on accountability than their

business counterparts in the business community. The accountability term has been

loosely used in IT literature to represent a variety of desired attributes in various as-

pects of IT, for example, security, privacy, non-repudiation, trust and reputation, com-

pliance, provenance, auditability, reliability and recoverability. While these attributes



52 Literature Review

do contribute to the overall accountability of an IT system, they are not the core con-

cerns of accountability. The core concerns are the aforementioned essential attributes

distilled from the general accountability concept. This presents a significant gap on the

understanding of the accountability concept between the business and the IT commu-

nities. One notable exception is the Information Accountability framework [190] pro-

posed by Weitzner et al. The connotation of their accountability term is more aligned

to the essences of the accountability concept, yet their focus is on the data level rather

than on the whole service level. We have also paid special attention to the SOA Web

Service protocol stack and analysed its accountability capabilities. As a result we have

identified an existing gap in disclosure and service contract management. Moreover,

we have reviewed existing accountability work in the cloud computing domain. We

found that while some valuable accountability solutions are starting to emerge, there is

a general lack of accountability frameworks that deal with service contract disclosure,

contract obligation fulfilment and arbitration in liability assignment.

Third, as service contract is a key element in upholding service accountability, we

have reviewed existing work in the service contract space, focusing on service con-

tract representation and contract management schemes. We have found that while

service contract is an extensive researched area where a large volume of quality re-

search works have been produced, there is still lacking a formal contract language that

can be interpreted by machines, facilitating service contract disclosure, service selec-

tion and matching based on the disclosed service obligations. The other important

missing component is a service contract management scheme that automates service

contract execution monitoring and provides fair dispute arbitration in liability assign-

ment. We believe that the service contract representation and service contract manage-

ment scheme are crucial to enable accountability in service computing, especially for

the cloud environment. Therefore, we have chosen to focus our research on these two

topics.



Chapter 3

Service Accountability Foundation

As introduced in Chapter 1, the accountability issue has been largely ignored by the

IT industry. The literature review in Chapter 2 also revealed that there seems to be no

common understanding of the concept of IT accountability in the research community.

Rather, some concerns from either the technological, architectural, or the organisa-

tional governance aspects are frequently treated as accountability concerns by various

IT researchers. The business community and the IT community hold quite different

views on accountability, and the main accountability considerations from the business

community, in the area of disclosure, obligation fulfilment and liability assignment,

are largely missing in IT literature. As service-oriented computing is about aligning

business and IT, it is imperative to bridge the gap in accountability between business

and IT.

Given the current state of accountability in IT, we argue that the first step towards

service accountability is to lay down a foundational accountability framework for ser-

vice computing, which defines the basic concepts, models, processes and measuring

approach for service accountability. The processes include contracting, disclosure,

monitoring and dispute arbitration. These processes can be manual or semi-automated,

as long as they capture the essence of accountability requirements.

This chapter is organised as follows. We first examine the fundamental questions

about accountability in service computing in Section 3.1. Then through a mashup

service example we demonstrate how an accountable service behaves in Section 3.2.

Next, we progress into the definition of the basic concepts for service accountabil-

53
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ity in Section 3.3. Following that, we outline the accountability processes in service

computing in Section 3.4. Next, we provide a quantitative measurement for account-

ability in Section 3.5. Then, in Section 3.6, we propose an accountable SOA architec-

tural style to instil accountability in the foundational SOA architecture, and outline an

accountability framework to assist in building accountability mechanisms in service

computing. Finally, we summarise the work in this chapter in Section 3.7.

3.1 Essential Accountability Questions

In the IT community, there is general confusion about the term “accountability”, as

various meanings have been attributed to it. The following questions help us to clarify

the confusion, and align our understanding of accountability to that of the business

community.

(1) Accountable to whom and for what?

As mentioned in the management literature review, accountability arises from var-

ious relationships. In the context of service computing, the main relationships are

contractual, social (moral) and legal/regulatory. These relationships come with obli-

gations; some are explicitly defined while some are implicitly required. In such a

relationship, typically a party (A) is accountable to the other party (B) when A owes

an obligation to B. In a contractual relationship, both service providers and service

consumers are accountable for obligations as defined in the terms and conditions in a

service contract, i.e., the service provider is accountable to the service consumer for

providing sufficient disclosure, and dutifully carrying out service obligations; whereas

the service consumer is accountable to the service provider for disclosing financial

information and promptly paying the service fees. In a social relationship, they are

accountable for obligations implied in the ethical standards and social responsibilities,

i.e., accountable to the general public, e.g., accessibility to people with a disability,

environmental friendliness. In a legal/regulatory relationship, they are accountable for

obligations as set out in statute laws or regulatory rules. To establish accountability in
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service computing, the first key concern is to figure out the service obligations of each

service party.

(2) Who is accountable?

In a legal sense, obligation and liability lie with a human being or a legal entity.

So only a human being or a legal entity, rather than a system or a service, can be

held accountable. In a service-oriented environment like cloud computing, a service

provider is held accountable for the service that he or she provides, whereas a con-

sumer is held accountable for how he or she consumes the service. However, the rapid

development of artificial intelligent (AI) technology sees an increasing number of IT

systems or services gaining cognitive capabilities. This will present a great challenge

in determining the accountable party in some circumstances when things go wrong.

Increasingly, cloud services may behave like a proactive system, not like the passive,

reactive system that we usually perceive. This may trigger a series of legal and ethical

questions.

Imagine a hypothetical scenario, where a taxi company uses unmanned vehicles to

provide taxi services and one of their unmanned vehicles caused a severe accident. In

this case, who is accountable? It seems unfair to blame the taxi company. It is also

difficult to lay the blame on the vendor of the unmanned vehicle, as it may aggregate

many components from other vendors, using a lot of data feed services like traffic,

weather, geographic information system (GIS), etc., plus deep learning technology to

arrive at the action decision that caused the accident. To meet this type of challenge,

a precise accountability traceability map may need to be established, and a clearly

defined service contract for each component is critical to enable such traceability.

(3) How to disclose the service contract obligations and the status of obligation

fulfillment?

A key theme for accountability is to provide transparency in service obligations and

the obligation fulfillment status, so service participants are kept informed during the

life-cycle of the service contract. In business, disclosure of the financial information

of a public company is generally done through a central platform, such as the stock
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exchange. How a continuous disclosure in a service computing environment can be

undertaken is, as yet, unexplored territory.

(4) How to detect a violation in service contract?

In order to detect a violation of obligation in a service contract, a real-time monitor

of the execution of a service contract must be in place. The monitor needs to under-

stand the obligations in a service and compare these against each party’s actions to

detect a violation of a service obligation.

(5) How to prove that someone should be accountable for a fault?

A fault occurs when an obligation is breached by some party. It is necessary to

show the causality which proves beyond reasonable doubt that the party is at fault

based on the collected evidence. The evidence must be tamper-proof, with a non-

repudiation guaranteed.

(6) If a dispute arises during a contract execution, how will the dispute be re-

solved?

In traditional service space, if a dispute occurs during the contract execution and

can not be resolved between the service provider and the service consumer, they tend to

go to a court or a tribunal to get the matter resolved. In a service computing space, es-

pecially in the cloud computing environment, the geographic diversity of the providers

and the consumers, plus the lengthy and costly manual process, will render such man-

ual processes impractical. Therefore, an automated dispute arbitration mechanism that

demonstrates fairness is required to enforce accountability in service computing.

(7) How do we measure accountability?

Accountability in general is a qualitative term; it is difficult to measure account-

ability quantitatively. As per Peter Drucker’s famous quote, “What get measured, get

managed.” [152], a quantitative measurement method of accountability is important

for managing accountability in a service computing environment. Traditionally, QoS,

the degree of SLA comformance, trust scores or reputation ratings have been used as

indirect measurements for accountability. However, the measurement of key account-

ability concerns, such as the level of transparency, the degree of obligation fulfilment
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and the fairness of liability assignment, have not been explored in the literature.

Now, we use an accountable service sample to illustrate how these questions relate

to service computing.

3.2 An Accountable Service Sample

We now use a Web 2.0 [148] Mashup service example to demonstrate the essential

accountability concerns in a service arrangement. The term mashup originates from

the practice of mixing song samples from two or more sources to produce a new sound

track. In the context of the Internet, mashups are web sites or applications that combine

content from more than one source into an integrated application.

In our mashup service scenario, Entity B offers a trading platform to allow their

customers to trade various securities globally. It may also provide an automatic trading

rules engine that allows automated trading based on criteria set by the customer. Entity

B has contracts with different real-time financial data providers to provide price data,

which is fed into a charting application provided by a service provider to produce price

charts. For a particular trading transaction, customer Alice initiates the trade request

with Entity B. This is based on the pricing charts provided by Entity C’s charting

service, with the real-time price data input from Entity D.

Between consumer Alice and Entity B, an accountable service arrangement will

see sufficient disclosure from both parties prior to forming the service contract. Entity

B should fully disclose the functionality of the trading platform, i.e., statement of work

(SOW), the source of data, the service-level agreement (SLA), fees and charges, and

other compliance requirements, such as “Know Your Customer (KYC)” regulatory

requirements [141]. Alice should also disclose her financial situation and risk profile

to Entity B, in accordance with the relevant regulatory requirements. The disclosure

may be carried out through verbal or written communications. They may negotiate

the terms and conditions before entering into a contract. Once the contract is formed,

Entity B should continue to disclose the service obligation fulfilment status until the
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contract is ended, and promptly respond to any queries that Alice may have on the

execution of the service contract. Whereas Alice should also make disclosure to B

if her financial circumstance has changed. If some obligations were breached during

the execution of the contract, there should be some kind of monitoring mechanism to

detect that. In addition, there should be a fair arbitration mechanism in place to assign

liability based on non-repudiable evidence.

Similar arrangements also exist amongst Entity B, C, and D as well. Note that in

the case of Alice and Entity B, since the interaction has human interface involved, the

contracting, disclosure, monitoring and arbitration processes can be manual or semi-

automated, as long as the processes are repeatable and delivering accountable results.

In contrast to the traditional computing that focuses on functionality and/or QoS

performance, we can see from this sample that accountable service computing empha-

sises transparency, fairness, honouring promised obligations, and the willingness to

be punished if an obligation has failed to deliver. This is a quite different mindset to

what most IT service providers or consumers traditionally use. Notwithstanding the

low awareness of accountability in the IT industry at present, the demand for service

accountability will inevitably gain momentum while the service industry is maturing.

3.3 Basic Concepts of Service Accountability

In traditional IT, the term “accountability” was assigned different meanings in different

contexts. There is no common definition of it. There has been a certain degree of

confusion around the topic of accountability in the IT industry. As the mainstream of

IT moves towards service computing with a goal to align business and IT, it needs a

common vocabulary and language to describe accountability requirements in service

computing. We now use the mashup service example in Section 3.2 to identify the key

elements in an accountable service.
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3.3.1 Essential Elements for Accountability

The trading mashup service in Section 3.2 brings speed, flexibility and convenience

to customers. However, when things go wrong, the accountability implications can be

significant. For example, if a trade incurs a huge loss, and it is caused by the malfunc-

tioning of the trading platform, then the liability assignment can be a challenging task,

since the functioning of Entity B’s trading platform has various levels of dependencies

on Entity C and D, as well as B’s own code.

In order to sort out the key question of “who is accountable for what?”, we need to

examine the roles and responsibility of each party. Refers to Table 3.1

Table 3.1: Accountability Elements in a Web 2.0 Mashup Trading Service
Identity Role Responsibilities Outcome

Alice Trade Requestor
Enter code and bid price.
Provide funds for purchase.

The request accepted
by Entity B.

Entity B Trade Provider

Display result page with
data from Entity C and D.
Execute trade requested.
Pay Entity C and D fees due.

The trade is executed.
Funds transferred from
Alice’s account.

Entity C
Charting Service
Provider

Provide correct charted
pricing indicators.

Chart is displayed
and the fee is
received from Entity B.

Entity D
Real-time Price
Provider

Provide real-time pricing
with integrity.

Data feed is provided
and received fee from B.

From Table 3.1, we observe that the essence of accountability involves four ele-

ments: the identity of the involved party, the role that the party plays, and the agreed

responsibilities in the form of contract, agreement, or signed off requirements. The

last element is the performance outcome, the evidence of who has done what. Fig. 3.1

depicts the relationships amongst these four elements.

These four elements also correspond to the key points in the performance special

interest group’s definition of accountability [9] in Table 2.1 listed in Section 2.1.1.

A person, group or organisation can be translated to the concept of identity, whereas

“execution of authority” implies the concept of role. According to Certo, responsibility
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Identity

Role

Responsibility

Outcome

has produced

performs has

meets

Figure 3.1: Essential Accountability Elements

is an obligation that someone “accepts” and is not allowed to delegate or pass on

to someone else [35]. Accepting implies that there is some form of agreement in

place. “Answering” and “reporting” relate to disclosure. “Assuming liability” for

results requires a way to clearly demonstrate who has done what, which implies the

requirement for non-deniable evidence of the outcome.

3.3.2 Definitions of Basic Concepts for Service Accountability

In moving towards building a common vocabulary and language for accountability, we

now define the basic concepts for service accountability. We first define the commonly

used term “service” in a service computing context.

Definition 1: (service): A service s is a set of collaboration process CP that ex-

changes economic values between the provision party (provider) and the receiving

parties (consumers) via an interface i: s = 〈CP, i〉.

Service Properties:

1. A service interface i for service consumption;
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2. A predefined set of processes CP for delivering expected effects to consumers;

3. A set of actors A to initiate or act on process activities.

Services Characteristics:

1. A service is intangible and is measured by service quality;

2. Service quality depends on actors’ skills and the process properties;

3. A service is governed by implicit or explicit contracts. The later may include:

a) General overarching contract

The general contract that defines the legal terms and conditions;

b) Statement of Work (SOW)

SOW specifies the service’s functional requirements. It defines agreed de-

liverables and the roles and responsibilities in agreed activities;

c) Service Level Agreement (SLA)

SLA specifies the service’s non-functional requirements. It defines quality

of service (QoS) and may include remedies if QoS is not met.

Now we give the definition of a cloud service below:

Definition 2: (cloud service): A cloud service cs is a service that is hosted on a cloud

computing (refer to [132] for definition) infrastructure (identified by CIid) and can

be consumed through a set of APIs defined by interface i through the Internet: cs =

〈i, CP,CIid〉. CP is a set of collaboration processes on which the service relies for

delivering value. CIid is the ID that identifies the underlying cloud infrastructure.

For example, Amazon’s EC2 service can be represented as: ecs = 〈ec2 wsdl, acp, aws〉,

where acp = 〈createV M, startV M, connectV M, stopVM, cancelV M〉.

A general cloud service’s characteristics:

1. The execution of a cloud service is largely automated or semi-automated. The

service obligation fulfilment is not easily monitored in an objective manner by

an independent third party.
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2. The provision and consumption of a cloud service are both automatic or semi-

automatic through the Internet. The consumer and provider do not meet face-to-

face. It is difficult for a service provider and a consumer to determine and agree

on the liable party when a service obligation is breached.

3. In contrast to an internal system or a software program which is programmed

to respond to some external stimuli, a cloud service is normally initiated by

human actors or, in some cases, by some intelligent agents. These human actors

or intelligent agents can act proactively, based on their beliefs or knowledge.

Hence a cloud service exhibits the behaviours of a proactive system rather than

that of a reactive system.

For example, Amazon’s EC2 service is largely executed automatically. Although

Amazon provides a CloudWatch tool for monitoring the EC2 service, its objectivity is

in doubt as it is a provider’s tool. On the other hand, it is not easy for an independent

third party to monitor the service. Also both the provision and consumption of Ama-

zon’s EC2 service are through the Internet. The service provider and the consumer

do not meet face-to-face. If problems have occurred, it is difficult for the involved

parties to agree on who caused the problems, i.e., whether the consumer provided the

wrong input or the provider did something wrong in the service operations. Moreover,

both the service provider and the service consumer can act of their freewill during the

service delivery and consumption. For example, the consumer may choose not to re-

spond with a log-in request from the service provider, in which case, the execution of

the service contract will stall.

Now we define the concept of “obligation”, which is the most important concept of

accountability.

Definition 3: (obligation): An obligationO is a finite set of action/evidence pair,O =

{(a1, e1), (a2, e2), ..., (an, en)}, where action a is a quadruple: a = 〈input, output, pre, post〉,

where input, output are input and output of the action respectively; both pre and

post are binary condition expressions; evidence e is a finite set of evidence object,
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timestamp and condition triple: e = {〈o1, t1, c1〉, 〈o2, t2, c2〉, ..., 〈on, tn, cn〉}, where

oi is an evidence object (typically should be signed with the actor’s private key), ti

is the creation timestamp of the evidence object, ci is a condition expression that is

evaluated to true.

We denote the service provider’s obligation as Op and the service consumer’s obli-

gation as Oc. With the definition of the obligation, we now define the concept of

service contract.

Definition 4: (service contract): A service contract sc is a formal representation of

obligations in statement of work (SOW) and service level agreement (SLA) for a ser-

vice.

sc = 〈s, P, sow, sla, R, T 〉. It has the following properties:

- s is the service on which the contract is based;

- P is a pair of involved parties P = 〈sp, sc〉, where sp is a provider and sc is a

consumer;

- sow is the statement of work,

sow = 〈Op, Fp, Oc, Fc〉

where Op is a set of provider obligations, Fp is a set of forbidden clauses for the

provider, Oc is a set of consumer obligations and Fc is a set of forbidden clauses

for the consumer. SOW specifies the service’s functional requirements. It de-

fines the agreed deliverables and the roles and responsibilities in those agreed

activities;

- sla is the service level agreement, sla = 〈Op, Fp〉, where Op is a set of provider

obligations and Fp is a set of forbidden clauses for the provider. SLA specifies

the service’s non-functional requirements that the provider must satisfy.



64 Service Accountability Foundation

- Rules: R is a Horn clause [84] of the form r ← r1, r2, . . . , rn where r is the con-

sequent and r1, . . . , rn is the antecedent. A rule defines a remedy if an obligation

is breached;

- Time Period: T = 〈start time, end time〉 is the contract’s effective period.

A service contract can be executed many times. Each execution is defined as be-

low:

Definition 5: (service contract execution): A service contract execution is a tuple

sce = 〈sc, I, Op, Oc, se, R〉), where: sc is the service contract; I is execution in-

formation, I = 〈start time, complete time, timeout value〉; Op is a set of obliga-

tions (see Definition 3) that are successfully completed by the provider; same ap-

plied to Oc as the completed obligations by the consumer; se is the contract ex-

ecution state: se ∈ SE, SE = {se1, se2, ..., sen}, where sei is one of the user

defined contract execution states, for example, IN PROGRESS, COMPLETE,

PENDING PROV IDER OBLIGATION etc.; and R is a set of Rules: R =

{r1, r2, ..., rn}, rj is a horn clause: consequent← antecedent.

We now give the definitions of “disclosure” and “service accountability”.

Definition 6: (disclosure): Disclosure is the voluntary act to inform the service par-

ticipants about information that may have a material impact on them. This may in-

clude, but is not limited to, identities involved, roles, responsibility, service status, and

results of service execution.

Definition 7: (service accountability): The accountability of a service is its ability

to disclose involved parties’ obligations, fulfil obligations, disclose execution perfor-

mance, detect obligation violation, determine fault causality and assign liability to the

party at fault.

With the basic concepts for service accountability defined, now we examine the

processes for service accountability.
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3.4 Service Accountability Processes

Based on the essential accountability elements in Fig. 3.1 and the mashup services

example in Table 3.1, we observe that four major processes are crucial in achieving

service accountability:

• disclosure: process for disclosing of the roles, responsibilities and obligation

fulfillment status by all parties;

• contracting: process for negotiating terms/conditions and establishing service

contract with the other party;

• monitoring: process for monitoring the execution of a service contract, detect-

ing contract violations and providing remedy when an obligation is breached;

• liability assignment/arbitration: process for assigning liability to a party by

arbitrating a dispute during the execution of a service contract;

• remedy: process for rectifying a breach of obligation.

An accountable service should have repeatable disclosure, contracting, monitoring

and arbitration processes in place in order to demonstrate transparency, fairness and

honoring of obligation. Here we collectively name these processes “service account-

ability processes”. We discuss each of the processes in the following sections.

3.4.1 The Disclosure Process

In business, an accountable public company is required to carry on continuous dis-

closure on any information that has a material impact on investors. [41]. The same

principle applies to a service. An accountable service should provide a continuous

disclosure process that enables transparency on service obligations in terms of roles

and responsibilities, and the status of the obligation fulfilment.
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Disclosure of roles and responsibility, to a large extent, can be enabled by rich

service meta-data and facilitated by functions provided by a service broker; rich ser-

vice meta-data means adding semantics to allow machine interpretation and reasoning.

Currently, the registry (UDDI) provides service metadata in terms of business entities,

taxonomy and reference to service information. The registry is a dynamic name bind-

ing service that is syntax based [122]. However, in mashup several sources require

identification and these may need to be trusted sources in an accountability sense. We

wish to enable semantic meaning, as in OWL-S [122], and suggest a more sophis-

ticated role to facilitate trust by enabling richer metadata to capture aspects such as

traceability of service composition and responsibilities for several parties.

We now explain the ways in which disclosure may be addressed in service com-

puting and propose several elementary techniques that may be adopted in an SOA

architecture.

3.4.1.1 Levels of Disclosure

We suggest that there are three fundamental levels of disclosure that may be adopted.

The first level of disclosure is a manual-based, free text format disclosure, which is

currently adopted by the industry. This form of disclosure is normally hosted on the

service provider’s web site, and can include a variety of content, such as “about us”,

“contact us”, service “terms and conditions” and privacy policy. The Service Level

Agreement (SLA) may be considered a form of disclosure on the QoS properties. To

some extent, technical manuals and Application Programming Interface (API) docu-

ments can also be classified as some kinds of disclosure. While this approach may be

sufficient for some business applications, there are several problems on this level of

disclosure. For instance, this approach does not cater for machine interpretation. That

is, it does not support dynamic service consumption in a Service-Oriented Architec-

ture. A further issue is that the non-standard format of the disclosure creates difficulty

for Trust and Reputation engines to source input from the service provider. In addition,

the content for such disclosure is aimed at people with a legal background and not for
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general consumers.

The second level of disclosure is the emerging syntax-based XML format disclo-

sure. There are several Web Services specifications that can be used for this purpose.

WS-Policy provides a framework for general syntax for expressing capabilities and

policies. WS-Agreement [6] can be used to disclose obligations. WSLA may also

be used to express the Service Level Agreement [121]. While the syntactic level of

disclosure holds a great promise in terms of supporting dynamic service consumption,

it is nonetheless immature and yet to be widely accepted.

The third level of disclosure is the semantics-based disclosure. This level is more

sophisticated, relying upon a commonly agreed ontology established amongst service

providers and service consumers. Currently OWL is the most widely used language to

create such an ontology. OWL-S allows a semantic description of a web service [128].

However, an ontology can become quite complex, especially when this delves into

domain specific concepts. This approach is a more immature area when compared to

the syntax-based disclosure.

3.4.1.2 Approaches to Disclosure

There are perhaps several approaches to implementing disclosure in an SOA architec-

ture. The first approach is a registry based disclosure. This approach treats disclosure

information as part of the service meta-data, and publishes the meta-data to a pub-

lic registry to facilitate service discovery and matching. This approach is similar to

publishing and discovery in SOA. Two key registry standards are currently available,

UDDI and ebXML. Currently, UDDI is mainly used for the publishing of service de-

scription. Applied in this way, the data model makes it difficult to support the dis-

closure of roles, responsibility, contract execution state and outcome. On the other

hand, ebXML allows business to first disclose its business profile information in an

ebXML registry and then form an agreement based on the disclosed profiles of trading

partners. The profile information includes roles, capabilities, constraints and imple-

mentation details, while the agreement may take the form of a Collaboration Protocol
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Agreement [69]. Hence, the ebXML form provides stronger disclosure capability than

UDDI. However, ebXML is normally applied to business-to-business (B2B) scenarios

and may be considered too heavyweight for most business-to-consumer (B2C) scenar-

ios.

The second disclosure approach is based on a Publish and Subscribe architectural

pattern [79]. A service provider can publish the disclosure information, which can

be subscribed by service consumers. Publish-Subscribe is a mature technology and

it has been implemented in numerous commercial-off-the-shell middleware products.

In a web services environment, WS-Notification is a family of related white papers

and specifications that define a standard approach to develop publish-subscribe sys-

tems [73].

The third disclosure approach is to treat disclosure as a policy requirement to be

enforced by a policy enforcer. In [153], the authors provide a survey on five policy

frameworks: IETF, Ponder, KAoS, Rei and WS-Policy. They conclude that KAoS and

Rei are more suitable for SOA systems due to their support for dynamic policy update.

However, KAoS and Rei are ontology-based policy frameworks, which may not be

easily applied in the normal syntactic web services environment. On the other hand,

the authors also assert that WS-Policy is a low level policy language that is not suitable

for managing an overall SOA system.

Currently, neither UDDI nor ebXML has been widely adopted in real SOA imple-

mentations due to their complexity and limitations. Hence, using the registry-based

approach for disclosure will be a considerable task to achieve the objective of dis-

closure. On the other hand, the policy-based technology is still emerging and yet

to mature. Thus it may not be a good choice for building disclosure mechanisms at

present.

The four disclosure approach is to leverage the blockchain technology underpin-

ning the bitcoin [165] system to provide a decentralised service disclosure solution.

With this solution, service participants broadcast signed service contract information

(including identities, roles and responsibilities) and the status of contract execution to
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a peer-to-peer service network. A miner [165] who has successfully mined a block

will record the broadcasted messages into the blockchain, which forms a chronolog-

ical, irreversible, tamper-proof transaction database that is accepted as consensus of

the whole network. The blockchain technology provides transparency with the means

to protect privacy. It is the ideal platform to enable disclosure for accountability. Re-

fer to Chapter 6 for the details of the disclosure solution leveraging the blockchain

technology.

3.4.2 Contracting Process

The contracting process includes three main steps. The first step varies for service

provider and consumer. From a service provider perspective, the first step is contract

preparation; whereas from a service consumer perspective, the first step is contract

discovery and matching. The other two steps for both parties are the same, they are

contract negotiation and contract establishment. We discuss the first step for each party

respectively.

3.4.2.1 The Service Provider Perspective

From a service provider perspective, contract preparation involves preparing the ser-

vice contract, normally including three parts of information. The first part is the overar-

ching contract terms and conditions, including compliance requirements and the com-

pany’s specific policies. The second part is the Statement of Work (SOW), detailing

the roles and responsibilities, service functionality and deliverables. The third part is

the Service-Level Agreement (SLA) that sets out the commitments on the quality-of-

service (QoS) targets.

Contract preparation is a manual-based task, and it should be started during the

service design stage. Generally, a commercial service would need to involve legal

personnel to assist in formulating the service obligations, including SOW and SLA,

in order to avoid the risks of over commitment. This is the current general practice
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for off-line service, like the motivating example outlined in Section 3.2. However,

for on-line service like most cloud services, service providers’ current practice falls

short of providing a clearly defined SOW, like their off-line counterparts do. Instead,

they tend to provide technical documents and user manuals of the service instead of

committed obligations on the functionality that their service provides. This highlights

the worrying sign of service accountability going backwards while the technology

stack is moving upwards.

At the moment, most service contract is in free text format. Such a format of ser-

vice contract can only be used in “first level disclosure”, which inhibits automation

in service discovery, matching, monitoring of the contract execution and dispute arbi-

tration. Consequently, it may also prevent the realisation of service accountability in

service-oriented computing. A solution to this should see the gradual evolution from

a free-text format service contract to a syntax-based format one, and ultimately to a

semantic-based format one.

After the service contract is prepared, the service provider can disclose the service

contract information through the disclosure process.

3.4.2.2 The Service Consumer Perspective

On the other hand, from a service consumer perspective, the first step of the contract-

ing process is to discover a service contract that matches its requirements. Currently

this step is mostly manual-based. We envisage that when the representation of the ser-

vice contract moves to a syntax-based/semantic-based format, then semi/full automatic

service discovery and matching will become possible.

In a semi-automatic or fully-automatic discovery solution, the service consumer

will deploy a software agent to search a service registry where the service providers

publish their service contracts. The agent should be able to interpret the language

representing the contract and select a service based on the service consumer’s criteria.
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3.4.2.3 The Contract Negotiation Process

Contract negotiation is a process of offering and counter offering on certain terms

between the service provider and service consumer. For most services, currently the

contract negotiation is carried out off-line manually. To the best of our knowledge,

there are no commercial cloud services available that facilitate automatic service con-

tract negotiation. Instead, most of the commercial cloud services available today use

the provider’s pre-written contracts, which means that there is no room for negotia-

tion. The service consumer either chooses to enter the contract on the existing terms

and conditions, or finds an alternative service from other service providers.

Automatic contract negotiation technically depends on the existence of a common

machine-readable service contract representation. More importantly, its adoption also

depends on the maturity level of service accountability in the overall service industry.

3.4.2.4 The Contract Establishing Process

Once the service consumer is satisfied with the service provider’s terms and conditions

of the service contract, the next step is establishing the contract and putting it into

effect. The current practice for off-line service involves both the service provider and

the service consumer signing legal contract documents. For on-line services, like the

cloud service from Amazon AWS, the typical practice is for the service consumer to

click an acceptance button on the terms and conditions page to enter into the service

contract. After that, the service consumer can start to consume the service.

In an accountable service setting, the contract establishment process should include

setting up the environment for monitoring of the execution of the service contract.

3.4.3 The Monitoring Process for Contract Execution

During the execution of a service contract, both service consumer and service provider

need to monitor the status on contract execution, detecting any faults that may lead to

a breach of the service contract. It should also provide remedy in case of an obliga-
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tion breach. This kind of monitoring process defers to the monitoring process in the

traditional IT space, where IT monitoring (ITM) solutions or Business Performance

Management (BPM) solutions are deployed to monitor the health of the internal IT

operations or business processes. These solutions generally only have abilities in de-

tecting abnormal behaviours in IT system operations or business process execution,

lacking the abilities in determining whether a service contract is breached or not.

Currently there is virtually no monitoring solution available for service contract

execution in the industry. In Amazon AWS’ case, Amazon offers a monitoring service

called CloudWatch [11] to allow service consumers to monitor the health of their pur-

chased services. CloudWatch is basically a cloud version of a traditional IT monitor-

ing solution. Although it can provide system-wide visibility into resource utilisation,

application performance, and operational health by track metrics, collecting and moni-

toring log files, the objectivity of the monitoring results is in doubt due to the potential

conflict of interest as the monitor is provided by the service provider.

Ideally, a service contract execution monitoring service provided by a third-party

can take a non-partisan stand when monitoring the obligation fulfillment status of both

the service provider and the service consumer. Such a monitoring solution also has

a technical dependency on the service contract representation language. Moreover,

it also relies on the trust relationship established with both the service provider and

service consumer, so the monitoring service provider can deploy monitoring agents or

probes in the environments of both the service provider and the service consumer.

3.4.4 The Liability Assignment Process

Once an obligation breach occurs, the service participants would notice which party

is at fault if they have deployed the service contract execution monitoring system.

An accountable service party will admit their fault and provide a remedy voluntarily.

However, in the case of both parties believing that is the other party’s fault, then a

dispute arises and needs a fair resolution mechanism to assign liability to one definite
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party. Typically, a trusted-third party (TTP) is needed to arbitrate based on the non-

repudiable evidence provided by the involved parties.

A TTP solution usually comes with weaknesses like single-point of failure, perfor-

mance bottlenecks and vulnerability to security attack due to its centralised nature. A

decentralised arbitration protocol is introduced in Chapter 6.

3.4.5 Remedy Process

When a breach of obligation occurs, the party at fault can initiate the remedy process

to rectify the fault. Depending on the terms defined in the service contract, sometimes

the remedy process simply pays the fine, i.e., assuming liability. Sometimes it may

automatically fix the problem and continue with the execution of the service contract.

The purpose of the remedy process is to resolve a contract breach situation and resume

the execution of service contract.

3.4.6 Service Accountability Level

Corresponding to the classification of disclosure level in Section 3.4.1.1, if a service’s

majority accountability processes are manually based, we classify such service as

“level 1 accountability” service. A “level 2 accountability” will have most accountabil-

ity processes semi-automated, i.e., syntax-based systems carry out procedural work,

but need humans to make an interpretation on obligations, or to make decisions about

obligation violation or liability assignment. A “level 3 accountability” will have most

accountability processes fully automated, i.e., the systems are capable of understand-

ing the semantics of a contract, determining the causality of obligation violation and

judging which party is at fault in a dispute situation.

In the mashup trading service example in Section 3.2, if Entity B has deployed

systems to automatically publish service contract terms/conditions and service status,

and to monitor the health of the service, like most of the current IT service management

systems, then Entity B’s trading service can be classified as a “level 2 accountability”
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service. On the other hand, if Entity B’s systems can interpret a service contract,

automatically detect contract violations and provide a fair dispute arbitration system,

then it can be classified as a “level 3 accountability” service.

“Level 3 accountability” service is more in line with the future direction of service

computing, especially more suitable to the cloud environment, as the virtue of cloud

computing is achieving high efficiency and less human intervention.

3.5 Measuring Service Accountability

3.5.1 Introduction to Accountability Measurement

Traditionally accountability is assessed based on some qualitative measures setup in

the governance framework, like COBIT, or regulatory compliance requirements, such

as HIPAA, SOX or Basel II. Measuring accountability quantitatively is a challenging

task. Dubnick and Justice take on the challenges of accounting for accountability

from a governance perspective in [54]. They conclude that the feasible approach for

measuring accountability is the continuing pursuit of measurement of the processes,

conditions, and mechanisms through which accountability-based governance operates.

From a service computing perspective, qualitative assessment will not be sufficient

in managing accountability risk, especially in the dynamic nature of an SOA environ-

ment. Other quantitative models, such as trust and reputation, can be subjective as

they are mainly based upon consumer feedback [140]. We now outline a quantitative

model to address the challenge of measuring accountability in a service computing

perspective.

3.5.2 Principles and Theorems

We first outline the underlying theorems and tools that forms the basis for the proposed

quantitative model.
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3.5.2.1 Critical to Accountability Measurement

Many characteristics are critical to the quality of a service or product. The Six Sigma

business management strategy defines these characteristics formally as Critical to Qual-

ity (CTQ), which represent the key measurable characteristics of a product or process,

that must be met in order to satisfy a customer [117]. We borrow the CTQ concept

and change the name to Critical-to-Accountability (CTA) in the service accountability

context. Given a service provider that supplies a service, from the customer’s perspec-

tive, there exists n number of CTA features associated with that service. This may be

used later as the quantitative input to model accountability. A crucial indicator of the

service provider’s accountability is to measure out of these n number of CTAs, how

many have been disclosed to the consumer; and further more, whether a compensation

target has been disclosed if a particular CTA is not met.

3.5.2.2 Bernoulli Trial

A Bernoulli trial is an experiment where the result has only two outcomes, success or

failure [61]. The probability of success is given as p and failure as q = 1 − p. The

probability of n successes from N outcomes is given by a binomial distribution; this

is referred to as a discrete probability distribution Pp(n|N). The binomial distribution,

probability of n success in N trials, is thus given by the following:

Pp(n|N) =
N !

n!(N − n)!
pn(1− p)N−n (3.1)

The binomial distribution, i.e., probability of n success in N trials in service con-

tract execution, can be used to reflect the service accountability of a particular service.

3.5.2.3 Logistic Regression

Logistic regression [88] is a form of statistical modeling that is appropriate for describ-

ing the relationship between a dichotomous response variable and a set of explanatory

variables. The logistic function is denoted as



76 Service Accountability Foundation

f(t) =
1

1 + e−t
(3.2)

After a natural logarithm transformation, we have:

Logit(pi) = β0 + β1x1 + ...+ βkxk (3.3)

Where Logit(pi) = ln( pi
1−pi), f(t) = pi, and t = β0 + β1x1 + ... + βkxk

Logistic regression can be used to assess service accountability when there are

multiple CTA features associated with that service.

3.5.2.4 Central Limit Theorem

A fundamental statistical theorem is the central limit theorem (CTL) [28]. The theorem

states that as a sample size increases, the distribution of sample means approaches a

normal distribution. In other words, the more sample data available the more likely the

distribution of averages will resemble a normal distribution. In general, the sample size

nmust be sufficiently large to enable the approximation to function to work effectively.

We discuss an appropriate sample size for approach later in Section 3.5.4.1.

3.5.3 Accountability Metrics

Similar to the contract concept in “design by contract” for Object-Oriented Program-

ming [134], a service may be viewed as a contract established between the consumer

and the service provider. Hence, a service can have preconditions, post-conditions,

and invariants. The pre/post-conditions of the service can be viewed as the obligations

of both parties to the committed service. Preconditions include valid input parameters,

message format, and even fees and charges specified by the terms and conditions. Post-

conditions are equivalent to the functional requirements that the service must deliver.

Conversely, invariants are treated as the non-functional requirements in the service

level agreement (SLA) that the service must support.
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In light of the contract notion, service accountability may be assessed based on

whether the contract has been breached; and if so, whether the compensation is duly

honoured. Other aspects of service accountability that require consideration are:

• the degree of disclosure of the service information including preconditions, post-

conditions and invariants by the service provider;

• the service’s capability to provide non-repudiable evidence;

• the responsiveness of the service provider to service consumer’s inquiry.

Thus from a quantitative perspective, service accountability may not be reduced to

a single numeral. Rather, accountability is to be measured based on a set of indica-

tors: i.e., runtime accountability error, compensation, disclosure, responsiveness and

evidence provision.

We first outline a general guiding approach for checking accountability breaches.

This is given as follows:

General Service Accountability Breach Checking Approach

Let s denote a service and let V = v1, ..., vk represent all the CTA invariants of s. The

set PR = {pr1, ..., prj} represents all the precondition of s, and PO = {po1, ..., pok}

represents all the CTA post-conditions.

GIVEN: Consumer and service provider satisfy the set of all n preconditions,

∀pr ∈ PR, pr = true;

CHECK: That none of the post-conditions and invariants have been invalidated,

∀po ∈ PO, ASSERT(po = true);

∀v ∈ V , ASSERT(v = true);

If the check fails, there is an accountability breach. In particular, the check tests

if the service provider s has breached non-functional requirements in set V or the

functional requirements in set PO of the contract. This is an initial verifier and can

be subsequently ratified if the compensation is honoured, otherwise the accountability

breach remains.
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3.5.3.1 Runtime Error Indicators

Definition 8: Assume t1 is the observation time interval, which can be monthly, daily

or hourly depending on the desired measurement period. During time interval t1, the

service has been executed n times, with iCTA invariant instances evaluated false and k

CTA post-condition instances evaluated false, where i ≤ n and k ≤ n. Then, we define

the service respective runtime non-functional en and functional ef accountability error

indicator as follows.

en = (i/n) ∗ 100, n ≥ 1 ∧ i ≤ n (3.4)

ef = (k/n) ∗ 100, n ≥ 1 ∧ k ≤ n (3.5)

Accountability also has a non-runtime aspect, which addresses compensation, dis-

closure, responsiveness on service inquiry and non-repudiable evidence. We define

each of these below.

3.5.3.2 Compensation Indicators

For a particular service we assume that the service violates a CTA invariant p times

and compensates q times. In addition, the service violates CTQ post-conditions on r

occasions but only compensates s times. It follows that the non-functional (cn) and

functional (cf ) compensation indicator are given in the following.

cn = (q/p) ∗ 100, p ≥ 1 ∧ q ≤ p (3.6)

cf = (s/r) ∗ 100, r ≥ 1 ∧ s ≤ r (3.7)

Note that if either p = 0 or r = 0, then the respective compensation indicator is

unknown. Also, assuming each CTA condition has an expected compensation target

if the condition is not met, ce is the cumulated expected total compensation, and ca is
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the cumulated actual compensation value, then the cumulative compensation deficits

are defined as:

cd = ce− ca (3.8)

3.5.3.3 Disclosure Indicators

Assume a service S has i number of CTA invariant conditions, j numbers of pre-

conditions, and k number of CTA post-conditions. For each CTA invariant and post-

condition, we defined a full disclosure as disclosing all details associated with the con-

ditions as well as the compensation target if the conditions are not met. If during the

service history, the service provider only discloses s numbers of CTA invariants and

the compensation targets if the condition is not met, k number of CTA post-conditions

and the compensation targets if the condition is not met (i.e. a dispute arises, see

3.5.3.5). Then the respective non-functional (dn) and functional (df ) disclosure indi-

cators are given in the following.

dn = (s/i) ∗ 100, i ≥ 1 ∧ s ≤ i (3.9)

df = (k/b) ∗ 100, (b ≥ 1 ∧ k ≤ b) (3.10)

For preconditions dp, assume that the service provider discloses l number of con-

ditions out of a, then

dp = (l/a) ∗ 100, a ≥ 1 ∧ l ≤ a (3.11)

As the level of disclosure is an important aspect of accountability, the disclosure

indicators are the key metrics in assessing the service accountability.

3.5.3.4 Responsiveness Indicator

Assume in the service usage history that a service consumer has initiated n inquiry

requests regarding the service status or service outcome, whereas the service provider
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only responded m times within a given time period. Hence, the responsiveness indica-

tor re is defined as:

re = (m/n) ∗ 100 (3.12)

3.5.3.5 Evidence Capability Indicator

Assume in the service consumption history, that there are n times where a dispute

arises that require the service provider to supply non-repudiable evidence. When suf-

ficient evidence has been provided that resolves the dispute within a given time period,

this is positive accountable outcome. Conversely, when the service provider is not able

to resolve the dispute with the evidence provided, this is a negative accountable out-

come. Given n disputes, with a subset of these disputes resolved m, the evidence

provision indicator ep is defined as:

ep = (m/n) ∗ 100 (3.13)

In summary, the level of a service’s accountability can be assessed based on these

five metrics discussed: Runtime Error Indicator, Compensation Indicator, Disclosure

Indicator, Responsiveness Indicator and Evidence Capability Indicator.

3.5.4 Accountability Assessment Model

We now outline a quantitative service accountability model. The model may be used

to identify the scope of accountability requirements to be addressed, how service ac-

countability may be measured, and for defining how they may be assessed for accep-

tance. We first however, outline a fundamental model that identifies the key attributes

that may be measured. By extending this base model we then propose our final quan-

titative modelling approach.

Building upon the assertions in the previous section, accountability can be basi-

cally evaluated using the following criteria.
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(1) Service provider’s quality credentials (ISO 9001) [38].

(2) Service provider responsiveness on service inquiry.

(3) The runtime error indicators from both functional and non-functional perspec-

tive.

(4) If the disclosure includes both the target of CTA and the compensation target if

the CTA is not met.

(5) Capability of providing non-deniable evidence.

(6) How the service provider honours compensation promises.

Using the criteria above, an indicator may be assigned to each category. An overall

rating can then be calculated based on the assigned weight for each category.

3.5.4.1 Scorecard using Logistic Regression

The SOA model assumes that business processes consume services both internal and

external to the organisation, and therefore there is a risk element in their use which

requires quantifying. As an overall business management risk strategy, there is a re-

quirement to facilitate service selection and comparison on all characteristics, includ-

ing accountability metrics.

There are potentially a large number of service characteristics that may influence

accountability, and their impact can be realistically assessed in terms of probability

models. The variability factors created by those characteristics can be better dealt with

by adopting a statistical rather than an engineering approach. We can explore the re-

lationships between service accountability characteristics, and use these as population

estimators, subject to validation through confidence interval and hypothesis testing

techniques.

In general, the strategy to deal with this problem is to abstract out the service

details and extract the common accountability metrics across services that are funda-

mental to service risk. Section 3.5.3 above provides the common quantitative metrics
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to enable assessing a service’s current and historical accountability. However, part of

the analysis of risk concerns the probability of a service breaching its accountability.

It is therefore useful to have a model that computes a risk rating based on these ac-

countability metrics. This rating can then be used by the service consumer to compare

the service against a family of similar services and determine if a service is a higher or

lower risk for accountability breaches.

The most pragmatic approach to developing such analyses would be through re-

gression modelling, whose most recognised framework, linear regression, is used in

exploring relationships between dependent and independent variables. The goal of

the analysis is to know the probability of a service suffering an accountability breach,

which in turns alters the overall accountability and trust of the business institution.

There are, however, several factors in the accountability problem space that make se-

lecting an appropriate regression model problematic. Linear Regression is not ap-

propriate, because the predictor model is purely quantitative, and accountability char-

acteristics may be both quantitative and qualitative. In addition, the value of linear

regression can go beyond 1, which makes comparison of service accountability diffi-

cult. Linear regression is only useful for continuous dependent variable and not for

dichotomous dependent variables, which is the case in service accountability, as we

want to know the probability of a service breaching accountability. (Dichotomous de-

pendent variables will invalidate the normality and homoscedasticity, equal variance

of residuals across independent variable values, which are the assumptions in linear

regression [26]).

In selecting a model, consideration has been given to the need to support precisely

those constraints which preclude the strictly linear regression model. Given those con-

straints and that each observation on service accountability is an independent event;

logistic regression is ideally suited for this situation. The main advantage of this ap-

proach is its flexibility. As long as each observation is an independent event, it does

not need to assume a strictly linear relationship amongst the variables or the existence

of a normal distribution.
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Logistic regression enables the generation of service scores based on service ac-

countability metrics and other predictor variables. In this model, the service score

is the probability that a service suffers a breach of accountability. The criteria for

a breach can be specific to each service consumer’s risk profile, and can be defined

using an upper limit of runtime error ratios or a financial threshold in compensation

deficit as the criteria. A model based on such criteria can enable the service consumer

to evaluate the risk involved in different service providers services. Furthermore, it

is possible to standardise the criteria for a particular sector or industry, thus the same

model can be used by different service consumers to assess different services provided

by different service providers.

Selecting the relevant variables as the initial predictor variables is important for

an effective regression process. We here define the scope for the independent vari-

ables in the accountability context. The selected initial variables should be from the

accountability metrics.

Assume M represents the accountability metrics in Section 3.5.3, then the vari-

ables xk in the logit formula below will satisfy the constraint: xk ∈M ; where βi is the

respective weighting of the independent variable.

Logit(pi) = β0 + β1x1 + ...+ βkxk (3.14)

The regression technique selected within the logistic regression is the stepwise

which combines both forward selection and backward elimination to add and remove

variables dynamically in each step until the best combination is reached. For exam-

ple, assuming a sample of 500 observations that classified breached and non-breached

services are available, we can choose functional error indicator, non-functional er-

ror indicator, disclosure indicator and responsiveness indicator as the independent

variables and start the regression with the forward selection method. In each step

of the regression, the variable with the highest predictive power (e.g Rao’s efficient

score [155]) will be added to calculate the weight for each variable. At the end of the
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regression, it will work out all the significant predictive variables which may be lim-

ited to the independent variables and their respective weights. Each of these weights

is determined by a Maximum Likelihood Estimation (MLE) [76] method which seeks

to maximise the log likelihood that reflects the probability that the observed dependent

variables may be predicted from the observed independent variables.

Logistic regression needs a large sample size to reach a stable predictive model,

with minimal sample sizes ranging between 100 in a worst-case to 500 in a best case

scenario [176, 120]. This is not a problem for quantifying service accountability, as

it is relatively easy to acquire a large sample of observations using service monitoring

systems.

In summary, logistic regression appears to be appropriate in modelling service

accountability, providing a relatively simple framework which can be applied both

to individual services and groups of services. It also opens the possibility of using

related techniques, such as multidimensional regression, once a body of indicators and

set of series values have been established. The results obtained are also likely to be

much more robust than simpler regression frameworks.

3.6 Service Accountability Framework

3.6.0.2 SOA Architectural Style

Currently the mechanisms to manage disclosure and service contract are missing in

both IT literature and SOA solutions. We propose a framework for enhance account-

ability for Service Oriented Architecture (SOA), and hence briefly visit the funda-

mentals of this archetype. It is commonly agreed that SOA is an architectural style

that involves a triangular relationship amongst three entities: service requester, service

provider and the service registry [172, 124], see Fig. 3.2.

While the model captures the essence of the service-oriented architectural model,

it may fall short on enabling accountability in service oriented-architectures, espe-
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Service Requester Service Provider

Service Registry

invoke

publishdiscover

Figure 3.2: SOA Architectural Style

cially in the mashup service or cloud service environment. For instance, this does not

address the roles of multiple parties and the associated responsibilities of disclosure,

non-repudiation logging and obligation fulfillment monitoring.

In a mashup context, it is important to note that there are multiple service providers

involved. There is also the introduction of the service source as a separate entity to the

provider; although, in some cases the service provider is the same entity as the service

source. In practice, the service provider may engage several external content source

parties to participate in constructing the service. In this situation the service provider

relies upon the source for accuracies of supplied content. As suggested in [68], there

are a number of legal issues that need to be considered prior to developing mashup

applications. As such, both the service provider and source are required to assume

responsibility to ensure the mashup service complies with the intended application

(and defined terms and conditions).

3.6.0.3 Accountable SOA Architectural Style

Based upon the previous discussions, we argue that the two identified roles, service

requester and service provider, do not adequately represent all the roles involved in

accountable service interactions. We now propose a model to depict these relation-
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Figure 3.3: Accountable SOA Architectural Style

ships. The revised model is shown below, referring to Fig. 3.3. This is composed of

the additional roles: service source and accountability broker. The service registry is

still implied in this model, residing with the accountability broker.

Note that the service provider is a special type of role in the mashup environment

which plays both requester and provider at the same time. The service provider will

draw upon several internal and external sources and provide a resultant mashup page to

the service requester. When sourcing content from a service source, the provider acts

as the requester. The service source publishes a single or discrete set of (common)

content sources that may be accessed directly by the service requester, or can be built

upon and merged with other content source by a mashup service provider.

The accountability broker provides several additional benefits: as a trusted broker-

ing agent (notary for unknown sources), monitoring, auditing (audit trail and evidence

verification) to address the disclosure and non-repudiation requirements, rating and

arbitration functions, and manages a combined registry and repository for multiple

sources. Hence, the accountability broker role can be further refined into detailed

roles based on these intermediary functions performed, see Fig. 3.4.

The Accountability Broker parent class is further extended to several children
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Figure 3.4: Expanded Accountability Broker Roles

classes. Their accountability functions are explained below:

• Trust Broker: providing trust by issuing trust tokens and verifying tokens.

• Notary Broker: providing notary services to service participants.

• Registry/Repository: providing publishing and discovery services to enable

disclosure from service participants. It allows publishing of the service contract

as well as the service contract execution status.

• Monitoring Broker: providing monitoring services to service participants.

• Auditing Broker: providing audit services to service participants.

• Arbitration Broker: providing arbitration services to service participants. It

arbitrates a dispute and decides which party is at fault.

• Rating Broker: providing accountability rating services to service participants.

The enhanced role interaction model caters for both mashup and cloud services

in a service oriented architectures. This helps to understand and define the account-

ability requirements in a service-oriented environment, and set out an accountability

framework for service computing.
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3.7 Conclusion

Despite the fact that the accountability issue increasingly becomes a major business

concern, it is still largely ignored in IT, particularly in the service computing envi-

ronment. One of the main reasons is the confusion around the accountability concept

existing in the IT literature, and the large gap between what business understands about

accountability and what the technical community thinks about accountability.

In this chapter, we took a business view of accountability, starting with a series

of questions in order to clarify the essential meaning of accountability. In addition

we used an example to demonstrate how an accountable service behaves from a busi-

ness perspective. Then we translated the business meaning into IT terms and defined

the basic concepts for service accountability. We also described the accountability

processes for service computing and furthermore delved into the challenging topic of

measuring accountability in the service computing environment. Finally, we presented

an accountable SOA architectural style and outlined an accountability framework for

building accountability mechanisms into service-oriented architecture.

To the best of our knowledge, our work is the first comprehensive accountability

study in service computing and our proposed foundation for service accountability is

novel and unique. We hope that it can raise the awareness of accountability in the IT

service industry, bridging the gap between business to IT in the area of accountability

and ultimately realising the goal of aligning business and IT.



Chapter 4

Advanced Service Accountability – A

Semantic Approach

In Chapter 3, we laid down a foundational framework for service accountability. From

the discussion in the last chapter we notice that the level of service accountability

has a critical dependency on the availability of a machine-readable service contract

language. Also the absence of such language creates an accountability gap in the

current service-oriented architecture.

In this chapter, we adopt a semantic approach to design a formal service account-

ability model. The model consists of two components: one is a language compo-

nent called OWL-SC, which defines the semantic representation of a service contract;

and the other is a graphical component called SC-CPN, which allows verification of

a service contract. Together these two components provide a formal representation

language for specifying a valid, machine-readable service contract and facilitate the

automation of the accountability processes such as disclosure, contracting, monitoring

and arbitration. We first apply the model to describe a general web service example

(Congo Book), then we further propose an Accountable State Transfer (AST) archi-

tecture to augment the mainstream SOA architecture implementation – the Represen-

tational State Transfer (REST), demonstrating the potential of such a model. We wish,

through this semantic model, to narrow the accountability gap in service computing

while increasing the level of service accountability.

The rest of this chapter is organised as follows. The next section further explains

89
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the motivation for creating a semantic-based contract representation language. Sec-

tion 4.2 discusses the OWL semantic contract model OWL-SC with a graphical repre-

sentation SC-CPN based on coloured Petri-net. This is followed by Section 4.2.4 that

presents an example that uses the Congo Book service to illustrate the application of

OWL-SC and SC-CPN. Section 4.3 further applies the model to design an account-

able service architecture – Accountable State Transfer (AST), and explains how AST

addresses the key accountability concerns in the popular REST architecture.

4.1 Motivation for Advanced Service Accountability

Traditionally, accountability is achieved through the enforcement of a legal, paper-

based contract. In the cloud service environment, service providers generally publish

a terms and conditions page for their offerings on their website. Upon clicking on

the acceptance link, the consumer enters a binding contract with the service provider.

Essentially, this is a web-enabled version of the paper-based contract, which presents

serious accountability challenges in cyberspace. In its plain-text form, a web-enabled

paper-based contract can neither be interpreted by software agents, nor be used as a

basis for contract execution monitoring and state reasoning. Thus it does not enable

service obligation disclosure, nor allow software agents to decide which party is re-

sponsible for what action, and which party is liable for what result. Moreover, the

virtualised nature of the cloud service makes it even more difficult for liability settle-

ment. This may become a major obstacle for the take-up of these cloud services.

The criticality of these issues motivates the need for a formal construct that maps

the obligations in a paper-based contract to machine-interpretable capability state-

ments. We call this formal construct a service contract model. Current SOA stan-

dards, such as SOAP-based WS-* and REST, do not provide a service contract model.

REST in particular has a large accountability gap compared to SOAP-based services,

as it was not originally designed to address enterprise requirements such as security,

reliability, transaction ability and manageability. As REST is increasingly becoming a
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popular choice for implementing cloud services, it is imperative to build accountabil-

ity mechanisms into the REST architecture. Without that, the obligation monitoring

and liability assignment would be baseless. This presents an accountability gap in the

current implementations of SOA that underpins the SaaS and Cloud platforms.

4.2 A Semantic Service Contract Model

In moving towards a detailed discussion on semantic service contract, we first examine

the requirements for accountability management.

4.2.1 Requirements for Accountability Management

For SaaS and Cloud in particular, we can summarise the core requirements for manag-

ing accountability as below:

AR 1 : Obligations for both service provider and consumer can be specified unam-

biguously and are interpretable by software agents.

AR 2 : Obligations can be readily disclosed and accessible in a Web-based environ-

ment.

AR 3 : Obligations can be monitored and breaches can be immediately tracked; the

status of contract execution can be reasoned by software agents.

AR 4 : Evidence of obligation fulfilment can be easily examined and reported.

4.2.2 A Semantic Service Contract Model – OWL-SC

4.2.2.1 Service Contract Definition

In order to meet the above requirements, we propose a service contract model as a

formal construct for cloud service. The service contract specifies the obligations of

both service provider and service consumer, which can be used as a basis for service
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participants to disclose contract terms and justify or explain their actions. Moreover,

it can also be used as a baseline for obligation tracking and breach determination.

Recall the service contract definition 4 in Section 3.3.2 of Chapter 3, a service

contract is defined as: sc = 〈s, P, sow, sla, R, T 〉. This definition provides a generic

two-party service contract structure that captures the key accountability elements. We

do not deal with multi-party service contract models in this thesis, mainly because

most contracts in cloud services only involve two parties. Even if multiple parties are

involved in the underlying contract, the service contract model can always be decom-

posed into multiple two-party service contracts. Note that a cloud service normally is

not an atomic service that only involves one interaction between a service consumer

and a service provider. Instead, it is a composite service that may involve a series of

conversations between a service consumer and a service provider. Each conversation

is an instance of service contract execution that involves a series of actions performed

by both parties. Also, during the valid contact period, the service can be executed

multiple times, i.e. multiple conversations.

Using the Congo Book service [169, 7] as an example, the FullCongoBuy com-

posite service can be offered as a SaaS or Cloud service. The consumer can invoke

FullCongoBuy many times to buy different books during the valid period of the un-

derlying contract. Each execution may involve a series of actions performed by either

the consumer or the provider. An example of a consumers action can be inputting

the book name, whereas a provider’s action can be executing the atomic LocateBook

service for locating the book. Considering this characteristic, Definition 4 does not

capture detailed information in each execution. Thus we need Definition 5 for service

contract execution: sce = 〈sci, I, Op, Oc, se, R〉.

4.2.2.2 Service Contract Representation

The definitions above define the structure of our service contract model. However, to

satisfy the requirements listed in Section 4.2.1, we need to first have a representation

mechanism. As suggested in our studies in Section 2.3.2 of Chapter 2, most of the
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existing service contract models in the literature use some logic models with strong

expressiveness power to represent a legal contract at the expense of computation de-

cidability. Moreover, most of the service contract models are theory based, lacking

tooling support and implementation. Conversely, our approach to a service contract

model is to make trade-offs amongst expressiveness, decidability and existing tool-

ing support. The ultimate choice should satisfy the requirements in Section 4.2.1, yet

retain computation decidability and can be implemented with existing products and

technologies.

As services may vary in different domains, a service contract model needs to cap-

ture the domain concepts and their relationships, and have the reasoning capability

to ensure consistency. An ontology provides exactly these required capabilities; thus

a semantic service contract model should be based on ontology. In the meantime, it

should allow capturing of service contract execution information in a knowledge base

(KB) so that the service contract execution can be tracked and execution states can be

reasoned.

An ontology can be specified using Web Ontology Language (OWL1), which is

recommended by W3C as the standard for representing ontologies on the Web. As

a revision of DAML+OIL, OWL provides three sub-languages with increasing levels

of expressiveness: OWL-Lite (corresponding to SHIF (D) [87]; OWL-DL (corre-

sponding to SHOIN (D) [87]; and OWL-Full, which is an extension to Resource

Definition Framework (RDF). Both OWL-Lite and OWL-DL provide computation

completeness and decidability [185], whereas OWL-Full has maximum expressive-

ness but no computational guarantee.

We have chosen OWL-DL to represent our service contract model since it has

the better trade-off between expressiveness and decidability, and it also has mature

tooling support. But OWL-DL has its limitations. OWL 1 does not support role chain-

ing. For example, given hasParent and hasBrother roles, OWL 1 ontology can not

entail the “hasUncle” role. OWL 2 partially solves this through property chains [186].

1www.w3.org/2004/OWL/
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To address this limitation, we augment OWL-DL with Semantic Web Rule Language

(SWRL2). SWRL is a W3C submission, extending OWL-DL axioms with a set of horn

clause rules. It is basically a combination of OWL-DL/OWL-Lite with the unary/binary

Datalog sublanguages of the Rule Markup Language (RuleML) [86]. Therefore, in our

case, OWL-DL can be used to define the concepts and roles in our service contract on-

tology while SWRL can be used to define rules for contract execution state reasoning.

With this in mind, we here define:

Definition 9: (semantic service contract model): A semantic service contract model

SCM can be represented as a KB that is a triple Kscm = (T ,A,H), where:

• A TBox T consists of a finite set of concept inclusion axioms of the form C v

D, a finite set of role inclusion axioms of the formRv S and transitivity axioms

Trans(R), where C and D are concepts, R and S are roles;

• An ABox A consists of a finite set of concept and role assertions and individual

equalities/inequalities C(a), R(a, b), a = b, and a 6= b respectively;

• A horn rule set H consists of a finite set of horn clause axioms. A horn rule

axiom consists of an antecedent (body) and a consequent (head) in the form of:

r ← r1 ∧ r2 ∧ ... ∧ rn, where r, ri (0 ≤ i ≤ n) are atoms in rules that can be of

the form C(x), P (x, y), Q(x, z), sameAs(x, y) or differentFrom(x, y), and

C is a concept; P is an individual-valued property; Q is a data-valued property;

x, y are either variables or individuals; and z is either a variable or a data value.

Variables x, y, z must be bound to named individuals in the KB to satisfy the

DL-Safe criteria.

The other challenge that DL has is that it lacks an action semantic to describe the

dynamic world. In [13], Baader and et al. integrate action theory into DLALCQIO(D)

and explore the computation properties of such an extension. Based on their approach,

the authors in [118] propose a service contract model based on ALCQO(Q∗), with

2http://www.w3.org/Submission/SWRL/
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a slightly different action semantics. While executability and projection are the ma-

jor concerns in [13], the key concern in our model is determining if an obligation is

fulfilled.

We thus introduce an evidence concept and use SWRL rules to simplify action state

reasoning. Intuitively, the evidence concept reflects how a particular action’s fulfilment

is verified in real life. An evidence object, created as a result of the action can be used

as a record to prove the occurrence of that particular action. For example in a real

life scenario, a receipt can be used as an evidence object to prove that a book selling

action has occurred. We adopt a similar action structure as [13, 142] with simplified

semantics:

Definition 10: (action): An action is a quadruple act = (input, pre, output, post)

where: input is the input of the action, which is a finite set of individuals in Kscm; pre

(precondition) is a finite set of assertions in A, output is the action output, which is a

finite set of individuals in Kscm; and post (post-condition) consists of a set of finite set

of conditional expressions in the form of ϕ/χ, where ϕ is a set of assertions in A, χ is

a set of assertions of primitive literals for T .

For example, the LocateBook action has the following attributes:

input = a book name individual: “Twin Cities”,

pre = >(b), output ∈ {ISBN,OutofStock, “NotFound”},

post = {∃inStock.Book(b)/LocatedBook(b),

¬∃Exists.Book(b)/NotFoundBook(b),

∃Exists.Book(b) u ¬∃inStock.Book(b)/OutofStock(b)}

where b is an individual of the book “Twin Cities”.

Definition 11: (evidence): An evidence object is a triple ev = (obj, timestamp, cond)

where: obj is an individual in Kscm; timestamp is a data property of obj representing

the time stamp that obj is created; and cond is a set of assertions with regard to obj.

An example of evidence can be:

obj = an acknowledgement message ack, timestamp = Timestamp(ack);
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cond = ∃Log.Msg(ack) u ∃Header.Label(“Ack LocateBook”)

u ∃V alidSignature.Msg(ack).

As we use the evidence object as a proxy for the occurrence of an action, we thus

have the obligation fulfilment axiom:

Axiom 1: Obligation(?a)∧mustDo(?a, ?b)∧verifiedBy(?b, ?c)→ fullfilled(?a)

This axiom semantic is equivalent to a trigger rule [12] semantic C ⇒ D where

C,D are concepts. The trigger rule can be translated into the inclusion axiom with

epistemic operator K [12]: KC v D. Intuitively, the K operator denotes that the rule

only applies to those individuals that KB “knows” to be the instance of concept C,

not to arbitrary domain elements. In our case, the rule only applies to those known

instances of evidence objects.

In our service contract model, a predefined list of the valid sequence of actions will

regulate the action performing order from both the provider and the consumer. We can

use the List class as in [129] to represent the action sequence. However, we do not

include other control constructs such as if-else or split, as the actions in the service

contract are more coarse-grained than the atomic process in [129]. From a business

perspective, the main concern is on the correct performing sequence of the high-level

obligations, not on the low level logic of atomic tasks as handled by the traditional

workflow.

Based on the above definitions, a service contract ontology can be defined. Fig. 4.1

shows a simplified version of the ontology. The highlighted scContract class has

contract term definitions (Definitions class), and it links to a predefined service p1 :

Service which can be semantically described by OWL-S [129]. The contract class in-

volves ServiceProvider and ServiceConsumer, both of which have a super class Party.

Each party has Obligation which consists of multiple Action and Evidence pairs. sc-

Contract also has an ActionSequence class, which defines the valid action sequences.

An execution instance of scContract will be defined by the highlighted scContractEx-

ecution class. The scContractExecution keeps track of the fulfilled obligations from

both the service provider and the service consumer.
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Figure 4.1: Service Contract Ontology

We name the service contract model built on top of this ontology OWL-SC, which

complements a service defined by OWL-S with clear obligations spelled out for the

service participants. An example is that for the FullCongoBuy service [129], a do-

main specific contract class CongoBookContract can inherit from the generic scCon-

tract class. Such domain specific contract instances may be executed multiple times.

Each execution can be an instance of the CongBookContractExecution class, which

inherits from the scContractExecution class. A KB can monitor the obligation fulfill-

ment situation and moreover, reason the contract state and execution state based on the

defined rules in the KB.
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4.2.2.3 Properties of Service Contract Model OWL-SC

1) Expressiveness: The underlying DL in OWL-SC is currently SHOIN (D), with

intention to move to OWL 2 SROIQ(D) when tooling support for OWL 2 is mature.

SHOIN (D)’s expressiveness is constrained by its syntax and semantics, which is

listed in Fig. 1 in [87]. As mentioned earlier, OWL-DL is limited in role chaining ex-

pressiveness. Moreover, the built-in data type in OWL 1 is limited to xsd : string and

xsd : integer. In OWL-SC, we augment OWL-DL with SWRL, which extends OWL

DL’s expressiveness power at two fronts: first, it allows the reasoning of role chain-

ing; second, SWRL built-ins can increase expressiveness significantly on datatypes

and the operations on them. These extensions allow us to bring in reasoning power in

action semantics in our model. SWRL’s limitation is that it does not allow disjunction

and negation in the rules; moreover, explicit qualification over rules is also not sup-

ported. However, a combined OWL-DL and SWRL can leverage both strengths and

provide the expressiveness to satisfy the requirements in Section 4.2.1.

2) Computational Properties: While OWL-DL is a decidable logic, SWRL is

proven not decidable [138]. As the authors suggest, this is because that DL algorithm

can always reach a finite tree model for the satisfiability check, but adding the rules

breaks the tree model and it therefore becomes undecidable. To avoid the problem,

the authors propose a so called DL-Safe rule. A rule r is called DL-Safe if each

variable in r occurs in a non-DL-atom in the rule body. A program Pro is DL-Safe

if all its rules are DL-Safe (see [138] for more details). The DL-Safe restriction is

only exposed to ensure that the variables in the rule body are bound to only explicitly

existing individuals in the KB. In our model, anonymous individuals are disregarded,

as we apply the DL-Safe rule restriction.

From a computational complexity perspective, reasoning in SHOIN (D) has a

worst-case nondeterministic exponential time (NExpTime) [85]. Research on sound

and complete reasoning algorithm for OWL DL and rules are still an ongoing effort.

Various approaches [113, 71, 130] have been proposed but each has limitations. In
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particular, we are interested in [71, 130] for our service contract model as the reasoning

is based on an efficient production rule algorithm Rete. According to Forgy, Rete’s

worst complexity for the set of satisfied rules is linear in the number of rules, and

polynomial in the number of objects [65].

3) Tooling Support: The basic requirements for tooling in our service contract

model are the reasoning engine, ontology editor and rule editor. We choose Protege3

3.4.3 as our ontology editor and rule editor. Protege 3.4.3 supports OWL-DL, it bun-

dles with Pellet and also provides a DIG interface for other reasoners like KAON2

and RACER. Moreover, it bundles with SWRLtab, which allows SWRL rules editing.

There is also a SWRLJessTab [71] plug-in available for Protege 3.4.3, which can trans-

late OWL facts to Jess facts and SWRL rules to Jess rules. It then allows invocation

of the Jess rule engine that implements the RETE algorithm to do reasoning on the

translated rules and facts.

4) Meeting the Requirements in Section 4.2.1: Compared to other service con-

tract modelling approaches, the differentiation of our service contract model is that it

is not just a theoretical model, but can be practically implemented with existing stan-

dards and tools; moreover, the action semantics and evidence concept closely mimic

how accountability is treated in real situations in the business domain. In summary,

with OWL-SC, obligations can be clearly specified, and interpreted by software agents.

This satisfies AR 1 in Section 4.2.1. Secondly, obligations specified in OWL-SC can

also be referred through URI on the web, which meets AR 2 and suits the SaaS and

Cloud environment. Finally the action semantic and the concept of evidence in OWL-

SC allow accountability solutions to be built to satisfy AR 3 and AR 4 respectively.

3http://protege.stanford.edu/



100 Advanced Service Accountability – A Semantic Approach

4.2.3 A Graphical Model – SC-CPN

4.2.3.1 Coloured Petri-nets

OWL-SC provides a structure and semantics for modelling obligations and actions in a

service contract. But neither OWL-DL nor Protege provides an easy way for modelling

the sequence of the obligations. On the other hand, coloured Petri-nets (CP-Nets)

provide an intuitive graphical representation underpinned by a rigorous mathematics

foundation; and more importantly, CP-Nets have an explicit semantic to describe both

actions and states whereas most other formalisms can only focus on one aspect. Fur-

thermore, tools like CPN-Tools4 are available to assist in net editing, simulation and

state space analysis. Thus CP-Nets are ideal for visual modelling, analysis and valida-

tion of our service contract model. We first outline the definition of CP-Nets from [96]:

Definition 12: (Coloured Petri-net): A CP-Net is a tuple

CPN = (Σ, PL, TR,AR,ND,CF,GF,EX, IF ) where: Σ is a finite set of non-

empty types, also called colour sets; PL is a finite set of places; TR is a finite set of

transitions; AR is a finite set of arcs such that: PL
⋂
TR = Pl

⋂
AR = TR

⋂
AR =

∅; ND is a node function. It is defined from AR into PL × TR ∪ TR × PL;

CF is a colour function. It is defined from PL into Σ; GF is a guard function. It

is defined from TR into expressions such that: forallt ∈ TR: [Type(GF (t)) =

B
∧
Type(V ar(GF (t))) ⊆ Σ]; EX is an arc expression function. It is defined from

AR into expressions such that: ∀a ∈ AR: [Type(EX(a)) = CF (p)MS

∧
Type(V ar(EX(a))) ⊆

Σ] where p is the place of ND(a); IF is an initialisation function. It is defined from

PL into closed expressions, such that: ∀p ∈ PL : [Type(IF (p)) = CF (p)MS].

In the above definition, B denotes the boolean type. The type of a variable v is

denoted by Type(v), and the type of an expression expr is denoted by Type(expr);

whereas the set of variables in an expression expr is denoted by V ar(expr).

4http://cpntools.org/
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4.2.3.2 CP-Nets Model for Service Contract – SC-CPN

Definition 13: (SC-CPN): Given a KB defined in OWL-SC Kscm = (T , A, H), we

map each concept in T to a colour set ∂ in a place p, ∂ ∈ Σ, p ∈ PL; each assertion in

A to a constant or variable declaration in the CP-Net, therefore each model of T and

A in I corresponds to an initial marking in M0. We also map each consumer action in

Ac to a consumer transition in Tc, each provider action in Ap to a provider transition

in Tp, where Tc
⋂
Tp = ∅, Tc

⋃
Tp = TR; input in and output out to token colours in

Pi, where Pi = Tp
⋂
Tc

⋃
Tc

⋂
Tp, Pi ⊆ PL; precondition pre to i ∧ g, where i is a

set of token colours in T that satisfies with input inscription Ei, Ei ⊆ EX , g ∈ GF ,

g is a transition guard in TR; also map post-condition post to Eo , where Eo is output

arc inscription, Eo ⊆ EX , Ei
⋂
Eo = ∅.

Based on Definition 13, we can construct a CP-Net from OWL-SC; we call it

service contract CP-Net SC-CPN. Thus the standard CP-Net analysis techniques can

be applied to validate the correctness of the service contract model with regard to the

consumer and provider behaviour. In OWL-SC, we are concerned about two problems.

One is the action executable problem [12, 159], i.e., whether all pre-conditions are

satisfied in the states of the world considered possible. The second problem is the

projection problem [12, 159], i.e., if the action is executable, we want to know whether

applying it achieves the desired effect.

Intuitively, we can obtain two theorems on executability and a projection for their

definitions) based on the mapping rules in Definition 13.

Theorem 1: The action executability problem in OWL-SC can be translated to a tran-

sition fireability problem in SC-CPN.

Proof: Based on the mapping rules, it is obvious that the theorem holds for one

action. Assume it holds for (a1, ..., ak) where 1 ≤ i ≤ k, i.e., for transitions (t1, ..., tk),

if t1, ..., tk are fireable, then for all models I of T andA, all interpretations I with I ⇒

Ta1, ..., ai I, we have I � prei+1. Now assume transition tk+1in(t1, ..., tk+1) sequence

is also fireable. As defined in the mapping rules, all initial markings M0 correspond
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to all models I of T and A. Prior to transition tk+1, the marking is mk, which is

fireable, i.e. tokens at tk+1 satisfy input inscription ei, as well as guard g at tk+1, this

implies that prek+1 holds. Since mk corresponds to I ′′, where I ⇒ Tai, ..., aj I,

i ≤ j < k + 1, I � prej+1, and therefore, I ⇒ Ta1, ..., ai, ..., aj I, i ≤ j < k + 1,

which suggests action series (a1, ..., ak+1) is executable.

Theorem 2: The action projection problem in OWL-SC can be translated to reacha-

bility problem in SC-CPN.

Proof: Assume at marking mi and mr, there is at least a sequence of transi-

tions u = (t1, t2, ..., tk), so mi[u〉mr, which means marking mr is reachable from

mi through at least one sequence of transitions. Let action a1 correspond to transi-

tion t1, a2 to t2, and so on till ak to tk. As the post condition of ak is mapped to Et,

which is the output arc inscription of transition tk. So for all models I of A and T , I

⇒ T a1, a2, ..., ak I ′, and I ′ � Et, therefore, the effect of the action sequence can be

projected through reachability.

The ActionSequence in scContract contains the valid action sequences to regulate

the consumer and provider interactions. Therefore, to check whether or not a service

contract is breached in an execution instance, it is simply a matter of checking the

actual action sequence in scContractExecution, to see if it matches any predefined

action sequence in ActionSequence in scContract. If not matched, by locating which

party’s action causes the discrepancy we can identify the responsible party.

4.2.3.3 SC-CPN Properties

The desired properties of SC-CPN with regard to our service contract model are listed

below:

Structural Boundedness: Assume place p in

〈 N , m0〉, b(p) = sup{m[p]|minRS(N,m0)}, a net is structural boundedness iff ∀p

b(p) <∞, where sup is the token upper bound of p, RS is a reachability set.

Liveness Properties: We always expect that the net can be terminated at some

state, i.e., there exists at least one dead marking for any initial marking of the net.
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Also, each transaction should have the possibility of firing, i.e., no dead transition

exists. The SC-CPN liveness property can be described as: ∃m ∈ RS(N ,m0), for

∀t ∈ TR such that t is not fireable at m, and for ∀t ∈ TR , ∃m ∈ RS(N ,m0), ∃σ

such that mσt → m.

Reversibility: We expect that the execution of service will lead to a new state.

Thus non-reversibility is a preferred property for SC-CPN, which is defined as: ∃m ∈

RS(N ,m0), ∃σ such that mσt →m0.

4.2.4 Using OWL-SC and SC-CPN to Model Service Contract for

Congo Book Service

SC-CPN provides an intuitive graphical model for modelling the action sequence for

OWL-SC. Simulation can be used to identify errors in the service contract’s action

model. Standard Petri-nets state and reachability analysis can be used to analyse the

executability and projection in OWL-SC.

Now we illustrate how to use OWL-SC and SC-CPN to build a service contract

model for the Congo Book service, which is a widely used example of a semantic

web service. We will first define the basic concepts and SWRL rules in OWL-SC;

then we use SC-CPN to model the obligation and action sequence; next we will use

Pallet reasoner to classify and check the consistency of the ontology; then we will use

Protege’s SWRLJessTab to translate the OWL individuals to Jess facts, SWRL rules

to Jess rules and use Jess to entail new facts; and finally we will use SQWRLQuerytab

to query the service contract knowledge base.

4.2.4.1 Defining Contract Service Ontology for Congo Book

We now use Protege 3.4.3 to create the ontology based on the model in Fig. 4.1 Firstly

we extend scContract class to create CongoBookServiceContract as the service con-

tract class for Congo Book service, then subclass scContractExecution to create Con-

goBookServiceExecution for the contract execution class. After that we can enter some
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individuals. We use some candidate actions based on the Congo Book semantic service

CongoProcess.owl [7] as a starting point: P LocateBook, P SignInUser, P PutInCart,

etc.

4.2.4.2 Modelling Obligations using SC-CPN

Now we use SC-CPN to model the actions and verify the correct sequence of actions.

We leverage CPN-Tools’ hierarchical net feature [42] to create a hierarchy of service

contract nets across multiple pages for ease of modeling. Fig. 4.2 shows the hierarchy

page. Fig. 4.3 shows the top page of CongoBookServiceContract, which can be used as

a generic high-level SC-CPN model for SaaS or Cloud services. In the model, Service-

Consumer interacts with ServiceProvider through the ServiceInput and ServiceOutput

places; each party maintains session information such as shopping cart, credentials in

ServiceSession place; and ServiceConsumer pays for service with considerations and

ServiceProvider delivers service effect.

Fig. 4.4 shows the ServiceConsumer page, which further breaks down the tran-

sitions to another level. Fig. 4.5 shows the DeliverService page, which models the

lowest granularity of a transition; in this case, the Service Provider’s obligation to ship

the book to the consumer.

Once all of the net pages have been constructed, we run simulations to see the in-

terplay between service consumer and service provider. We next use CPN-Tools’ state

space analysis capability to analyse the SC-CPN properties. We can continue to refine

the SC-CPN model based on the desired properties discussed in Section 4.2.3.3. Then

from the reachability graph, we produce the valid action sequence for OWL-SC. For

example, one normal action sequence is:

C ProvBookName, P LocateBook, C PutInCart, P GetSignOn, C ProvSignOn,

P SignUserIn, P PutInCart, C Checkout, P GetPaymentInfo, C ProvPaymentInfo,

P ProcPayment, P GetAddInfo, C ProvAddInfo, P ReqAuthPay, C AuthorizePay,

P ShipBook, C AcceptBook.
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Figure 4.2: CongoBookServiceContract Hierarchy Page

Another sequence could be just C ProvideBookName, P LocateBook,

where the consumer either just wants to search without intention to pursue the pur-

chase; or the book may be out of stock. Other valid action sequences are omitted due

to the page limit.

4.2.4.3 Reasoning of Congo Book Service Contract Model

With the valid action sequences identified, we now add the action sequence instances

into the ontology. Then we input some evidence instances to simulate the collection of

action evidences in the service contract KB. Finally, we create rules to reason the com-
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Figure 4.3: CongoBookServiceContract Top Page

pletion of obligations and the states of the contract execution. For example, axiom 1

for CongoBookServiceContract can be input in SWRLTab as:

ServiceContractExecution(?x)∧execute(?x, ?y)∧specifiedObligation(?y, ?z)∧

mustDo(?z, ?a) ∧ verifiedBy(?a, ?b) ∧ produceEvidence(?x, ?b)→

fulfilledObligations(?x, ?z)

Once the ontology and rules are finally built, we invoke Pellet reasoner to classify

the TBox and check consistency of the ABox. Then through the SWRLJessTab, we

convert OWL individuals/SWRL rules to Jess facts/rules respectively; and use Jess

engines to do reasoning which can entail new Jess facts. Fig. 4.6 shows an exam-

ple of the reasoning result. As we can see, the Jess engine inferred a lot of facts

about fulfilled obligations based on evidence produced by contract execution instance
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Figure 4.4: ServiceConsumer Page

CongoBookServiceExecution 1. It also concluded that the

CongoBookServiceExecution 1 is in completion status based on the highlighted

rule. After reasoning, we can use SPARQL or SQWRLQueryTab to query the KB.

4.2.4.4 Discussion

So far we have demonstrated the modelling of a semantic service contract model for

an online service using existing tools. Clearly this service contract model can be ap-

plied to other SaaS and Cloud services to support service obligation disclosure, mon-

itoring and tracking of non-compliance. The strengths of our model are that, firstly,

it addresses the accountability concerns through a formal construct, which is firmly

grounded on the intuitive concept of a service contract in the real world. Secondly,

the construct is based on rigorous formalisms, like OWL-DL/DL-Safe SWRL and CP-

Nets. The former allows machine interpretation and web accessibility, yet provides

computation decidability. The later facilitates visual modelling and simulation, yet is
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Figure 4.5: CongoBookServiceContract Deliver Service

backed by solid mathematics. Lastly, our approach can be supported by existing tools

and readily applied in practical applications, rather than being just a theoretical model.

We also notice that one weakness of the model is in its expressiveness and reasoning

power. For example, it is quite difficult to reason whether a contract has expired, since

SWRL’s Temporal built-in [154] currently does not provide the support for current

time (e.g. now). Another issue is that the translation from OWL-DL to Jess is not

complete; the anonymous individuals will not be translated to Jess facts [130]. How-

ever this limitation does not impact the completeness of our model because anonymous

individual information is not relevant to our model. The last issue is that the inferred

facts from Jess reasoning can potentially make the initial OWL-DL ontology inconsis-

tent [130]. We suggest that a hybrid approach that leverages strengths from different

formalisms can best address the weaknesses. We separate our service contract reason-

ing to design-time reasoning and run-time reasoning stages. We only use DL reasoner
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Figure 4.6: Congo Book Service Contract Reasoning Results

for concept consistency checking at design-time, while the Jess rule engine is used to

maintain the KB at run-time. Other tasks, such as comparison and computation, can

be better handled via a combination of traditional programming model and KB query.

For example, when checking whether or not a contract has expired, it is easy to query

the KB, get the end time, then compare it to the current time in a traditional program.

4.3 Accountable State Transfer Architecture

In this section, we are going to apply our semantic service contract model to aug-

ment a mainstream SOA implementation architecture – Representational State Trans-

fer (REST) with accountability mechanism. The extended architecture is called Ac-

countable State Transfer (AST) architecture. We first briefly introduce the preliminary

of REST in the section below.
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4.3.1 Preliminary on Representational State Transfer

4.3.1.1 REST Architecture and the Previous Extension Efforts

According to Fielding, REST behaves like a virtual state machine, where the state

transition happens when the user selects links, resulting in the next state of the appli-

cation being transferred to the user [62]. REST lays down the foundation for the Web

architecture. There are a number of efforts to extend REST to address certain aspects

of requirements. In [56], the authors suggest the concept of “Computational Transfer”

and propose Computational REST architecture (CREST). The idea is to use AJAX and

mashups as mechanisms for framing responses as interactive computations or for “syn-

thetic redirection” and service composition. CREST is essentially the Web2.0 style of

Web architecture. To strengthen RESTs capability in supporting enterprise require-

ments, the authors in [104] extend REST to induce four properties: events, routes,

locks and estimates. They derive four new REST styles (ARREST, ARREST+E, AR-

REST+D and ARRESTED) optimised for each of the above four types of resources.

However, currently REST and its extensions do not address the accountability require-

ments. In particular, they do not support the concept of service contract and also do

not have any ability to provide justification on the action of state transfer.

4.3.1.2 REST Guiding Architectural Principles

The key characteristic of the REST architecture is that it takes a “resource view” of

the world. The RESTful principles described in [62] and elaborated in [56] are:

RESTFul Principles

RP1 : Resource can be identified by an URI;

RP2 : Separation of the abstract resource and its concrete representations;

RP3 : Stateless interaction, each interaction contains all the necessary context infor-

mation and meta-data;
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RP4 : Small number of operations, with distinct semantics based on HTTP methods:

safe operations (Get, Head, Options, Trace); non-safe, idempotent operations

(Put, Delete); and non-safe, non-idempotent operation (Post);

RP5 : Idempotent operations and representation metadata support cache;

RP6 : Promote the presence of intermediaries such as proxies, gateways or filters to

alter or restrict request and response based on metadata.

Following these principles ensures that our AST architecture retains REST’s scal-

ability and performance.

4.3.2 Service Contract as Foundation for Enabling Accountability

The key accountability concerns addressed in this thesis are: obligations disclosure;

execution status tracking based on evidence; and the ability to provide justification and

explanation of actions in relation to a pre-established contract. Compared to the exist-

ing accountability models in the IT literature, a key differentiation of our approach is

that we position the service contract as the foundation underpinning the accountability

concerns in an SOA environment.

4.3.3 Architectural Decisions in AST Implementation

In contrast to a lot of existing service contract models in the literature that only provide

theoretical models, a key principle of our approach is to ensure the practicality of

model implementation. To achieve that, trade-offs need to be made in implementation

decisions. Followings are the architectural decisions for our AST architecture:

AD1 : Implement service contract as an ontology and store service contract execution

instances in a knowledge base (KB); in addition, add rules to allow reasoning

of the contract execution state in the KB. An ontology describes the concepts in

the domain and the relationships held between those concepts. Building upon
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an ontology, our service contract model further needs rule capability for contract

state reasoning.

AD2 : Take a resource view on service contracts and use URI to uniquely identify el-

ements in the service contract. Thus the elements in a service contract ontology

can be referred via URIs during service invocation.

AD3 : Separate the service contract and service contract execution concepts. The

rationale behind decision 3 is that in a SaaS or Cloud computing environment,

a service can be executed for multiple times during the valid period of the un-

derlying business contract. For example, a Credit Check service contract may

last for one year; during the year the service can be executed for multiple times.

Each execution is an execution instance of the service contract. The separation

of contract and contract execution concepts allows contract execution tracking,

which is not seen in most of the existing service contract models.

AD4 : Adopt a hybrid reasoning approach that leverages strengths from different for-

malisms and technologies.

The last decision applies in the area of designing the reasoning mechanism for our

service contract KB. We need to consider the expressiveness power and computational

complexity of the underlying formalisms such as OWL-DL and SWRL; also take into

account the availability of the tooling support to make the optimal design decision.

4.3.4 Accountable State Transfer Architecture

4.3.4.1 Extending REST to Support Accountability

In a traditional REST service, both the consumer and the provider can not be held ac-

countable for their actions during the representational state transfer. At the client side,

the client consumes the provider’s services by following the URL links to get rep-

resentational states from some resources under the provider’s control. But the client
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does not know precisely the linkage between the state transfer and the provider’s obli-

gations. The provider also does not know exactly why the client makes a particular

request. In a service-oriented environment like cloud, fundamentally each service is

linked to a pre-established business contract between the service provider and the ser-

vice consumer. Therefore, to establish accountability in the REST interaction, it is

important to link the interaction to a particular contract context, so both the consumer

and the provider can track the performance of the contract, understand the reasons be-

hind each request and respond with regard to that very contract. For example, suppose

a SaaS provider provides a credit check service by exposing some REST interfaces. A

service consumer needs to establish a binding contract with the service provider before

he/she can consume the service. Once the contract is established, the service consumer

can invoke the REST service to check a particular customer’s credit score. However,

under the traditional REST, both the service consumer and service provider have no

ways to know which contract the service is related to in runtime, let along track the

progression status and determine which party breaches the contract.

In order to address the above problem, we extend the REST architecture by bring-

ing in the service contract context as the meta-data during the interaction between the

consumer and provider. The contract context information includes the name of the

service contract, the current contract execution instance status and the overall contract

progression status. In REST, each element of the service contract information can be

treated as a resource, identified by an URI. Therefore the contract context meta-data

can be simply referred to by URIs in HTTP headers. Also the contract progression

and performance can be monitored by a trusted-third party (TTP). We call this style of

REST extension Accountable State Transfer architecture.

4.3.4.2 The Accountable State Transfer (AST) Architecture

AST architecture introduces two extra components called sContractMonitor and sCon-

tractManager in addition to the traditional REST architecture components. sContract-

Monitor monitors the interactions between the consumer and the provider, and then
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feeds events to sContractManager through a low-coupling queuing mechanism. sCon-

tractManager determines the current contract execution instance’s status based on the

rules prescribed in the service contract and the events fed from sContractMonitor. It

also maintains a service contract KB for all the contract execution instances so it can

reason the overall contract status.

AST architecture can be classified into two categories. One is a centralised AST

and the other is a peer-to-peer AST. In a centralised AST, it can be further categorised

to two styles: one is an in-line TTP AST and the other is an on-line TTP AST. An

in-line TTP AST’s sContractMonitor acts as an HTTP proxy, seeing through all the

interactions between the consumer and the provider. Based on the contract meta-data

on the HTTP headers and the body message, it can verify whether the obligations have

been met by checking the prescribed evidence. Then it generates the assertion events to

sContractManager. sContractManager’s reasoner component determines the service

contract execution status and maintains an up-to-date service contract execution KB

based on the rules defined in the service contract. Fig. 4.7 illustrates the in-line TTP

AST model.

In an on-line AST Model, the service contract monitor remotely monitors the con-

sumer and the provider separately. In a peer-to-peer AST model, each party will have

its own service contract monitor and manager, and needs an arbitrator reasoner for

dispute resolution.

4.3.4.3 AST Protocols

In order to bring in service contract context information during REST interactions,

the following items are defined for communicating the contract meta-data in the basic

AST protocol:

Accountable State Transfer Protocol

AP1 : Refer to service contract during service invocation:

HTTP Header: sContract: sContract URI;
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sContractManager

Consumer Provider

sContract Monitor

HTTP Connector: Contract: Contract Execution KB: Service Resource

Figure 4.7: In-Line TTP AST Architecture

AP2 : Add service contract meta-data to a service request:

HTTP Header: Required-Obligations: action URI list;

AP3 : Add service contract meta-data to a service response:

HTTP Header: Met-Obligations: action URI list:

AP4 : Query on contract execution status:

GET sContract KB URI?queryString;

AP5 : Notify contract breach or execution abnormality:

POST involvedParty URI with XML payload indicating sContract or sContractExecution status.

The HTTP header in AP1 can be used in each REST interaction to establish linkage

to a service contract. AP2’s HTTP header can be used when the consumer sends out

a request, indicating the request is relating to the provider’s obligation as specified

in the service contract. AP3 can be used when the provider replies with a response,
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indicating that the response is relating to the fulfilled obliged actions. AP4 enables

REST client and server to query the sContractManager for contract execution status.

AP5 allows sContractManager to notify a client or the server on the contract execution

status.

Now we use an example to illustrate how the AST works. Suppose a service

provider pr (pr ∈ P ) has signed a contract sc with a consumer pc (pc ∈ P ) to provide

a Credit Check service defined by s for a period of T . The contract defines the terms

relating to Credit Check in a definition set D. The contract prescribes the provider’s

obligation as Op and the consumer’s obligation as Oc. They are:

Op = {(P checkCredit, E creditEvidence), (P returnError, E ErrorEvidence)}.

Oc = {(C provideInput, E inputEvidence), (C payFee, E feeEvidence)}.

The valid action sequences are defined as either:

“C provideInput, P checkCredit, C payFee” or “C provideInput, P returnError”.

Also the contract defines a set of rules R to determine the contract status st (st ∈ S),

based on the evidence of the fulfilled obligations.

There is no concept of service contract in traditional REST. Both service provider

and service consumer rely on other means (mostly off-line and manual) to know the

performance status of the contract. With AST, the contract performance can be tracked

while executing the service. Moreover, both client and server understand the “why”

behind the request and response (representational state transfer) from a service contract

perspective. For example, when the consumer invokes the Credit Check service, he/she

issues the following request with the Http headers below:

GET /credit chk.jsp?fname=jon&lname=bond&id=102435 HTTP 1.1 Host www.creditcheck.com

HTTP headers:

sContract: http://sContractManager.com/creditcheck.owl

Required-Obligations: #P checkCredit, #P returnError

With these HTTP headers, the consumer links the request to a pre-established contract,

also states that the request is related to the provider’s obligations P checkCredit and

P returnError as prescribed in the contract. When the server responds, it adds the
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HTTP headers to further explain the response in relation to the contract:

HTTP/1.1 200 OK

HTTP headers:

sContract: http://sContractManager.com/creditcheck.owl

Met-Obligations: #P checkCredit

Required-Obligations: #C payFee

4.3.5 Implementation Of AST Architecture

4.3.5.1 Languages for Specifying the Service Contract Model

The ontology underpinning our service contract model can be specified using Web

Ontology Language (OWL), which is recommended by W3C as the standard for rep-

resenting ontologies on the Web. As per the guiding principles in Section 4.3.1.2,

OWL-DL is chosen to specify our service contract model since it has the better trade-

off between expressiveness and decidability. The other benefit of using OWL-DL is

that the consistency of the service contract can be validated using proven DL reason-

ers, such as RACER, KAON2, PELLET, etc. However, OWL-DL has limitations. In

particular, it has the well known “hasUncle” problem; i.e., it is impossible for OWL-

DL to describe the role chain of hasParent and hasBrother leading to the hasUncle

role. To address this limitation, we leverage Semantic Web Rule Language (SWRL)

for defining rules to do contract state reasoning on top of OWL-DL.

4.3.5.2 Service Contract Ontology and Axioms

We apply the OWL-SC model to capture the fundamental aspect of a service contract.

The service contract ontology of Fig. 4.1 can be represented using OWL-SC. An sc-

Contract class has contract term definitions (Definitions class); it involves Party class,

which has subclasses of Provider and Consumer. Each party has Obligation which

consists of multiple Action and Evidence pairs. A domain specific contract class like
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CreditCheckContract inherits from the generic scContract class. Such domain specific

contract instances may be executed multiple times. Each execution is an instance of

scContractExecution class. The scContractExecution instance executes Obligations

as defined in the scContract and produces Evidence instances. If each Action instance

can be proven by the respective Evidence instance, then the obligation is fulfilled. Oth-

erwise either Provider or Consumer may breach the contract depending on the specific

contract rules, which can be defined as the axioms for a domain specific service con-

tract model.

We here list some axioms that determine the contract state for our generic service

contract model. For domain specific service contracts, these axioms can be extended,

overwritten, or new axioms can be developed, based on the specific terms and condi-

tions of the underlying contract.

Generic Contract Axioms

Axiom 2: scContract(?x) ∧ hasExecutionInstance(?x, false)→ inState(?x, INIT )

Axiom 3: scContract(?x) ∧ executedBy(?x, ?y) ∧ isContractExpired(?x, false)→

inState(?x, IN PROG)

Axiom 4: scContractExecution(?x) ∧ startsAt(?x, ?y) ∧

noEvidenceSupportObligations(?x, ?z) ∧

isT imeOut(?x, false)→ inExecutionState(?x,EINIT )

Axiom 5: scContractExecution(?x) ∧ execute(?x, ?y) ∧ specifiesObligation(?y, ?z) ∧

mustDo(?z, ?a)∧verifiedBy(?a, ?b)∧produceEvidence(?x, ?b)→ fulfilledObligations(?x, ?z)

Axiom 2 states that if an scContract instance does not have any execution instance,

then the scContract is in the initial (INIT) state. Axiom 3 states that if the scContract

instance is executed by some execution instances and the contract has not expired, then

the service contract state is in-progress (IN PROG). Axiom 4 says if the instance of

scContractExecution starts at a particular time, but no evidence is produced to prove

the fulfilment of obligations, and the execution is not time out yet, then the contract

execution instance is in initial (EINIT) state. Axiom 5 determines whether a particular

obligation is fulfilled based on the collected evidence.
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Figure 4.8: Prototype in-line TTP AST Implementation

4.3.5.3 Prototype Implementation

Overall Prototype Architecture

Fig. 4.8 depicts the Credit Check service prototype that implements the in-line TTP

AST in Fig. 4.7. The main components are described below:

CreditCheck Client: We used Firefox Poster to simulate a Credit Check client.

Firefox Poster provides an intuitive interface for sending REST requests with user

defined HTTP Headers.

sContractMonitor: a contract monitor that is built on a RESTful component Web

intermediary. We used IBM’s Web Intermediaries Development Kit 4.5 (WBI DK) [15]

as the underlying Web intermediary platform, creating a Monitor plug-in to track the

HTTP messages. The messages will be sent to sContractManager through JMS.

CreditCheck Server: A Credit Check server is developed and hosted in Websphere

sMash [123], which provides an environment for developing and hosting REST appli-

cations.

Contract Authoring: Protege 3.4.3 is used as the service contract authoring tool.
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SWRLtab in Protege is used for SWRL rule authoring.

Pellet 1.5.2: Pellet5 1.5.2 is the DL reasoner that is used to classify the terms in

service contract and check contract consistency at design time.

sContractManager: the contract monitor is implemented in a Websphere Appli-

cation Server (WAS). It consists of sContractTranslator, QueryInterface, EventPro-

cessor and EvidenceMonitor. sContractTranslator converts the service contract from

OWL-DL/SWRL to Jess facts/rules using XSLT, then sends them to ContractExecu-

tionReasoner. EventProcessor picks up the raw monitoring data, storing evidence data

into an event database. Then EvidenceMonitor checks if the evidence is valid, if so,

it sends assertions to ContractExecutionReasoner. Finally the QueryInterface allows

contract status query from both the client and the server.

ContractExecutionReasoner: This component receives Jess facts or rules, and then

invokes Jess71p26 to do reasoning, maintaining the contract execution KB in Jess’s

working memory.

Implementation of Hybrid Reasoning Mechanism

Based on architectural decision 4 outlined in Section 4.3.3, we adopt a hybrid ap-

proach to reasoning. In the contract authoring stage, a DL reasoner like Pellet will be

used for normal TBox and ABox reasoning in design time. After the service contract

is developed, the OWL-DL ontology will be translated to Jess facts via one XSLT file,

while the SWRL rules will be translated to Jess user-defined rules via another XSLT

file. Additionally, we need to import pre-defined Jess rules, which are transforma-

tional implementations for OWL semantics [131]. Then the Jess facts and (pre-defined

and user-defined) rules will be fed into the Jess engine, taking advantage of the fast

Rete algorithm for contract state reasoning at runtime. In our prototype, we created

a CreditCheckServiceContract based on scContract in Fig. 4.8. The contract is be-

tween service provider CreditBureau and consumer MortgageBank. CreditBureau’s

obligation is to complete actions P checkCredit or P returnError if exception occurs.

5https://github.com/complexible/pellet
6http://www.jessrules.com/
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MortgageBank’s obligation is to complete actions C provideInput and C payFee. The

actions need to be proven by evidence which is also defined in the service contract

ontology. This contract instance will be executed multiple times during the valid con-

tract period. Each execution instance is an instance of CreditCheckExecution class.

Two example rules used to determine if the service participants breach the obligation

are listed below.

Axiom 6: CreditCheckServiceExecution(?x) ∧ isT imeOut(?x, true) ∧

fulfilledObligations(?x,OC ProvideCustomerDetails) ∧

noEvidenceSupportObligations(?x,OP ProvideCreditScore) ∧

noEvidenceSupportObligations(?x,OP ReturnError)→ inExecutionState(?x,EP NOPF )

Axiom 7: CreditCheckServiceExecution(?x) ∧ isT imeOut(?x, true) ∧

fulfilledObligations(?x,OP ProvideCreditScore) ∧

noEvidenceSupportObligations(?x,OC PayServiceFee)→ inExecutionState(?x,EC NOPF )

Axiom 6 states that if MortgageBank has provided input for credit check, but Cred-

itBueau has not provided a credit score nor returned an error; and the execution is

timeout, mark the current contract execution instance as status EP NOPF (Service

Provider Non-Performing obligations). A similar rule defined in Axiom 7 is used to

determine consumer non-performing obligations. Note that the reasoning power is

limited by the expressiveness of OWL DL and SWRL, so normal programming logic

is still needed to address the limits of DL reasoner and rules engine. For example, the

predicate isTimeOut in Axiom 6 is very difficult for reasoners to decide because there

is no current time concept in OWL-DL, nor is it provided in the SWRL’s temporal

built-in. However, it can be easily done in a Java program by checking the current

time, and producing an assertion triple to the Jess engine. So our hybrid approach can

be simply described as: DL reasoning at design time, Jess rule reasoning at runtime,

with input assertions produced by a Java program.

Results and Discussion

The test environment is based on a PC with a duo-core 2.4 GHz Intel CPU, 2GB

RAM running on Windows XP. After completing the design of the Credit Check ser-

vice contract in Protege, the Pellet reasoner is invoked to check the consistency of the
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ontology. It took 1.68 seconds to classify the taxonomy and 3.81 seconds to check the

consistency of the service contract model. Then through sContractTranslator, both

OWL-DL and SWRL rules are translated into Jess facts and rules. It took 1562 mil-

liseconds for running sContractTranslator to translate OWL facts to Jess facts, gen-

erating 1948 asserted triples. Jess took less than one second to reason the input Jess

facts and Jess rules, generating 2621 inferred triples in its working memory. As the

Jess’s Rete algorithm is linear to the number of rules and polynomial to the number

of objects [65], when the KB grows, we need to scale up the underlying environment

to cater for the load. Once the translation is done, the sContractManager is waiting

for the event collected by the sContractMonitor. Once evidenceMonitor picks up an

event, it validates if it is an evidence for a particular obligation.

There is no noticeable performance impact on both client and server, mainly due to

the decoupling of sContractManager and sContractMonitor. The sContractMonitor is

just a read-only plugin installed in a Web proxy; which is a widely adopted pattern in

today’s internet environment.

The limitation of translating OWL-DL to Jess facts is documented in [130]. In our

model, since we only use OWL-DL reasoner at design time to verify the consistency

of concepts in the service contract, in addition we apply DL-Safe restrictions in our

model; and we use the Jess rule engine for run time reasoning, hence our reasoning

is sound and complete in each reasoning stage. Theoretically, we acknowledge the

loss of information when combining the two reasoning paradigms with interfaces for

translating OWL-DL to Jess facts. However, the loss of information in our model is

about reasoning on anonymous individuals, and such anonymous individuals in rules

are disregarded due to our adoption of the DL-safe restriction.

Another interesting issue is about negation. OWL-DL is based on an open world

assumption and thus can not reason “negation as failure”. In our model, we work

around this problem by defining properties like noEvidenceSupportObligations. The

evidence monitor EvidenceMonitor is responsible for generating a Jess assertion on

this property if no evidence is found. Therefore, we can use the Jess rule engine to
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reason non-fulfilled obligations. This demonstrates the strengths of our hybrid reason-

ing approach.

4.4 Conclusion

In this chapter, we address the accountability gap in service computing by proposing

a formal service contract model and extending the Representational State Transfer

(REST) architecture to Accountable State Transfer (AST) architecture.

High accountability standards not only benefit service consumers as a whole, but

also can be a differentiator for service providers. As such, it is paramount to enable

accountability in SaaS and Cloud services. In contrast with existing approaches that

address accountability issues at a technical protocol level, we address them at an archi-

tectural level through a pro-accountability service contract formalism, which closely

mimics the contract concept in the commercial world. Furthermore, we apply our ser-

vice accountability model to solve the accountability issues in the REST architecture.

REST is increasingly becoming a key architectural style, thanks to the growing

popularity of the Web 2.0 technology. REST services also form a major part of the

services offered through SaaS or Cloud computing. Thus, building an accountability

mechanism into the REST architecture is crucial for the long-term viability of these

new business models.

Our contribution from a service contract perspective can be therefore summarised

as: firstly, we analyse the accountability management requirements for SaaS and Cloud

services and define a formal construct for a pro-accountability service contract model,

proposing unique concepts, such as service contract execution and action evidence,

that are not seen in other service contract models. We adopt the decidable OWL-DL,

coupling it with the enhanced action semantics and DL-Safe SWRL rules to represent

the service contract construct, namely OWL-SC. We also propose a novel approach

to map OWL-SC action semantics to a colored Petri-nets model, namely SC-CPN,

and thus enable visual modelling, validation and simulation of the action model in
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OWL-SC. We have used the Congo Book service as an example to demonstrate how

to use existing tools to build a service contract model, and discussed the strengths

and weaknesses of the current model, plus the recommended approach to address the

weaknesses.

From the accountable service-oriented architecture perspective, our contributions

can be summarised as: firstly, we outline the architectural principles and decisions

for enabling accountability in an e-Services environment. Secondly, guided by those

principles and decisions, we propose a novel AST architecture with an accountable

state transfer protocol to enable service accountability, yet retain the scalability of

the REST architecture. The new architecture seamlessly integrates service contract

semantics into the traditional syntactic-based REST services. Thirdly, we apply our

semantic service contract model to design a Credit Check domain specific service con-

tract with a hybrid reasoning mechanism that leverages strengths from formalisms like

DL, Rules and traditional programming language. The hybrid reasoning mechanism

provides capabilities like temporal reasoning and negation as failure, that are not found

in normal DL and SWRL. Moreover, it separates reasoning in the design-time stage

and the runtime stage, taking into account both the expressiveness and the computa-

tional complexity of the underlying logic formalisms. Lastly, we provide a prototype

implementation for a Credit Check service that demonstrates the practicality of AST

architecture, proving that the new AST architecture can be implemented with existing

products and technologies.

The new architecture allows service obligation disclosure, obligation tracking, and

action justification in a stateless service environment. With such capabilities provided

at the architectural level, effectively, service participants can be held accountable for

each representational state transfer during service consumption.

Finally, we observe that the future work entails applying the service contract model

to SOAP-based Web Services models and Enterprise Service Bus (ESB) solutions.



Chapter 5

Advanced Service Accountability – An

Algebraic Approach

Chapter 4 presents a service contract model based on OWL-DL and coloured Petri-

nets. However like some other service contract models (i.e., [125]) it can only rep-

resent an “ought-to-do” model, rather than representing the deontic semantics of an

“ought-to-be” model, which means it can not distinguish whether a fault scenario is

due to inaction or improper action. Moreover, the semantic approach lacks an effec-

tive way to describe a process. Although SC-CPN presents a Petri-net based process

view, its main use is in contract model validation, and it is not suitable for using as a

formalism for obligation process disclosure.

In this chapter, we present an alternative approach to building the advanced ser-

vice accountability capabilities. We first extend dynamic logic to Dynamic Logic for

Accountability (DLA) and use it as a basis for cloud service contract specification. In

addition, we argue that, from an accountability perspective a cloud service is a proac-

tive system that needs to be modelled differently from the traditional reactive systems.

We extend traditional structural operational semantics to cater for modelling of actors

as well as scenarios of inaction and exception in state transitions. This leads to the cre-

ation of a new form of a process algebra called Accountable Process Algebra (APA).

We also propose an Obligation Flow Diagram (OFD) as a simple method for con-

flict resolution and verification for the contract specification. The accountable process

model enables service obligation specification, validation, decomposition, machine-

125
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interpretation, monitoring and liability assignment, and ultimately facilitates account-

ability in cloud service consumption. Using the Amazon S3 service as a case study,

we show how to address those known accountability problems by using our process

model. Finally we discuss the applicability of our process model to cloud services in

general.

The remainder of this chapter is structured as follows. The next section provides

a comparison between our work and existing studies. This is followed in Section 5.2

by setting the theme for designing an accountable process model for cloud contract

specification and execution. Next in Section 5.3, we extend the dynamic logic to dy-

namic logic for accountability (DLA) so we can represent contract obligations. Then

in Section 5.4, by taking a proactive system view, we propose a novel approach to

modelling cloud services in Section 5.5. In Section 5.6, we show how to apply the

process model to the motivating example in Section 1.1.3 in Chapter 1 and thereafter

extend it to other cloud services. Finally, we summarise our contributions and discuss

future work in Section 5.7.

5.1 Preliminary

While Service Level Agreement (SLA) is an extensively researched topic and it can be

represented by existing approaches such as WSLA, WS-Agreement, SLAng [170], in

essence, the service level only covers non-functional requirements, missing the crucial

functional requirements for business. Thus, the existing approaches neither enable the

disclosure of service obligations, nor allow software agents to decide which party is

responsible for what action, and which party is liable for what result. This is evident

in today’s cloud market, where there are no formal policy-based or SLA languages

used in representing service contracts. Hence the consumer has no effective means to

detect the violation of service obligations, and the service provider can hardly be held

accountable. As such, currently the accountability of cloud services on the market is

a serious concern [105]. This may become a major obstacle for enterprise customers
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to take up those cloud services. Therefore it is critical to build an accountable process

model for cloud service contract specification and execution.

Such a model should provide:

1. A representation language that is declarative and machine interpretable so that

the obligation statements in a cloud service contract can be checked and inter-

preted automatically;

2. A collaboration process and diagram notation that clearly illustrate the interac-

tion behaviour between the service provider and the consumer, therefore facili-

tating reasoning about obligation fulfilment and liability assignment; and

3. A tool for enabling the validation of the consistency of the model.

With these objectives in mind, we propose an algebraic service contract model to

achieve advanced service accountability. Compared to the related works discussed

above, the distinguishing characteristics of our approach are highlighted as follows:

1. Our model supports SOW modeling, which is not yet seen in existing service

contract models;

2. Our model is based on a formal, hybrid logic system – Dynamic Logic for Ac-

countability;

3. The deontic semantics in our model is refined to suit accountability require-

ments. The obligatory operator does not qualify the action; rather it qualifies the

status after performing the action. Also the permission operator is omitted, since

it is not a real concern in accountability;

4. We extend structural operational semantics (SOS) and propose an Accountable

Process Algebra (APA) to model cloud services based on a proactive system

view rather than the traditional reactive system view;
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5. Our approach combines a formal model with visual tools like OFD and BPMN2.0

based graphical collaboration diagram notation to allow verification, conflict res-

olution, obligation decomposition and liability tracking; and

6. We treat a cloud service as a proactive system and propose a new form of a

process algebra – APA to model the service contract execution behaviour, ad-

dressing the crucial accountability concerns of the “5Ws” (Who has done what

action, what went wrong and who should be liable to whom).

5.2 Towards an Accountable Process Model for Cloud

Service

5.2.1 Defining Accountable Cloud Service

We first look at what accountability properties a service contract should have. A con-

tract consists of normative statements that can be placed into four categories given

below [50]:

1) The obligation statements, which are the actions that the actor must carry out;

2) The forbiddance statements, which are the actions that are prohibited;

3) The remedy statements, which are the remedies when obligation statements or

forbiddance statements are violated; and

4) The permission statements, which are the actions that are allowed to do but not

mandatory.

As illustrated in Fig 5.1, a service contract involves normative statements for the

service provider and the service consumer respectively. From service definition in

Definition 1, values are exchanged between the service provider and the service con-

sumer. The obligations in the service contract tend to create the value whereas the
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forbiddance statements normally protect values. The remedy statements compensate

the value and lastly the permission statements let the party enjoy the values. Out of

the four categories, obligation, forbiddance and remedy statements are accountability

concerns, because breaching those normative statements contributes to the violation of

the contract. Therefore, the service providers and consumers need to be accountable

for those normative statements in the contract. On the other hand, for the permission

statements, whether the actions have been carried out or not does not impact the per-

formance of the contract, thus the permission statements in the service contract are

indifferent to service accountability.

In the example outlined in Section 1.1.3 in Chapter 1, the service contract of the

traditional storage service comprises SOW and SLA. The obligated activities specified

in the SOW such as storage and retrieval of data objects are examples of obligation

statements in the service contract. The 99.9% availability requirement specified in

the SLA is also an example of an obligation statement. Obligation statements create

the values for service exchange. On the other hand, making sure the data are not

lost, damaged or leaked to other people are examples of the forbiddance statements

in the service contract. Forbiddance statements protect value in service execution.

If not meeting the 99.9% availability, the service provider needs to offer one month

service credit to the service consumer, which is a typical remedy statement, which

in turn compensates the lost values if a contract obligation is violated. A permission

statement example is that the service provider can choose either plain or compression

format for data delivery. Permission statements offer added benefits to the involved

party. Typically, one party’s obligation implies another party’s right or permission, as

stipulated in [50].

In contrast to a traditional service, a cloud service like Amazon’s S3 does not

provide a central place like SOW to outline its obligation statements, forbiddance

statements, remedies and permission statements. Users must walk through Amazon’s

Customer Agreements, SLA on their web site, plus dig through Amazon’s technical

references and API documents in order to comprehend what exactly the committed
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Figure 5.1: Service Contract Properties

offerings from the service provider are.

As per discussion in Section 2.3 in Chapter 2, most cloud services are not ac-

countable due to the absence of a formal contract that stipulates the SOW and other

obligations. We now define an accountable cloud service to rectify this problem.

Definition 14: (accountable cloud service): An accountable cloud service acs =

〈i, CP,CIid, sc〉 is a cloud service that is bound to a formal contract sc that defines

the statement of work (SOW) and the service level agreement (SLA). Also it provides

a formal collaboration process specification so that the violation of obligations can be

detected, the causes of faults can be determined and liability can be assigned to the

party at fault.

Compared to a traditional cloud service, an accountable cloud service has a formal

service contract sc = 〈P, sow, sla, R, T 〉. It has the following new properties:

- P is a pair of involved parties P = 〈sp, sc〉, where sp is a provider and sc is a

consumer;
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- sow is the statement of work,

sow = 〈Op, Fp, Oc, Fc〉

where Op is a set of provider obligations, Fp is a set of forbidden clauses for

the provider, Oc is a set of consumer obligations and Fc is a set of forbidden

clauses for the consumer. SOW specifies the service’s functional requirements.

It defines agreed deliverables and the roles and of the parties responsibilities in

those agreed activities;

- sla is the service level agreement, sla = 〈Op, Fp〉, where Op is a set of provider

obligations and Fp is a set of forbidden clauses for the provider. SLA specifies

the service’s non-functional requirements that the provider must satisfy.

- Rules: R is a Horn clause [40] of the form r ← r1, r2, . . . , rn where r is the con-

sequent and r1, . . . , rn is the antecedent. A rule defines a remedy if an obligation

is breached;

- Time Period: T = [start time, end time] is the contract’s effective period.

5.2.2 An Accountable Process Model for Cloud Contract Specifi-

cation and Execution

Fig. 1.2 in Chapter 1 describes an accountable process for cloud contract specification

and execution. The key stages marked on the figure from 1 to 6 are: obligation spec-

ification, obligation validation, obligation decomposition to collaboration processes,

monitoring of contract execution by each party, assigning liability; and lastly, mutual

verification and resolution.

An accountable process model for cloud contract specification and execution should

have the following characteristics:
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1) Allow modelling of each service participant’s high-level obligation unambigu-

ously;

2) Allow specification of penalties as a new obligation;

3) Support conflict resolution and consistency verification of the service obligation;

4) Support obligation decomposition into a collaboration process that specifies in-

teraction behaviours of the provider and consumer; and

5) Allow monitoring of contract execution, enabling detection of obligation viola-

tion and liability assignment;

The subsequent sections will discuss methods that facilitate up to the fifth stage.

The sixth stage on Fig. 1.2, mutual verification and resolution is concerned with dis-

pute resolution, which will be addressed in Chapter 6.

5.3 Dynamic Logic for Accountability (DLA)

Obligation is a kind of a normative statement that defines a desired state derived from

the current state. Classical logics like propositional or first-order logic (FOL) cannot

naturally be used to represent the normative semantics of obligations.

In [193], Wright proposes Standard Deontic Logic (SDL) to represent obligatory,

permissible and forbidden actions. The use of deontic logic to represent legal con-

tracts is discussed in [50]. However, traditionally deontic logic has been “plagued by”

numerous paradoxes, e.g., Ross’s Paradox and Free Choice Paradox [135]. In [136],

Meyer reduces deontic logic to dynamic logic [78] which is a weak modal logic that

strictly separates axioms for actions from assertions. He names the new logic system

as Propositional Deontic Logic(PDeL). It avoids most of the paradoxes encountered in

SDL. In [192], Wieringa and Meyer further extend PDeL from propositional dynamic

logic to Language of Dynamic Logic(L(SigDyn)) which supports FOL and process

algebra. Note that SigDyn stands for a dynamic logic signature (see definition 22 for
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the meaning of signature). In this chapter, we propose Dynamic Logic for Account-

ability (DLA) to suit the cloud service accountability requirements based on the core

concepts of L(SigDyn).

We first present the core definitions of L(SigDyn) below.

5.3.0.1 L(SigDyn) Syntax

We first introduce the set of assertion formulasAsn that can be built from the following

Backus-Naur Form (BNF) rule as defined in [192]:

φ ::= t1 = t2|P (t1, . . . , tn)|¬φ|φ ∧ ψ|φ ∨ ψ|φ→ ψ|φ↔ ψ|∀x(φ)|∃x(φ)

where t1...tn are first-order terms and P is a predicate symbol, ∧ and ∨ are the

conjunctive and disjunctive operators.

The dynamic logic language L(SigDyn) in [192] is defined by the BNF rule given

below:

Φ ::= φ|Φ1 ∨ Φ2|¬Φ|Φ1 ∧ Φ2|Φ1 → Φ2|Φ1 ↔ Φ2|[β]Φ

where β is a process term (See [192] for its definition) and the intuitive semantics

of [β]Φ is: “after execution of β, Φ holds necessarily”. In order to represent the

deontic constraints, the authors in [192] first introduce violation states V : a : α and

V : a : ¬α, with the intuitive meanings of “a illegally performed α” and “a illegally

failed to perform α”, respectively. Then they define the deontic modalities as below

(actor a is omitted by the authors but can be modeled in the actions as given above):

- P (α) = ¬[α]V : α (P (α) means “α is permitted”),

- O(α) = [¬α]V : α (O(α) means “α is obligatory”),

- F (α) = ¬P (α) (F (α) means “α is forbidden”).

5.3.0.2 DLA Syntax and Informal Semantics

We here reiterate the action concept and introduce the inaction concepts below:
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Definition 15: (action/inaction): An action α has the form of α ::= a : act, which

represents an actor a performing an atomic activity act; ¬α means not to perform

action α.

The obligatory function meaning in [136, 192] means that a party “ought-to-do” an

action. However, in the service contract context, an obligation generally means that the

outcome of an action “ought-to-be” in a certain state. For example, the retrieveObject

obligation of a storage service provider is to ensure that “the retrieved data object must

be the same as the stored data object”. So, service accountability not only obligates the

service participant to perform an action, but also stipulates that a certain outcome of the

action must be achieved. The obligation is deemed to be breached even if the action

has been conducted but failed to deliver the obligated outcome. This can be further

explained as follows: assuming a is obligated to perform act, then there are two breach

scenarios: the first one is that a did not perform act at all where he ought to; the second

one is that a did perform act, however, the action is not terminated successfully; or if

terminated, the service level is not met. We use the notation V : ¬α to denote the

first scenario and V : ∅α to denote the second one. Here ∅α is a special action (failed

action) which means that action α has been conducted but fails to achieve the required

outcome. So, the obligation violation condition is V : ¬α ∨ V : ∅α. Recall that in

our definition, an action includes an actor. Hence we define the obligatory modality in

DLA as follows:

Definition 16: (obligatory function):

O([α]φ) ::= [α]φ ∧ [¬α](V : ¬α) ∧ [∅α](V : ∅α),

where O([α]φ) ∈ Asn, α is an action, φ ∈ Asn and O([α]φ) means that there is

an obligation for an agent to perform action α, and the outcome of α must satisfy φ;

moreover, failing to perform action α (does not perform α or α does not terminate

successfully) will lead to violation states.
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Note that the obligation function in Definition 16 qualifies the [α]φ assertion (“ought-

to-be” approach) rather than the action as O(α) in [136, 192] (“ought-to-do” ap-

proach). The forbidden function in DLA is still defined as the same as in [192].

Definition 17: (forbidden function):

F (α) ::= [α]V : α,

where F (α) ∈ Asn, F (α) means that performing action α will lead to a violation

state.

The permissible function P () is not included in DLA as a permissible action is not

a concern for service accountability. This is because that the service party cannot be

held accountable for actions that are permissible, i.e., it is acceptable to either perform

or not perform the action. We further define the breach function as follows:

Definition 18: (breach function):

B(O([α]φ)) = V : ¬α ∨ V : ∅α, B(F (α)) = V : α,

where B(t) ∈ Asn, t ∈ Asn. B(O([α]φ)) means that obligation O([α]φ) is breached,

B(F (α)) means that forbiddance action F (α) is breached.

Now we formally define the DLA syntax as follows:

Definition 19: (DLA Syntax): Let φ be an assertion, φ ∈ Asn; α an action, α ∈ Act;

t1, t2 are accountability formulas, then t is defined as below:

t ::= O([α]φ)|F (α)|B(t)|t1 → t2|¬t1|t1 ∧ t2|t1 ∨ t2,

where

- t1 → t2 means that if t1 holds, it implies that t2 must be presented. It is used

when an obligation is violated, and a new obligation as a remedy must be pre-

sented. This can be used for penalty specification;
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- ¬t1 means that it is not the case that accountability term t1 must be presented.

5.3.0.3 DLA Formal Semantics

The central notion of the approach in [136, 192] is to use the modal operator associated

with the execution of an action to represent the deontic modalities. Our DLA inherits

this approach but changes the meaning of the obligatory function as well as removing

the permissible function. The semantics of action modalities are defined below:

Definition 20: (DLA model): A DLA model is a Kripke-model [109]M = (W,Γ,R),

where

• W is the set of all possible states (or worlds);

• Γ is a function which associates each state with the condition it satisfies;

• R is a collection of binary relations on states where for each action α there is

Rα ⊆ W × W in R. Rα(w,w′) relates state w to w′, that is, if action α is

performed in state w, it says that we may end up at state w′.

Definition 21: (satisfaction of a formula): Given a model M = (W,Γ,R),Rα ∈ R

and a world w ∈ W ,

(M,w) |= [α]φ iff ∀w′ ∈ W (if wRαw
′ then (M,w′) |= φ)

M satisfies φ(M |= φ) iff ∀w ∈ W, (M,w) |= φ and φ is valid (|= φ) iff for all DLA

models M , we have M |= φ.

Now we use a diagram (Fig 5.2) to illustrate the semantics of the obligatory modality.

Assume W = {s0, s1, s2, s3}, relation Rα gives: s0Rαs1, s0Rαs2, s0Rαs3; Γ as-

signs each state as: Γ(s0) = ϕ,Γ(s1) = V : ¬α,Γ(s2) = φ,Γ(s3) = V : ∅α. Note

that Rα is associated with the actions α, ¬α and ∅α. So, all the states s1, s2, s3 are

accessible after performing any of these actions. In any real scenario, only one of the

actions would take place and the reached state would be uniquely determined by the
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Figure 5.2: A Kripke Model Illustration

Table 5.1: DLA Rules

`φ
`[α]φ , (1)

`[α]φ
`O([α]φ)

, (2)

values of the violation state formulas. For instance, if action α is performed at state

s0, then V : ¬α ∨ V : ∅α would be false at s2.

Using retrieveObject as an example,

ϕ = Exist(oldobject),

φ = Return(object) ∧ Same(object, oldobject) ∧ SLA(true).

O([retrieveObject]φ) means at s0, by performing action retrieveObject, the world

state can reach s2 where φ holds; but by not performing retrieveObject, it will lead

to s1. If retrieveObject fails for whatever reason, it will end up at s3.

Based on the DLA semantics, we can derive the following rules:
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Intuitively, Rule 1 in Table 5.1 indicates that if φ holds, then the action status [α]φ

must hold. Rule 2 indicates that if action status [α]φ holds, then the obligation of the

action status O([α]φ) must hold.

5.3.0.4 DLA Theorems

Theorem 3:

O([α]φ) ≡ [α]φ ∧ [∅α](V : ∅α) ∧ F (¬α);

Proof: Based on definition 17:

F (α) ::= [α]V : α,∴ F (¬α) = [¬α]V : ¬α,

∴ O([α]φ) = [α]φ ∧ [¬α](V : ¬α) ∧ [∅α](V : ∅α)

= [α]φ ∧ [∅α](V : ∅α) ∧ F (¬α).

Theorem 4:

O([α](θ ∧ ϕ)) ≡ [α]θ ∧ [α]ϕ ∧ [∅α](V : ∅α) ∧ F (¬α);

Proof: As O([α]φ) ≡ [α]φ ∧ [∅α](V : ∅α) ∧ F (¬α),

∴ O([α](θ ∧ ϕ)) ≡ [α](θ ∧ ϕ) ∧ [∅α](V : ∅α) ∧ F (¬α);

∵ [α](θ ∧ ϕ) = [α]θ ∧ [α]ϕ (refer to theorem 3 in [78]),

∴ O([α](θ ∧ ϕ)) = [α]θ ∧ [α]ϕ ∧ [∅α](V : ∅α) ∧ F (¬α);

Theorem 5: given ` θ → ϕ then ` O([α](θ → ϕ));

Proof: ∵ if ` θ → ϕ then [α](θ → ϕ) (see table 1 rule 1), and if ` [α](θ → ϕ) then

O([α](ϕ→ ϕ)); (see table 1 rule 2)

∴ theorem 5 holds.

As we can see, in Theorem 3, an obligatory function can be substituted with a

combination of modal action logic functions and forbidden functions. In Theorem 4,

conjunctive conditions in an obligatory function can be further separated into a modal

action logic function on each individual condition. Whereas in Theorem 5, if the

implication relationship for two final states holds, then it implies that its obligation
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function also holds.

DLA is a reduced version of L(SigDyn) in [192] with some key semantic changes

to suit cloud service accountability requirements. L(SigDyn) is proved to be sound

and complete in [192] and hence DLA can also be proved to be sound and complete,

while taking into account the semantic changes. L(SigDyn) avoids most of the para-

doxes associated with the SDL, for example, the Ross Paradox of “ought to mail a

letter implies ought to mail a letter or burn it” [135]. DLA omits the permissible op-

erator in deontic semantics, so it totally avoids those paradoxes, making the language

more precise and consistent in describing the accountability terms in the cloud service

contract. Therefore, DLA is suitable for using in stage 1 of the accountable process

model in specifying the high-level obligations of the involved parties in a cloud service

contract.

5.4 Cloud Service as a Proactive System

The service contract specifies the “legal” behaviour of service execution. Service ex-

ecution is a run from an initial service contract status to a final contract status. On

the surface, service execution looks similar to a process run going from one state to

another, which typically can be modeled using automata theory, which was developed

in the middle of the twentieth century [14]. However, the automata model lacks the

capability to model the parallel behaviour of a process due to the absence of the notion

of interaction. Since a system may interact with another system during its transition

from the initial state to the final state, the process of distributed systems or parallel

systems is typically modelled using concurrency theory after the 60s, as evident in the

formalisms of Petri-nets, CCS, CSP, ACP and π-calculus [64]. In these modelling ap-

proaches, systems are treated as reactive systems rather than just state automata [14].

In the late 90s and early 2000s, service computing started to rise and service-oriented

architecture gradually emerged as a mainstream architecture. However, despite the

paradigm change, a service process is still largely modelled using the reactive system
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modelling approach.

When focusing on the service accountability aspect of a cloud service, we identify

that some behaviours of a cloud service do not strictly follow that of a reactive system.

A cloud service’s behaviours are driven by the involved actors. Actors in a cloud ser-

vice typically are the provider or the consumer, they can be human beings or computer

agents. Actors can have goals, intentions or subjective bias, hence they can choose to

act, or not act based on their beliefs and knowledge, rather than just purely respond-

ing to external events like a reactive system does. An established service contract

constrains the involved actors’ behaviours. Therefore, we argue that a cloud service

should be modelled as a “proactive” system rather than a reactive system. To be exact,

we cannot assume that a service action will always be carried out and a state transition

will always happen. In some cases, the actor may deliberately not perform the action.

In some cases, the actor may have performed the action, but due to abnormal events,

i.e., human error or uncontrolled execution environment, the execution result is not

delivered. In such cases, accountability issues may arise.

5.4.1 Modelling Concerns for Proactive Systems

A reactive system can be modeled using structural operational semantics [14], which

defines a labelled transition system (LTS) over a term algebra.

We first define the concepts of signature, term, LTS and TSS from a proactive

system view as below, referencing the relevant definitions in [64].

Definition 22: (Signature): A signature Σ consists of a finite set of function symbols

(or operators) f, g, ..., where each function symbol f has an arity ar(f), being its

number of arguments. A function symbol α, β, γ, ... of arity zero is called a constant.

We assume the presence of a countably infinite set of variables x, y, z, ..., disjoint from

the signature.

Definition 23: (Term): Let Σ be a signature. The set T (Σ) of (open) terms s, t, u, ...

over Σ is defined as the least set satisfying each variable is in T (Σ);
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• The variables are assumed to be members of T (Σ).

• If f ∈ Σ and t1, ..., tar(f) ∈ T (Σ), then f(t1, ..., tar(f)) ∈ T (Σ).

• A term is closed if it does not contain variables. The set of closed terms is denoted

by T ′(Σ).

Definition 24: (Labelled Transition System): Let S be a non-empty set of states and

L a finite, non-empty set of transition labels. More specifically, a transition label in

our definition is equivalent to an action (refer to definition 1), L = P ×A, where P is

a finite, non-empty set of actors and A is a finite, non-empty set of activities. A label

(action) α = p : a, where p ∈ P and a ∈ A, denoting p performs a. A transition is

a triple (s, α, s′) with α ∈ L, where s, s′ ∈ S. A LTS is a (possibly infinite) set of

transitions. A transition (s, α, s′) is usually denoted as s α−→ s′ ; it indicates that state s

can evolve into state s′ by the execution of action α. If at s, it can successfully execute

action α, we say predicate s α−→ √ holds true.

Definition 25: (Transition System Specification): A TSS is a set of transition rules.

A transition rule ρ is an expression of the form H
π

, with H a set of expressions t α−→ t′,

where t, t′ ∈ T (Σ), H is called the (positive) premises of ρ, and π is an expression

t
α−→ t′ with t, t′ ∈ T (Σ), which is called the conclusion of ρ.

In modelling a reactive system, one assumption is that a transition will always

terminate successfully, i.e., predicate s α−→ √ holds true. A negative transition rule

s
α9 creates confusions and attracts different interpretations [183]. Moreover, in a

reactive system, an actor is not a modelling concern. The system will automatically

respond to external events. Actors and abnormal events have been abstracted away

in the reactive system model. On the other hand, in a proactive system like a cloud

service, the assumption may not hold true. An action specified in a service contract

will end up in one of the three scenarios: terminate successfully; inaction (the actor

did not initiate the transition); or terminate abnormally due to some uncontrollable

events. In short, the main concerns of service accountability are: “who has done what,

what went wrong and who should be liable”. Therefore, to model a proactive system

like a cloud service in an accountability context, we need to take actors and abnormal
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events into consideration. A label in a proactive transition should include an actor, i.e.,

s
p:a−→ s′ where s, s′ ∈ T (Σ), a ∈ A, which is a finite non-empty set of activities. and

p is an actor. An inaction is represented as s
p:¬a−−→ s′, which means that the actor p

did not initiate the action. Note that in this case, although the action was not carried

out, the state of the contract execution actually transited to a new state s′. Finally, an

abnormal terminate transition can be represented as s
p:a9 or s

p:ε(a)−−−→ s′, where ε(a)

indicates that an exception is raised when actor p performs activity a.

5.5 Using Accountable Process Algebra to Model Cloud

Services

Process algebra is a mainstream tool used to model the behaviour of a reactive system.

It provides a formal approach to decompose a process into basic components, and then

imposes an equational logic on process terms, so that people can reason about such

systems using the algebra, i.e., equational reasoning to verify that a system satisfies a

certain property and conforms to the desired external behaviour.

We can also take the process algebra approach to model service accountability so

that accountability properties and accountable behaviour can be specified and verified.

To do that, we need to first extend the traditional process algebra to cater for modelling

a proactive system’s concerns.

Based on the structural operational semantics, we extend the traditional process

algebra to a new form of labelled transition system to address the accountability con-

cerns in cloud services. We call it Accountable Process Algebra (APA), assigning new

syntax and semantics based on the accountability requirements.

We first formally define the TSS for APA in an accountable cloud service context.

Definition 26: (TSS for accountable process algebra):

Let S be a non-empty set of a service contract execution states, A a finite, non-empty

set of activities, P a finite, non-empty set of actors. p : a is a closed term in T ′(Σ),
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Table 5.2: APA Transition Rules

x
p:a−→√

x•y
p:a−→y

, x
p:a−→x′

x•y
p:a−→x′•y

, x
p:¬a−−→x′

x•y
p:¬a−−→x′

, x
p:ε(a)−−−→x′

x•y
p:ε(a)−−−→x′

x
p:a−→√

x‖y
p:a−→y

, x
p:a−→x′

x‖y
p:a−→x′‖y

, x
p:¬a−−→x′

x‖y
p:¬a−−→x′‖y

, x
p:ε(a)−−−→x′

x‖y
p:ε(a)−−−→x′‖y

y
p:a−→√

x‖y
p:a−→x

, y
p:a−→y′

x‖y
p:a−→x‖y′

, y
p:¬a−−→y′

x‖y
p:¬a−−→x‖y′

, y
p:ε(a)−−−→y′

x‖y
p:ε(a)−−−→x‖y′

where p ∈ P and a ∈ A. The variables x, x′, y, and y′ in the transition rules range over

the terms T (Σ), which represent process terms and have operators • for sequential

composition, ¬ for inaction and ‖ for parallel composition, plus a function ε that takes

an activity as a parameter, indicating the action of raising an exception in the execu-

tion of that particular activity. Note that unlike traditional process algebra, the choice

operator + is not used here. This is because choice is indifferent to accountability. The

transition rules for APA are outlined in Table 5.2.

Note that in most process algebras such as CCS, ASP and ACP, the concepts of

a state, an action and a process term are sometimes used interchangeably, which may

cause confusion. In APA, we formally define their relationships through the definitions

below:

Definition 27: (collaboration process term): Let Σ1 be a collaboration process sig-

nature, T (Σ) a set of terms over Σ1, S a set of states, L a set of LTS labels, P a set of

actors, A a set of activities, α ∈ L, α = p : a, where p ∈ P, a ∈ A. A collaboration

term t is defined as below:

t := p : a|p : ¬a|α|t1 • t2|t1‖t2
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, where t1 and t2 are also a collaboration process term.

x, y, z, ... are variables in a collaboration process term, α, β, γ, δ are constants in a

collaboration process term.

Definition 28: (state and collaboration process term mapping): Let t, t1, t2 be terms

of a collaboration process, S a set of states, s, s′ ∈ S. A state s holds at a particular

step of the collaboration process, and swill be transited to s′ after the execution of pro-

cess term t, i.e., after the execution of t, state s′ holds. Thus a one-to-one relationship

can be established between the state and the execution of a process term.

Based on the above definition, a collaboration process term execution can be mapped

one-to-one to a state, therefore, a collaboration process term can be used to represent

a state transition as well, for example, x α−→ x′ represents that the state associated with

collaboration process term x can transit to the state associated with the step after the

execution of action α.

In Table 5.2, the first four transition rules are for sequential composition. x • y

means that the process x will perform an activity a, if x terminates successfully, then

y will be performed. Rule 2 indicates that if x is transited to x′, then x • y will transit

to x′ • y. Rule 3 specifies that if the actor did not perform activity a , from a service

contract perspective, the contract state has still been transitioned from x to x′, however,

y will never have a chance to execute. The same applied in rule 4 when an exception

arose while actor p performed activity a.

The next eight rules are for parallel composition. x‖y means that x or y can be

executed in parallel. In APA, unlike other process algebras, we do not consider the

communication between x and y, and we just assume x and y will each execute in-

dependently and merge at the end. The eight rules are intuitive, without the need for

further explanation.

For example, the transition rules in Table 5.2 provide the basic process term (α •

β)‖(γ • δ) with the process graph as depicted in Fig. 5.3.

Also the transition (α • β)‖(γ • δ) p:a−→ β‖(γ • δ) can be proved using the rules in

Table 5.2 as follows.
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Figure 5.3: Process Graph for (α • β)‖(γ • δ)

Table 5.3: APA Axioms

x • y • z = (x • y) • z

x • y • z = x • (y • z)

x‖y = y‖x

x‖y‖z = (x‖y)‖z = x‖(y‖z)

(α • β)
p:a−→ β based on: (

x
p:a−→√

x•y
p:a−→y

, x := α, y := β)

(α • β)‖(γ • δ) p:a−→ β‖(γ • δ) based on: ( x
p:a−→x′

x‖y
p:a−→x′‖y

, x := α • β, x′ := β, y := γ • δ)

Next we list the axioms of APA in Table 5.3.
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5.5.1 Obligation Specification Model Verification and Conflict Res-

olution

In traditional reactive systems, model checking is a widely used approach to verify

the consistency of a model. Model checkers utilise software agents to analyse the

state space of a model and confirm that certain properties hold or report that they are

violated. In the case of a proactive system, model checking is less attractive, as an

actor can act or not act based on its own discretion. Also as the DLA model is used

to specify the normative statements of a contract obligation, the main concern is not

the models that satisfy the statement, rather, it is whether there are conflicts amongst

those normative statements. As such, we now introduce the verification and conflict

resolution techniques for the obligations specified for the cloud contract.

We here first introduce the action dependency concept as in [160].

Definition 29: (action dependency): Action dependency is modelled by a relation-

ship D ⊆ Act×Act which is reflexive and symmetric. The inverse notion of indepen-

dency is I = Act× Act \ D;

Intuitively, for a sequential execution of α1 and α2 we have α1Dα2; for a parallel

execution of α1 and α2 we have α1Iα2; if an obligated action O is decomposed into a

series of actions, we can get a dependency chain:

α1Dα2D . . . αn−1Dαn.

Therefore, we can see that the fulfilment of the obligation O depends on the action

chain. This enables reasoning about which party is at fault in an obligation violation

situation. Action dependency chains are directly related to the transitions between the

states in the Kripke models.

An obligation specification model should be consistent and free of conflicts. In our

model, there are two situations where a conflict arises:

1) Obligation and forbiddance on the same action, i.e., action α is obligatory as



§5.5 Using Accountable Process Algebra to Model Cloud Services 147

Figure 5.4: Obligation Flow Diagram

well as forbidden; and

2) Action interdependency: i.e., action α1 depends on action α2; in the mean time,

action α2 also depends on action α1.

In order to uncover such conflicts, we design an Obligation Flow Diagram (OFD)

based on the concept of state transition sequences and action dependency chains as

illustrated in Fig 5.4.

In Fig 5.4, the obligations on the same horizontal level are independent obliga-

tions and they can be executed in parallel. The equivalent APA operator is the parallel
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composition operator ‖. Obligations on the vertical line indicate the dependency re-

lationship, meaning that the lower obligation depends on the completion of the upper

one. The equivalent APA operator is the sequential composition operator •. We can

use APA to represent the OFD in Fig 5.4 as follows:

(O1 •O2 •O3)‖F1‖(O4 •O5 •O6)‖(O7 •O8)

We use two steps to verify an obligation specification model. The first step is to

check the consistency of high-level obligations. This step involves the construction

of an obligation flow diagram and validates that no obligation/forbiddance conflict

exists; also there is no loop in the obligation dependency chain. The second step is to

decompose each obligation into an action dependency chain. Then we can determine

that there is no loop on the action dependency chain.

If there is a dependency chain from αi to αj , then αi is a successor of αj , and αj

is a predecessor of αi. We combine all the actions and/or events from every involved

party to form only one dependency chain.

We now illustrate the creation of an action dependency chain of a service contract,

which starts from the starting event εs in OFD until the ending event εe or the abnormal

terminal event εa. We here use the depth-first search algorithm to create the action

dependency chain based on the input of the OFD graph and the starting event. The

output is an array of the action dependency chain. The details of the construction of a

dependency chain are presented in Algorithm 1.

After the action dependency chains are formed, we need to check that there is no

contradiction in the model with the following two cases:

(1) The dependency chain is a directed graph without any loop.

(2) For any two actions in the dependency chain, they can co-exist, i.e., no action is

both obligated and forbidden in the same chain.

If these two conditions hold, we can claim that there is no contradiction in the

obligation specification model and trust that there is no contradiction in the service
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Algorithm 1: The Creation of Action Dependency Chains for a Service Contract
Data: OFD graph G and starting event εe
Result: Action Dependency Chain array D[]
begin

Create a stack s;
Create an array D[];
Create a vertex v;
n = 0;
s.pushεs;
while s is not empty do

v =s.pop();
D[n] = v;
if v is not marked as visited then

Mark v as visited;
for all edges from v to w in G.adjacentEdges(v) do

s.push(w);
D[n] = D[n]‖w;

end
n++;

end
end
Return D[];

end

contract. The details of contradiction checking in the service contract are illustrated in

Algorithm 2.

The Obligation Flow Diagram and algorithms 1 & 2 provide a simple way to re-

solve conflicts and verify the specified obligations. This corresponds to the second

stage of the accountable process model.

5.5.2 Service Collaboration Process Diagram

An obligation defined in a service contract is generally a high-level statement that stip-

ulates the obligated outcome, which is achieved through the collaboration between the

provider and the consumer during service execution. If an obligation is breached in

a contract, we need to identify the responsible party. In some cases when the obliga-

tion is breached, the party who is responsible for performing the obligation cannot be

blamed as he/she may have a dependency on another party’s activities. Therefore, the

obligation should be further decomposed into a series of atomic activities performed

by the provider or the consumer. This is stage 3 of the accountable process model.

Here we use a subset of BPMN2.0 [146] notations as listed in Fig 5.5.2 to illustrate

the collaboration process. The only changes that we made to BPMN2.0 is to change
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Algorithm 2: Contradiction Checking in service contract
Data: the dependency chain from the starting event εs to the ending event εe.
Result: there is a contradiction in service contract or not
begin

Create a stack s1;
Put the event εs into stack s1;
while s1 is not empty do

Pop the vertex V : v from the top of stack s1 with all predecessors having been visited, and mark it as
visited;

if there is a loop starting from v then
Return there is a contradiction in service contract

end
for each successor u of v do

if u has no unvisited predecessors then
Push u into s1;

end
end

end
Create stacks s2 and s3;
Put the event εs into stack s2;
Put the rest events in the dependency chain into stack s3;
while s2 is not empty do

Pop the vertex V : v on the top of stack s2, and mark it as visited;
for every event w in s3 do

if u and w cannot co-exist then
Return there is a contradiction.

end
end
for each successor u of v do

if u has no unvisited predecessors then
Push u into s2;
Pop u from s3;

end
end

end
Return there is no contradiction in service contract

end
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Figure 5.5: Collaboration Diagram Notation

the inclusive condition gateway from a flow object to a kind of connecting object to

represent the “if . . . then . . . else” branching scenario, and also introducing a new con-

necting object to represent the while condition loop, which is only treated as a marker

originally in BPMN2.0.

We now formalise the collaboration process using APA, adding conditional branch-

ing and looping operators.

Definition 30: (service collaboration process):

CP = p : a|p : P1 • p : P2|p : P1‖p : P2|p : a(x⇐)|p : a(x⇒)|

?(e)p : P1/p : P2|$(e)p : P |εs|εe|εa,

where

- p is a party who performs the activity. p : a means that p performs activity a;

- a is an atomic activity, represented by the atomic activity notation in Fig.5;

- Process P1 or P2 is composed by atomic activities, represented by the sub-

process notation;

- P1 • P2 is the sequential execution of process as P1 and P2, the sequence flow
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object in the BPMN2.0 notation represents the sequential execution.

- P1‖P2 represented by the BPMN2.0 parallel gateway means the parallel execu-

tion of P1 and P2; however, it does not require the synchronisation of P1 and P2

like the traditional process algebra does.

- The synchronisation behaviour can be defined using the “if ... then ... else”

conditional branching connecting object, which is represented by ?(e)P1/P2;

that is, if condition e holds, P1 is executed otherwise P2 is executed; the XOR

gateway can also be represented using ?(e)P1/P2 as well since the process is

branching at the gateway based on a certain condition;

- Similarly, for the while loop notation, represented by$(e)P , it means that while

condition e holds, P will continue to be executed;

- εs is the starting event, εe is the ending event and εa is the abnormal termination

event.

- The precedence of the operators is (), :, then ? /, $ , • and ‖.

Compared to CCS or other process algebras, firstly we do not use the choice oper-

ator + in APA. This is because that non-deterministic choice is not a desired behaviour

for accountability. An accountable collaboration should provide certainty with a clear

outcome. Any non-determinism in the process reflects an issue in the service design,

either some control is missing or the execution is not fully tested. The elimination of

the choice operator also avoids the Free Choice Paradox as described in [136]. Sec-

ondly, we introduce a conditional branching operator, a while loop operator and events

(εs, εe, εa), making it more suitable for representing collaboration processes. We also

do not use the left merge, right merge semantics of the parallel operator, as they are

indifferent as far as accountability is concerned.
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Algorithm 3: The Population of APA Representation of Contract Database
Data: the APA formula P
Result: the contract graph database g
begin

for each obligation or action in P do
Create graph database g; Create node n for the respective obligation or action;
if n is the first node then

Create relationship r from n0 to n;
end

end
for each operator op in P do

if op == “ • ” then
Create relationship r from op.leftaction to op.rightaction with property =“dependency” ;

end
if op == “‖” then

Identify the action a prior to op.leftaction that is not followed by another op; Create relationship r
from a to op.rightaction with property = “independency”;

end
end
Return g

end

5.5.3 Contract Execution Monitoring and Liability Assignment

The Obligation Flow Diagram (OFD) and the collaboration process decomposed from

each obligation can be used as a basis for monitoring contract execution. As high-

lighted in stage 5 of the accountable process model depicted in Fig 1.2 in Chapter 1,

either the service provider or the consumer can monitor the contract execution in their

own environment.

There are three steps in monitoring. The first step is to create a contract database

based on the input of the APA representation of OFD and the collaboration process of

each obligation. Algorithm 3 outlines how to turn an APA representation into a graph

database. The second step is to monitor the contract execution. This involves creating

an interaction trace database for the actions of both the provider and the consumer for

each obligation. The third step is to check if any obligation is breached. If so, it will

compare the trace records against the associated collaboration process created in the

contract database, and identify which party’s interaction behaviour is deviating from

the contract specifications, and thus assign the liability to that particular party.
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5.6 A Case Study

We use the motivating example in Section 1 of the Amazon S3 service to illustrate

the use of the accountable process model. From an accountability perspective, a cloud

service should bind to a contract that can be published to disclose the obligations

of the service participants, while in the mean time facilitate machine-interpretation,

monitoring of executions and reasoning about obligation violations. The S3 service

can be represented as a cloud service:

s3 = 〈s3 wsdl, CP, aws, sc〉,

where CP is the collection of collaboration processes, which will be described using

a collaboration diagram later; s3 wsdl is the S3 Web Services interface, see [3]; aws

stands for Amazon’s cloud infrastructure; sc is the service contract, which can be

represented as:

sc = 〈P, sow, sla, R, T 〉,

where P consists of the service participants, in this case, they are Amazon and the cus-

tomer; sow = 〈Op, Fp, Oc, Fc〉, where Op is a set of the provider’s obligations, Fp a set

of the provider’s forbiddance statements, Oc is a set of the consumer’s obligations, Fc

is a set of the customer’s forbiddance statements. We also have that, sla = 〈Op, Oc〉;

R is the set of rules to determine the remedy for SOW and SLA violations; and T is

the contract effective period.

5.6.1 S3 Contract Specification

Firstly, we need to identify the key collaboration processes in the S3 service. The

sign-up process is a prerequisite for using the S3 service. The customer needs to pro-

vide valid credit card information for the service payment. Once the service provider

accepts the customer’s sign-up application, it will have an obligation to create an ac-

count for the customer. After the account is created, the customer can login and start
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consuming the service. During the service consumption, the S3 service has four major

collaboration processes. They are createObject, retrieveObject, listBucket and dele-

teObject. The service provider also has a billing process that charges the customer’s

credit card based on the service usage. Thus:

CP = {signUp, createAccount, createObject, retrieveObject,

listBucket, deleteObject, billCust}.

Then we specify the sow based on DLA. Again, we only need to specify the high-

level, key obligations in the SOW. The meanings of the actions and predicate symbols

can be interpreted intuitively. The high-level obligations can be further refined for

automated reasoning purposes, but we omit the details of the process in this paper.

The obligations of the service provider Op are:

1) O([createAccount]V alid(account));

2) O([createBucket]Exist(bucket) ∧ (NameOf(bucket) == “mybucket”));

3) O([createObject]Contained(bucket, object) ∧ (Nameof(bucket) ==

“mybucket” ∧Nameof(object) == “myobject”));

4) O([listBucket]ReturnObjectNames(mybucket)

== ObjectNames(mybucket));

5) O([retrieveObject]ReturnObj(“myobject”) ==

OriginObject(“myobject”) ∧ SLA(true));

6) O([deleteObject]Nonexist(object));

7) F (shareObject).

The first obligation is that the service provider is obligated to create a unique ac-

count for the customer. The second obligation is to create a bucket at the customer’s

request. The third obligation is to create an object within the bucket; the fourth obliga-

tion is to be able to list the name of the objects in the bucket; the fifth obligation is to
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be able to retrieve the stored object, and the object content should be the same as the

original object. Finally, the provider is forbidden to share the data object with other

customers.

Similarly, the obligations of the service consumers Oc are:

1. Oc([signUp]V alid(credit card) ∧ Unique(account));

2. Oc([login]V alid(credential));

3. Oc([iputV alidOpt]OptionNameIn(“createBucket”,

“listBucket”, “createObject”, “retrieveObject”,

“deleteObject”)).

This means that the consumer’s obligations are to provide a valid credit card for

payment purpose, login with valid credentials and input the valid operations.

To illustrate the provider’s SLAs, we give an example of the availability obligation.

The term s3(c1) represents the action of Amazon S3 providing the contracted service.

The sla can be simply represented as:

1. O([s3]Availability(s3) ≥ 99.9%);

For the overall S3 service’s service-level, the service provider has an obligation to

maintain the availability SLA of 99.9%. If the availability SLA is not maintained, we

will end up with a violation state where V : ∅s3 will be true in which case the provider

may be liable by the contract for giving credit back to the customer.

The contract rule R can be represented as:

1. B(O([s3]Availability(s3) ≥ 99.9%))

→ O([giveCreditToCust](credit ==

Last Bill(s3) ∗ (100− Availability(s3))/100));

This rule means that if the SLA is breached, the service provider will have a new

obligation to pay service credit to the consumer who experienced the poor service-

level.
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Figure 5.6: S3 Service Obligation Flow Diagram

We here use the obligation flow diagram as discussed at Section 5.5.1 to illustrate

the S3 service contract as illustrated by Fig 5.6.

Fig. 5.6 illustrates the valid sequence for the interaction between the obligations of

the provider and the consumer.

The APA representation of Fig. 5.6 is:

Cofd = Oc[Signup] •Op[CreateAccount] •Oc[Login]

•Oc[InputV alidOpt] • ((Op[CreateBucket]

• ((Op[CreateObject] • (Op[RetrieveObject]
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‖Op[DeleteObject]‖Fp[ShareObject]))‖Op[ListBucket]))

‖(Op[Availability]•?(< 99.9%)Op[ProvideCredit]/εe))

5.6.2 S3 Contract Validation

Using Algorithm 1 in Section 5.5.1, we can derive six action dependency chains. Due

to the space limit, we only list one below:

c : Signup D p : CreateAccount D c : Login D

c : inputV alidOpt D p : CreateBucket D

p : CreateObject D p : RetrieveObject (5.1)

Cofd outlines the overall contract obligations and their flow sequence. Now we

can validate the model using Algorithm 2. The validation process checks through the

six dependency chains of Cofd above and makes sure no conflicts exist in the current

model.

5.6.3 S3 Obligation Decomposition

Each obligation needs to be decomposed to a collaboration process that involves atomic

actions from both the provider and the consumer respectively. For example, we use the

BPMN2.0 notation to decompose obligation createObject to the collaboration process

between the service provider and the consumer as illustrated by Fig. 5.7

Using the accountable process algebra (APA), we can formalise this collaboration

process as follows:

CP = εs • c : SignIn(user info⇒) • p : Login(user info⇐)

• (?(abnormal)εa/p : L Resp(status⇒)) • c : Status Chk(status⇐) •

(?(not found)εa/c : C CreateBucket(bucket name⇒)) •
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Figure 5.7: createObject Obligation Collaboration Process

p : P CreateBucket(bucket name⇐) •

(?(abnormal)εa/p : B Resp(bucket name(⇒)) •

c : C CreateObject(object⇒) • p : P CreateObject(object⇐) •

(?(abnormal)εa/p : O Resp(object⇒)) •

c : Rec Object(object⇐) • (?(overlimit)εa/?(success)εe)

From the decomposed process, we can also get the createObject obligation depen-

dency chain as:

c : Sign In D p : Login D p : L Resp D

c : Status Chk D c : C CreateBucket D

p : P CreateBucket D p : B Resp D

c : C CreateObject D p : P CreateObject

D p : O Resp D c : Rec Object

The collaboration diagram gives an intuitive illustration of each party’s activities.

Any abnormal event indicates the cause of a potential obligation breach for the cre-

ateObject process. Also the pool in which the abnormal event falls indicates which

party is at fault. For example, if the consumer creates an object with a size over the

limit, then the createObject activity of the service provider will fail. However, in this

case, the service provider does not violate her obligation; rather the failure is caused by
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the wrong input by the consumer. On the other hand, if the input is valid but createOb-

ject fails due to some internal error, then the service provider violates her obligation.

5.6.4 S3 Contract Execution Monitoring and Liability Assignment

After all the obligations are decomposed into collaboration processes, the contract

execution can be monitored by either the provider or the consumer. The first step

in monitoring is to populate the contract database as a reference point. Algorithm 3

in Section 5.5.3 can be used to store APA representation of OFD or collaboration

processes into a graph database. A graph database system like Neo4j1 enables easy

query of properties of nodes and relationships in a directed graph. The second step of

the monitoring is to watch the interactions from both the provider and the consumer,

recording the trace of actions into a graph database. The third step is to check if any

obligation is breached. If so, we can compare the reference collaboration process and

the trace records and identify deviations, and subsequently assign the liability to the

responsible party.

If an obligation is breached, the monitor can compare the action trace against the

APA process CP to locate the deviation. For example, if the obligation createObject

is breached, the monitor may find out that after the consumer sends the createObject

command, the action trace does not record a response from the provider, whereas the

reference processCP specifies the next action step should beOResp from the provider.

Thus the monitor can identify that the provider is at fault and therefore assign liability

to the provider.

5.6.5 Case Study Summary

We have demonstrated the accountable process model for cloud contract specification

and execution using Amazon S3 service as an example. We first identified the key

obligations in S3 service’s SOW and SLA, then used DLA to specify them. This ad-

1http://www.neo4j.com
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dresses Prob1 (missing SOW) and Prob2 (no obligation representation) as listed in

Section 1.1.3 in Chapter 1. Then we used an Obligation Flow Diagram to describe

the obligation sequence and generated the action dependency chain, ensuring the con-

sistency of the contract model. Next we used APA and the collaboration diagram to

visually decompose the obligations, enabling obligation decomposition and delega-

tion. The OFD and APA also provide a basis for contract execution monitoring. This

addresses Prob3 (no precise process defined for contract execution monitoring). Fi-

nally, we have outlined how to detect the liable party when an obligation is breached.

This addresses Prob4 (no violation detection and liability assignment mechanism).

By adopting this process model, S3 service’s obligations will be clearly specified and

validated, a violation can be easily detected and liability can be assigned without any

doubt.

As Prob1 – Prob4 are general accountability problems existing in other cloud

services, and Amazon S3 is a typical cloud service that exhibits the cloud service

characteristics as presented in Definition 2, our accountable process model can be

applied to general cloud services for enhancing accountability.

5.7 Conclusion

Since Service-Oriented Architecture (SOA) has emerged as a mainstream IT archi-

tecture together with cloud computing service (IaaS, PaaS, SaaS) gradually becom-

ing popular, more and more cloud services are being offered by a variety of service

providers. Service consumers require an effective way to evaluate the risk associated

with those cloud services and manage this accordingly in their business operations.

However, currently most cloud services on the market lack accountability. We argue

that the first step towards addressing this issue is to establish a cloud service account-

ability mechanism, which is the main objective of this paper. Our contributions can be

summarised as follows:

1. Our work addresses cloud service accountability by first proposing a cloud ser-
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vice model that encompasses SOW, the most crucial component of a service

contract. The cloud service model allows a clear service obligation specification

so that the service provider can disclose their service obligations in a machine-

interpretable way. This further enables service searching and matching based on

accountability requirements;

2. A refined version of dynamic logic – DLA – has been proposed as the underlying

formalism for the cloud service contract specification;

3. We present a proactive system view of a cloud service and extend structural

operational semantics to create a new form of a process algebra – APA – which

allows modelling of the service contract execution behaviour;

4. With regard to the characteristics of the proactive system, we propose an Obliga-

tion Flow Diagram (OFD) and Action Dependency Chain to allow easy conflict

resolution and consistency checking of the cloud contract model. Algorithms

have been presented for action dependency chain generation and consistency

checking;

5. A graphical notation based on a reduced version of BPMN2.0 has been pro-

posed so that obligations can be further decomposed into collaborative activities

between the service provider and the consumer;

6. A contract execution monitoring approach has been presented that enables obli-

gation fulfilment tracking and liability assignment.

Finally in Section 5.6, using Amazon’s S3 service as a case study, we have demon-

strated how to apply our model to address the four accountability problems (Prob1 –

Prob4) listed in Section 1.1.3 in Chapter 1. As Amazon’s S3 is a typical cloud service

that exhibits general cloud services’ characteristics, we can apply our model to general

cloud services.

To the best of our knowledge, this is the first study that advocates a proactive sys-

tem modelling approach for modelling a cloud service. Our approach is also the first
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that formally models SOW in a cloud service context. Furthermore, our approach is

the first that addresses cloud service accountability from both formal logic and intu-

itive diagram notation perspectives. This provides the foundation for further modelling

techniques that assess runtime contract negotiation and contact modification, which are

the subjects of future work.
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Chapter 6

Advanced Service Accountability – A

Decentralised Approach

The service contract is the first-class citizen in the service accountability domain. The

last two chapters address the crucial concern of service contract representation in a

service-oriented architecture. A machine readable service contract representation lays

down the critical stepping stone for advancing service accountability. Next, a robust

service contract management scheme is needed to automate the disclosure, contract-

ing, monitoring and dispute arbitration processes in an accountable service-oriented

environment.

In Chapter 4, an in-line TTP service contract monitoring solution is proposed,

extending REST, which is the mainstream SOA implementation architecture to an ac-

countable state transfer (AST) architecture. The solution is a centralised approach that

relies on a trusted-third party sitting in the middle of every transaction for monitor-

ing and arbitrating. In a service computing environment, especially on a vast scale

like the cloud environment, a centralised solution is prone to performance bottlenecks,

single-point of failure and other issues, such as the lack of transparency, objectivity

and fairness which, in themselves, create concerns in accountability.

In this chapter, we firstly propose a robust decentralised service contract man-

agement scheme based on the proven blockchain technology from the peer-to-peer

network environment. Secondly, on top of the scheme, we present a novel dispute

resolution protocol, based on the Byzantine Agreement and the commitment scheme.

165
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Thirdly, we identify the optimal settings of the key parameters of the protocol through

a set of experiments and scenario analysis, aiming to strike the balance of fairness,

accuracy, and incentive maximisation for the honest arbiters and cost minimization for

the overall arbitration process. With this approach, service participants can be held ac-

countable in a truly distributed environment without the presence of a central authority,

which provides strong accountability compared to a centralised solution.

The remainder of this chapter is structured as follows. Section 6.1 provides an in-

troduction on the motivation of our work, plus a brief overview of the blockchain tech-

nology. Next, Section 6.2 proposes a service contract management scheme (SCMS)

based on a peer-to-peer architecture. Section 6.3 presents a fair and accurate contract

dispute arbitration protocol based on SCMS. This is followed in Section 6.4 by exper-

iments, analysis and discussion of the experimental results. Finally, we summarise the

key contributions and discuss future work in Section 6.5.

6.1 Preliminary

In recent years, an increasing number of businesses have adopted cloud services due

to the agility and cost benefits that it offers. However, an important question is left

unanswered, which is if the business uses cloud services in a mission critical area, how

does the business ensure that the service provider will faithfully fulfill their service

obligations?

One may think that the first step to answer this question is to deploy some tools

to monitor the execution of the cloud service contract and check which party breaches

their obligations. Then the question becomes, which monitoring tool is to be used and

who should operate it? And if a dispute arises during the execution of the service con-

tract, how does the dispute get resolved? Obviously the service consumer cannot rely

on the service provider’s provision of the monitor (i.e., Amazon AWS’s CloudWatch)

and vice versa, because of the problem of conflict of interest.
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6.1.1 Problems Associated with a Centralised Solution

One straightforward solution is to use a trusted-third party (TTP) acting as a central

authority to monitor the execution of the service contract and arbitrate any disputes

that may arise. However, the immediate problem with the solution is how to ensure

the fairness and independence of the TTP. The second problem is the excessive cost in

operating a centralised authority in the Internet environment. Other problems include

poor scalability, poor performance and single-point of failure associated with a cen-

tralised model. These problems have been confirmed by Milojicic et al. [137], who

have concluded that the centralised or client/server models have disadvantages com-

pared to the peer-to-peer model, in terms of cost of ownership, scalability, aggregate

performance, aggregate fault resilience, transparency and anonymity.

6.1.2 Challenges in a Peer-to-Peer Solution

Although a peer-to-peer solution has architectural strengths over a centralised one in

the Internet environment, there are also a lot of technological challenges in providing

service contract management and dispute arbitration using the peer-to-peer model. In

particular, these challenges are listed as follows.

CH1: Without a centralised registry, how to enable service contract publication and

discovery?

CH2: In a peer-to-peer network where trust is scarce, how to establish a source of

truth for service contract specifications and contract execution logs?

CH3: When a dispute arises during contract execution, how to choose arbiters in or-

der to ensure fairness and avoid collusion? Can the dispute be arbitrated in an

environment where an authority is absent?

CH4: During the arbitration process, how to achieve a reasonable arbitration accuracy

while keeping the overall arbitration cost low in a peer-to-peer environment?
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CH5: How to make sure that the honest arbiters’ incentives are higher than malicious

arbiters’ incentives in order to maintain an objective arbitration process?

6.1.3 Our Approach to Address the Challenges

In this chapter, we present a peer-to-peer service contract management scheme, to-

gether with a dispute arbitration protocol. Our approach adapts the blockchain tech-

nology from Bitcoin [165] to a cloud environment, avoiding the problems inherent to

a centralised model and, at the same time, overcoming the aforementioned five chal-

lenges (CH1-CH5) in a peer-to-peer environment. With our approach, every service

participant maintains a local service registry and a service blockchain that is used as

a public service activity ledger, eliminating the information asymmetry that usually

exists in a service society. More importantly, through the “proof of work” (POW) min-

ing process [165], it guarantees that dishonest participants cannot tamper with the

blockchain, which is the consensus of the honest participants as underpinned by the

Byzantine Agreement [67]. Furthermore, by utilising the commitment scheme [147]

and the majority function, together with the POW mining, it provides a fair and accu-

rate arbitration protocol for a peer-to-peer environment.

6.1.4 Background on Decentralised Infrastructure

The most prominent example of a decentralised infrastructure on the Internet is the

Bitcoin system. In 2009, Nakamoto published the Bitcoin paper [165], in which a

peer-to-peer electronic cash system was proposed. A year later, Satoshi released the

implementation of the Bitcoin system. The cornerstone of the Bitcoin system is the

blockchain technology. The blockchain functions like a transaction ledger, together

with the “proof of work” (POW) mining process, Satoshi’s Bitcoin protocol sorts the

critical double-spending problem (essentially, spending the same coin more than once)

in crypto-currency without a central authority [59], with the assumption that a majority

of CPU power in the Bitcoin network is controlled by honest nodes that are not cooper-
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ating to attack the network. As such, the longest blockchain represents the consensus

of the transaction history. Without the presence of a centralised authority, the Bitcoin

network has been successfully operating for over five years, handling crypto-currency

issuing, circulation, payment, settlement and clearance that traditionally can only be

performed by a highly regulated central bank [106].

The Bitcoin system broadcasts transactions to all the nodes in the network. Each

node collects the new transactions into a block, then works on finding a difficult

“proof-of-work” for its block, which is called the “mining” process. The mining pro-

cess involves scanning for a value when it is hashed with SHA-256, and the result

begins with a number of zero bits. Since the average scanning work required is ex-

ponential in the number of zero bits required but can be verified by simply executing

a single hash, it is a perfect approach to present a “proof-of-work”. The number of

zero bits is used as a parameter to adjust the difficulty, i.e., the average time a block is

found, which normally is around ten minutes. When a node finds a proof-of-work, it

broadcasts the block to all the nodes. The other nodes accept the block only if all trans-

actions in it are valid and not already spent. Once accepted, each node links the block

with the previously accepted blocks by using the previous hash, thus forming a chain

of blocks, which is called the blockchain in the Bitcoin community. The blockchain

functions like a transaction ledger, together with the mining process, Satoshi’s Bit-

coin protocol sorts the critical double-spending problem in crypto-currency without

a central authority, with the assumption that a majority of CPU power in the Bitcoin

network is controlled by honest nodes that are not cooperating to attack the network.

As such, the longest blockchain represents the consensus of the transaction history.

Since the release of the Bitcoin system, it has been successfully operating for over

five years. The success of the Bitcoin system has triggered the flourish of Bitcoin-

like crypto-currencies, called “alt coins” in [66]; the most notable ones are Litecoin,

Dogecoin, Freicoin, Peercoin, NXT, just to name a few. In [8], the author categorises

three different types of Bitcoin-like systems.

The first type is to alter the parameters of the “proof-of-work” generation, such as
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hashing algorithms, average time for mining a block, coin supply limit. Examples are

LiteCoin, DogeCoin and Freicoin.

The second type is to alter the consensus forming approach, changing from “proof

of work”(POW) to “proof of stake”(POS), or using a combination of POW and POS.

Instead of requiring users to do a certain amount of power-intensive hashing “work”,

POS requires users to own a certain stake of the currency in order for them to mine new

coins and asks users to prove the ownership of a certain amount of currency to avoid

the heavy power consumption of Bitcoin mining, as well as mitigating the 51% attack

risks inherent from Satoshi’s original assumption. Examples are Peercoin, Blackcoin

and NXT.

The third type of Bitcoin like systems are called “alt chain” [8], in which the

crypto-currency is not the primary concern and the chain is altered for other purposes.

The most notable examples are Colored Coins, Namecoin, Ethereum, CoinSpark,

Counterparty and Mastercoin. Colored Coins uses the crypto-currency as a token to

represent a physical tradable asset. Thus, the Colored Coins system is not just a crypto-

currency system, but can also facilitate physical asset trading through the colouring

process – associating a coin with an asset through meta-data. Namecoin is an another

innovation that uses the blockchain technology as a naming registry, providing a DNS

like service for the root-level .bit domain, free from the control of the centralised In-

ternet naming authority – The Internet Corporation for Assigned Names and Numbers

(ICANN). Ethereum is an opensource project that aims at building a decentralised

application platform. On top of a Bitcoin like currency called ether, it provides a

Turing-complete programming platform based on the blockchain ledger. Ethereum’s

blockchain records contracts, which are coded in a byte-code like Turing-complete

language. The term contract in Ethereum refers to an autonomous software agent

that can send and receive ether payments, store data, and execute an infinite range

of computable actions (hence Turing-complete). Ethereum brings in a new program-

ming paradigm that enables distributed applications building on top of its blockchain

infrastructure.
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In [67], Garay et al. analysed Bitcoin’s protocol in detail and proved two properties

of the Bitcoin backbone protocol – “common prefix” and “chain quality”. Common

prefix means that the honest parties share the same blocks in their existing blockchain.

Chain quality refers to the percentage of blocks in the blockchain contributed by the

honest players. They show how the two properties can be used as a foundation for

designing Byzantine Agreement (BA) and robust transaction ledger protocols. BA

considers a set of n parties, connected by reliable and authenticated pair-wise commu-

nication links and with possible initial inputs, that wish to agree on a common output

in the presence of the malicious behaviour of some others [67]. In essence, Byzantine

Agreement is a protocol for honest players to get consensus in a peer-to-peer network

where adversaries are present. It is designed to address the Byzantine Generals Prob-

lem [111]. Garay et al. find that for both the properties to hold, the honest majority,

i.e., the adversary’s hashing power, should be strictly less than 50%.

Extending Bitcoin’s distributed consensus mechanism to areas outside of crypto-

currency is gathering momentum. We observe that the blockchain technology can be

used to address the accountability concerns in the execution of service contracts and

dispute resolution. Furthermore, there have been no existing works on the distributed

accountability infrastructure for service computing. Built upon Bitcoin’s blockchain

technology and the public ledger theory presented by Garay et al. in [67], our work

irons out the design of a basic architecture for a distributed accountability infrastruc-

ture, which enables monitoring of the execution of a service contract and arbitrating

disputes in a peer-to-peer fashion without the presence of a trusted-third party.

6.2 A Distributed Cloud Service Contract Management

Scheme (SCMS)

A service contract management scheme (SCMS) consists of a static component and

a dynamic component. The static component defines the basic constructs like service
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concept definitions, contract specifications, service registry and contract execution log.

The dynamic component describes the service contract management process, which

involves the publication of service offers, service discovery, contract negotiation, con-

tract establishment, contract execution tracking, monitoring and dispute resolution.

We leave the contract negotiation topic as future work.

In the static component, rather than using a centralised registry, our approach is to

keep a local service registry for each participant in order to enable the publication of

service offers and service discovery. In the dynamic component, the service provider

will broadcast the service offer in the network, and each participant will receive the

broadcast message and record the service offer in their local registry. Hence the service

consumer can do service discovery in their own registry. Together with our previous

work on the formal contract specifications in [203], this addresses the challenge CH1

in Section 6.1. To address CH2, we extend Bitcoin’s blockchain from a simple coin

transaction ledger to a versatile service interaction public ledger, recording the ac-

tivities from both the provider and the consumer during the execution of the service

contract.

In the dynamic component, through the “proof of work” mining process, consensus

can be established amongst the honest participants on the execution logs of the service

contract as long as the collective computation power of the honest nodes exceeds 50%

of that of the whole network. The dishonest participants cannot tamper with the honest

participants’ blockchains. Thus the source of truth for service contract execution can

be established even in a peer-to-peer environment where trust is scarce.

Next, we first define the key concepts in the static component of SCMS as a basis

for the discussion of the dynamic component.

6.2.1 Basic Concepts

Definition 31: (Service Offer) A service offer so is a service provider’s solicitation

to a service consumer for entering into a contract, where certain capabilities are guar-
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Figure 6.1: Service Network

anteed to be delivered to consumers if certain conditions are satisfied by the consumer.

A service offer specifies service obligations and the associated processes for delivering

the obligations.

Definition 32: (Service Contract Establishment) If a service offer is accepted by a

service consumer, then the service offer becomes a service contract.

Note that we assume the existence of a formal specification language for a service

offer/service contract. Our approach is oblivious to the underlying contract structure,

as long as the contract representation can be interpreted by a machine. An example

of such representation language of a service contract can be referred to [203], where a

service offer can be represented as an obligation flow diagram (OFD) or an Account-

able Process Algebra (APA) term (see Chapter 5 for details). An OFD is a directed

acyclic graph (DAG) with obligations as nodes and the sequential or the parallel flow

connectors as edges. A service offer is presented by so = 〈Pr,Odag〉, where Pr is the

service provider and Odag is an obligation flow diagram that defines the obligations of

both the service provider and the consumer.

Next we define a service network which is similar to the Bitcoin network, however,
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the prime focus of the network is to provide a distributed, accountable service contract

management environment.

Definition 33: (Service Network) A service network sw is a peer-to-peer network,

sw = 〈N,CN〉, where N is a set of nodes, and CN is a set of connections between

pairs of nodes representing communication channels. For each node n ∈ N , n can play

either one of, or a combination of four roles, being PROVIDER, CONSUMER, MINER

and ARBITER. The PROVIDER role provides a service that allows the CONSUMER

role to consume, whereas the MINER role mines the service coins while working on

building the service blockchain. The MINER can choose to play the ARBITER role if

a dispute request is raised in the network. A node can simultaneously play multiple

roles at the same time.

The service coin and the mining process are exactly the same as those in Bitcoin.

The service coins are used as incentives to get miners to find the “proof of work” and

build up the blockchain.

Fig. 6.1 illustrates an overview of the service network. As shown in Fig. 6.1,

each node has a local service registry database and a blockchain database. Each node
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broadcasts messages to their immediate neighbours.

Definition 34: (Transaction) A transaction tx in a service network is a record of the

events in the network. There are four type of transactions: Coin Transaction, Service

Transaction, Arbitration Request and Arbitration Decision. A transaction is generated

by the current actor by digitally signing a hash of the previous transaction and the next

actor’s public key.

tx = Sign((Hash(txp, pubknxt act), prikcur act)

where Sign is a signing function, Hash is a hashing function, txp is the previous

transaction, pubknxt act is the public key of the next actor, and prikcur act is the private

key of the current actor.

A Bitcoin network only has Coin Transaction, whereas the transactions in a ser-

vice network are more versatile. Fig. 6.2 shows the four transaction types used in the

service network.

The first transaction type Coin Transaction (CT) is exactly the same as the Bitcoin

transaction. The owner transfers money by using his private key to sign a hash of the

previous transaction and the public key of the new owner. The total amount in the Out

field must be less than or equal to the total amount of the In field.

The second transaction type is Service Transaction (ST). It has the contract refer-

ence number from the service registry, and the contract execution instance number. It

also records the current obligation/activity name pair and the next obligation/activity

name pair as prescribed in the service offer. The Input field is the output generated

in the last service transaction, whereas the Output field is the output generated in the

current activity. The Input field must be signed by the previous transaction’s actor,

whereas the Output field must be signed by the current actor.

The third transaction type is Arbitration Request (AR). Apart from having the con-

tract reference number and contract execution instance number, it also records the

obligation and activity name pair in dispute, and announces an arbitration fee.
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Algorithm 4: POW calculation
Data: Previous block hash pbh, transaction root hash rh, difficulty D and starting nonce non
Result: pow
begin

while pow > D do
pow = HashSHA−256(pbh, non, rh);
non++;

end
Return pow;

end

The fourth transaction type is Arbitration Decision (AD), which contains a deci-

sion that records the address of the liable party in the transaction. It has two subtypes,

one is ADh, which records the encrypted version, whereas the other one is ADc, which

records the clear text version. This is the commitment scheme used to avoid collabo-

ration amongst the arbiters.

Based on the “proof of work” (POW) concept from Bitcoin [165], here we define

it more precisely for our service network.

Definition 35: (Proof of Work (POW) mining) A POW pow mining involves scan-

ning for a value non, when hashed with an algorithm like SHA-256, the hash begins

with a number of zero bits. The number of zero bits can be used to adjust the compu-

tation difficulty. pow can be calculated by using Algorithm 4.

In Algorithm 4, transactions in a block are hashed in a Merkle Tree [133]. The

root hash rh is included in the block hash. The difficulty D represents the predefined

number that begins with a certain number of zero bits. The block hash only becomes

a POW once it is equal to or less than D.

Built upon the above definitions, a service public ledger is defined as follows.

Definition 36: (Service Public Ledger) A service public ledger is a chain of blocks

that contains service transactions. Each block is identified with a block hash bh, i.e.,

a POW. The block’s hash is a hash of the previous block’s hash pbh, a nonce non and

the transactions’ root hash rh. The blocks are chained to the genesis block [8], i.e., the

initial block, which contains the very first mined coins.

bh = HashSHA−256(pbh, non, rh)
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Figure 6.3: Contract Management Interactions

6.2.2 Service Contract Management Process

Now we discuss the dynamic component of the SCMS. The interaction sequence

amongst various roles is shown in Fig. 6.3 and the typical scenario in a service network

is described as follows.

a) A service provider broadcasts a service offer to the network. See the item tagged

with “1” in Fig. 6.1. All the nodes will accept the service offer and save it to a

local service registry;

b) A service consumer checks the capabilities of the service offer. If the consumer

is satisfied with the service, it will broadcast a service contract establishment

event to the network. See item tagged with “2” in Fig. 6.1. All the nodes will

accept the contract establishment event and save it to their local service reg-

istries;

c) The service provider and the consumer will start to execute the service contract.

He/she broadcasts the service transaction to the network after he/she completes
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an activity based on the service contract. See the items tagged with “3” and “4”

in Fig. 6.1. Each node will receive the transaction and save it to a temporary

storage;

d) In the background, there will be a lot of mining nodes engaged in mining service

coins with exactly the same mechanism as that of the Bitcoin mining. If a mining

node finds a block, he/she will put valid transactions from the temporary storage

into the block, using the Merkle Tree [165] approach to hash transactions. Then

it will broadcast the block to the network. See the item tagged with “0” in

Fig. 6.1. The miner also receives service coins for the mining and transaction

recording.

e) Each node will receive the block. It will first validate the block hash and then

update its local version of the block chain. If a fork [8] occurs, the same principle

as that of Bitcoin applies, that is, the longest chain will be taken as the consensus

and treated as the public ledger of the service network, which reflects the source

of truth for the execution log of the contract.

6.2.3 Theoretical Foundation of Public Ledger in Our Approach

While Bitcoin only uses blockchain as a coin transaction ledger to solve the double-

spending problem in crypto-currency, our approach uses the blockchain as a public

ledger for all interactions involved in a service contract execution. Our approach ef-

fectively needs to solve a distributed consensus problem, which is the main concern of

Byzantine Agreement (BA).

After formally analysing Bitcoin’s backbone protocol, Garay et al. [67] present a

“Public Transaction Ledgers and BA for honest majority” protocol (Public Ledger∏
PL), and show that the common prefix and chain quality ensure two properties

needed by the ledger, i.e., persistence and liveness. Persistence indicates that once a

transaction goes more than m blocks “deep” into the blockchain of one honest player,

then it will be included in every honest player’s blockchain with an overwhelming
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probability, and it will be assigned a permanent position in the ledger. liveness states

that all transactions originating from honest players will eventually end up at a depth

of more thanm blocks in an honest player’s blockchain, and the adversary cannot alter

those transactions in the honest player’s blockchain. For both the properties to hold an

honest majority is required, i.e., the hashing power of the adversary is strictly less than

50%.

Therefore, the validity of our approach is backed by the (Public Ledger
∏

PL)

protocol. The same principle can also be applied to arbitration in a peer-to-peer envi-

ronment, as a consensus decision amongst arbiters formed by honest majority is a fair

and accurate arbitration decision in most cases.

6.3 A Peer-to-Peer Dispute Arbitration Protocol (PP-

DAP)

Based on the SCMS, we further extend the dynamic model to include a dispute arbi-

tration protocol. We first outline the objectives of the arbitration protocol as follows.

6.3.1 Objectives of the Arbitration Protocol

- Fairness: It should be impartial throughout the arbitration process, from the

procedure of selection of arbiters to the decision making process.

- High Accuracy: It should ensure the final decision closely reflects the actual

fact.

- Sustainability: It should exhibit the viability and durability of the arbitration

system. It is the trade-off of enough incentives for honest arbiters to keep the

system running while keeping the overall cost low.

With these objectives in mind, we design the dispute arbitration process in the

following subsection.
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6.3.2 Dispute Arbitration Process

Fig. 6.3 not only illustrates the typical interaction scenario in a service network as de-

scribed in Subsection 6.2.2, it also shows the interaction sequence if a dispute is raised

by either the service provider or the consumer. The arbitration process is described as

follows.

1. During the execution of a service contract, if any party, for example, the service

consumer, believes that the service provider violates an obligation, he/she can

choose to broadcast a dispute message, with a fee attached for arbitration. See

item tagged with “5” in Fig. 6.1.

2. The mining node which mined the POW block can also choose to perform the

arbitration itself. The arbitration process involves checking the service trans-

actions recorded in the blockchain against the service contract in the service

registry, and determining which party is at fault.

3. After the arbiter makes the decision, a commitment scheme [147] will be used to

ensure no collaboration amongst the arbiters during the arbitration, i.e., the ini-

tial arbitration result will be encrypted (hiding) using the miner’s public key so

no one can see the decision, which will be included in the block as a transaction

and be broadcast to the network. See the item tagged with “6” in Fig. 6.1.

4. The arbiter will later broadcast the clear text signed decision after a certain num-

ber of blocks (m) have been added to the blockchain. Each node can then verify

that the hidden decision is the same as the clear text decision. This is the binding

phase in a commitment scheme. Section 6.4 discusses the proper setting of m,

i.e., the number of blocks.

5. A majority function is applied to determine which party is liable for the dispute.

The liable party should pay the arbitration fee to the arbiters whose decisions are

aligned to the majority decisions through the service coin transaction. Failure to
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pay the arbitration fee will be noticed by all the nodes and may be recorded in

the blacklist in each node’s service registry. The setting of the arbitration fee is

discussed in Section 6.4.

Algorithm 5 implements the arbitration process.

A Peer-to-Peer arbitration protocol needs to overcome the challenges CH3-CH4,

as listed in Section 6.1. In our protocol, we first take advantage of the randomness of

the POW mining process, selecting arbiters from the successful miners who volunteer

to be the arbiters. This meets CH3, as the selection of arbiters cannot be manipulated

by either side of the dispute parties, yet the process needs no presence of an authority.

We also use the commitment scheme to eliminate possible collusions amongst arbiters

during the arbitration process. Achieving the high accuracy objective, i.e., meeting

the challenge CH4 is the most difficult one in any arbitration process. We address it

by leveraging the blockchain and the underlying Byzantine Agreement as a vehicle to

build consensus amongst honest parties while keeping the overall cost low to the sys-

tem, coupled with a majority function to achieve a reasonable level of accuracy in the

final judgement. Furthermore, we need to work out the proper parameter settings for

the protocol to address CH5 and make sure the sustainability objective of the protocol

is met. This is the main focus of Section 6.4.

6.3.3 Parameters of the Arbitration Protocol

Three main issues are left to be addressed in the arbitration protocol. One is to de-

termine the percentage of honest nodes’ collective computation power over the total

power required in order to maintain a functioning service network and a reasonable

arbitration accuracy. The second one is to determine the proper number m, i.e., how

“deep” in the blockchain that the block exhibits both “persistence” and “liveness” with

an overwhelming probability [67]. This number influences fairness, accuracy and sus-

tainability. Obviously, whenm is larger, the final judgement is fairer and more accurate

as it would have less chance for malicious miners or arbiters to fabricate their version
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Algorithm 5: Boolean getArbitrationDecision()
Data: Block number m, Obligation Activity Pair OA, Contract ID Cid and Contract Execution ID CEid

Result: Boolean providerLiable
begin

Create array Arb[], Decision[], Msg[];
Provider Liable = false;
i = 0, int proProvider = 0, int proConsumer = 0;
if (Mod(m, 2) == 0) /* m needs to be an odd number */;
m++ ;
for i from 1 to m do

/* return miners who mined a POW and willing to do arbitration */;
Arb[i] = getV oluntaryArbiter();
/* call each arbiter to get decision based on contract spec and execution logs */
Decision[i] = makeArbDecision(Arb[i], OA,Cid, CEid);
/*each arbiter commits (hides) the decision first*/;
Msg[i] = arbEncrypt(Decision[i], pubkArb[i]);
Broadcast(Msg[i]);

end
for i from 1 to m do

/* each arbiter reveals decisions after all decisions committed */;
ArbBroadcast(Arb[i], Decision[i]);

end
/* majority function, determine the final decision */;
for i from 1 to m do

/* Binding the commitment and the reveal decision */ ;
if (Binding(Msg[i], Decision[i], pubkArb[i]) )
if ( Decision[i] == PROV IDER LIABLE ) proConsumer++;
else proProvider++;

end
if ( proConsumer == proProvider ) /* if the result is drawn due to binding failure, call the function one

more time to get the decision */;
Return (getArbitrationDecision(1, OA,Cid, CEid);
else if (proConsumer > proProvider) Return true;
else Return false;

end
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of decisions and the majority function would be more accurate as well. On the other

hand, when m is larger, the overall arbitration cost would be higher, and the incentive

for each honest arbiter will be lower. Therefore, a proper setting of m is a trade off

amongst the three objectives. The third issue is to determine an ideal arbitration fee

B, trading-off between the objectives of enough incentive to motivate honest arbiters

and keeping the overall arbitration cost low.

We assume that given the opportunity to do arbitration, for an honest person who

strictly follows the contract specification and checks the contract execution records to

make judgment, the probability of making a correct judgement is p; the cost of going

through the arbitration process is C, the probability of a correct judgement becoming

a majority decision is p′, the judgement fee received is B, and the probability of the

provider being correct is q. Obviously, C can be treated as a constant.

In order to work out m and B, we need to first examine the different categories of

arbiters’ strategies adopted during arbitration and their respective expected incentives.

There are five categories of arbiters: honest ones; rebels (i.e., people who always give

the opposite judgement); free riders (i.e., people who randomly give judgement); pro-

providers (i.e., people who are bribed by the provider); and pro-consumer (i.e., people

who are bribed by the consumer). We here list these categories’ strategies and work

out their respective incentives as follows:

a) Expected incentives for an honest arbiter Ih:

Ih = p′(p(B − C)− (1− p)C) + (1− p′)((1− p)(B − C)

−pC) = 2p′pB +B − C − pB − p′B

where B = TotalDisputeFee/[(m/2 + 1)], m is the number of blocks, which

is the same as the number of arbiters.

The expected incentives consist of two parts: one is when the majority function

accurately reflects the fact (with probability p′), adding both incomes when the
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honest arbiter makes the right decision (with probability p), or otherwise (1-p);

the other part is when the majority function is wrong (1-p′), also adding both

incomes when the honest arbiter makes the right decision (with probability p),

or otherwise (1-p);

b) Expected incentives for malicious people category one (rebels) Ir:

Ir = p′((1− p)(B − C) + p(−C)) + (1− p′)(p(B − C)+

(1− p)(−C)) = p′B + pB − C − 2p′pB

The rebels are always acting opposite to the honest arbiters. So, the incentive

calculation can be adjusted accordingly.

c) Expected incentives of malicious people category two (free rider) If :

If = 50% ∗B

Free rider will always have a 50% chance to get the arbitration income.

d) Expected incentives of malicious people category three (pro-provider) Ip:

Ip = p′qB + (1− p′)(1− q)B = 2p′qB +BCqB − p′B

Similar to item a, we calculate the pro-provider’s expected income in two cases,

i.e., when the majority function is right and wrong; and for each case, apply the

probability (q), which is that the provider is actually right and the consumer is

in fault.

e) Expected incentives of malicious people category four (pro-consumer) Ic:

Ic = p′(1− q) ∗B + (1− p′)qB = p′B + qB − 2p′qB
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When the provider is right, then the consumer is wrong in a dispute situation.

Therefore, we just reverse the calculation to get the expected incentives for the

pro-consumer arbiters.

Note that we need to make sure that the honest arbiters’ incentive is always greater

than that of other categories. So the following constraint should be applied:

Ih > Ir, Ih > If , Ih > Ip, Ih > Ic

As we can see, there are many variables involved. Although intuitively we know

that some variables are positively correlated (for example, p′ and m, i.e., when m

becomes bigger, so does p′), there is no direct solution for establishing a precise and

definite mathematical relationship for them. We therefore run simulations and analyse

the dynamics of those variables and their impact on the objectives of the arbitration

protocol in order to obtain the optimal settings of those variables.

6.4 Experiments and Analysis

We now conduct three experiments in this section. The first one is to analyse the

malicious miners’ probability of catching up an m block ahead blockchain, i.e., the

probability for them to tamper with the service public ledger. The second one is to

analyse the arbitration accuracy (p′) in relation to the number of blocks (m) and the

percentage of computation power possessed by the honest arbiters versus that of var-

ious category of malicious arbiters. The third one is to analyse the average expected

income for different categories of arbiter and the ideal benefit/cost ratio setting for the

arbitration protocol.

6.4.1 Experiment 1: Malicious Miners Catching-up Probability

The first consideration of choosing a proper value of m must satisfy the fundamen-

tal requirements of a functioning service network, i.e., after m blocks, the probabil-
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Figure 6.4: Experiment 1 - Malicious Miners Catchup Probability

ity of malicious miners catching-up and substituting their version of m blocks in the

blockchain will be negligible. According to [165], the race between the honest chain

and the malicious chain can be characterized as a Binomial Random Walk. Therefore,

we can design an experiment, based on the probability of an honest miner mining a

block and that of a malicious miner, to work out the probability of a malicious miner

catching-up under different values ofm. This experiment is repeated 10,000 times and

the average results are shown in Fig. 6.4.

The results show that if m > 6, and the honest people’s hashing power is higher

than 50%, the chance of malicious people catching-up an m block blockchain is negli-

gible. This experiment confirms the general practices in the Bitcoin network that only

confirm a transaction after it is in six blocks deep of the blockchain, also the 50% hon-

est hashing power threshold required by the Bitcoin backbone protocol as well as that

of the Public Ledger
∏

PL in [67].

6.4.2 Experiment 2 – scenarios analysis of different categories’

strategies and the impact on arbitration accuracy

Based on the result of Experiment 1, we set m > 6, and honest people’s hashing

power greater than 50%. Now we investigate the relationships between the accuracy
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of the majority judgement function p′, m and the honest/malicious hashing power

ratio Rhm. Out of all the variables, the probability (p) of an honest arbiter making the

objective decision and the probability (q) of a provider behaving rightfully according

to the contract remain relatively stable, and they can be learned from training using

the historical data set. Intuitively, p should be high (i.e., close to 1) given a precisely

defined contract specification and the execution logs. Also q should be higher than

50% to sustain a well-behaved service network. In order to simplify the discussion,

we focus on m, p′ and B/C ratio in our paper, and without loss of generality, we set p

= 0.9 and q = 0.6 respectively.

The honest/malicious hashing power ratioRhm can be further simplified to five sce-

narios: the first one is the honest/rebellion ratio Rhr; the second one is the honest/free

rider ratio Rhf ; the third one is the honest/pro-provider ratio Rhp; the fourth one is the

honest/pro-consumer ratio Rhc; and the last one is the honest/even distribution of the

above four various malicious groups Rhem.

Scenario 1: Relationships amongst p′, m and Rhr
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Figure 6.5: Experiment 2 Scenario 1 Honest/Rebellions Proportion

We design an experiment, with the assumption that there is a pre-known fact in

terms of which party is liable in every run. Then, through a random walk based on a

different range of probability values, we come up with a three dimensional diagram to
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illustrate the relationships amongst p′, m andRhr. For each combination of these three

values, the experiment is repeated 10000 times and the average results are shown in

Fig. 6.5. The results from Fig. 6.5 show that the accuracy is growing with the growing

number of blocks and the honest percentage. When Rhr ≥ 81%, m ≥ 7, the majority

function accuracy p′ > 90%. This means that, with 81% hashing power from honest

arbiters (the rest are rebels hashing power), the arbitration accuracy can achieve 90%

at seven blocks.

Scenario 2: Relationships amongst p′, m and Rhf

Similar to Scenario 1, we run through the simulation and plot Fig. 6.6. The results

from Fig. 6.6 show that if the block number is seven, honest arbiters’ hashing power

is above 49% overall (the rest are the free riders’ hashing power), then the majority

function’s accuracy can reach 90%.
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Figure 6.6: Experiment 2 Scenario 2 Honest/Free Riders Proportion

Scenario 3: Relationships amongst p′, m, Rhp

Similar to Scenario 1, we run through the simulation and plot Fig. 6.7. The only

difference is that all the arbiters are either honest arbiters or pro-providers. In Fig. 6.7

we can see that if the block number is seven, and the honest arbiters’ hashing power is

above 35% overall (the rest are the pro-providers’ hashing power), then the majority

function’s accuracy of arbitration is above 90%.
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Figure 6.7: Experiment 2 Scenario 3 Honest/Pro-providers Proportion

Scenario 4: Relationships amongst p′, m, Rhc

Similar to Scenario 1, we run through the simulation and plot Fig. 6.8, when all

the dishonest arbiters are pro-customers.

0.1

0.2

25

0.3

0.4

20

0.5

100

0.6

A
cc

ur
ac

y 
(P

')

15

0.7

80

Block Numbers (m)

0.8

60

0.9

Honest Percentage (R
hc

)

10

1

40
5 20

0 0

Figure 6.8: Experiment 2 Scenario 4 Honest/Pro-consumers Proportion

In Fig. 6.8, we can see that if the block number is 7, and the honest arbiters’ hashing

power is above 61% overall (the rest are the pro-consumers’ hashing power), then the

majority function’s accuracy is above 90%.

Scenario 5: Relationships amongst p′, m and Rhc.
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Figure 6.9: Experiment 2 Scenario 5 Honest/Even Distribution of Rest

Similar to Scenario 1, we run through the simulation and plot Fig. 6.9. However in

this case, the dishonest arbiters consist of all the above four types, which are equally

distributed.

In Fig. 6.9, we can see that if the block number is seven, and the honest arbiters’

hashing power is above 68% overall (the rest are evenly distributed ), then the majority

function’s accuracy is above 90%.

In comparison of the above five experiments shown in Figs. 6.5- 6.9, it can be

concluded that with the use of seven blocks at arbitration, at least 81% of the honest

arbiters are needed to guarantee 90% accuracy of the arbitration in the worst case.

However, this case rarely happens, as the rebellious arbiters would not always take the

lowest benefit expectation. In the normal case, only 68% of the honest arbiters are

needed to guarantee a 90% accuracy.

6.4.3 Experiment 3

Scenario 1: Average Arbitration Benefit for Different Categories of Arbiters.

We calculate the average individual benefit of each type of arbiter when there are

81% honest arbiters and the dishonest arbiters consist of different types, as in scenario

5 of experiment 2. We set p = 0.9, Rhc = 0.81, q = 0.6.
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Figure 6.10: Experiment 3 Scenario 1 Average Incentive for Different Categories of Arbiters

The results from Fig. 6.10 show that, under the given parameter settings, we can

ensure that the honest arbiters’ incentive is greater than those of all other groups of

arbiters.

Scenario 2: Average Incentive vs Cost/Benefit Ratio.

We now study the relationship between the average incentive and the cost/benefit

ratio. Fig. 6.11 demonstrates the relationship of the average individual incentive and

the cost/benefit ratio with 81% honest arbiters and 90% arbitration accuracy.

The results from Fig. 6.11 show that when the benefit of one single arbitration

goes higher, the individual benefit of honest arbiters grows and gradually beats all the

other types of arbiters, as the arbitration cost is constant. In the case with 81% honest

arbiters achieving 90% arbitration accuracy, when the single arbitration benefit reaches

eight times the arbitration cost, the individual benefit of honest arbiters is the highest.

Overall, the results of the three experiments indicate that when m=7, B/C = 8

and the honest arbiters’ computation power is over 81% in the worst case or over 68%

in the normal case, our arbitration protocol can achieve a better balance of fairness,

accuracy and sustainability objectives.
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Figure 6.11: Experiment 3 Scenario 2 Average Incentive for Cost/Benefit Ratio

6.5 Summary and Further Work

As service computing is becoming mainstream, businesses gradually shift their em-

phasis from the functional aspect of service to the accountability aspect of service.

Both the service providers and the consumers require an effective way to manage the

risks associated with the execution of a service contract. However, viable solutions are

currently lacking in the literature and the traditional centralised or client/server based

solutions do not fit in the distributed Internet environment. In this paper, we have pro-

posed a new peer-to-peer service contract management scheme (SCMS), and based on

this, we designed a novel dispute arbitration protocol to address this problem.

The advantages of our approach can be emphasized as follows:

1. Our approach eliminates the need for a central authority and avoids its cost and

other disadvantages.

2. Our distributed service registry and service blockchain concepts promote trans-

parency and eliminate the information asymmetry in the service society.

3. We provide a service contract management scheme that tracks the execution of a

service contract with tamper resistance quality, enabling monitoring of contract

execution in a peer-to-peer fashion.
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4. We present a distributed dispute arbitration protocol that exhibits fairness, im-

partiality and enough accuracy, even in an environment where malicious arbiters

may exist;

5. We present the optimal parameter settings, striking the balance of fairness, accu-

racy and sustainability through thoughtful design of experiments/scenarios anal-

ysis.

In summary, our approach meets the five challenges (CH1 – CH5) listed in Sec-

tion 6.1. To the best of our knowledge, our approach is the first that provides a dis-

tributed service accountability infrastructure based on the blockchain technology. It

is also the first that addresses the publication of cloud service contract specification,

the tracking and monitoring of the execution of a service contract, and the arbitra-

tion of contract dispute in a peer-to-peer fashion. This provides the foundation for

further enhancements in terms of contract negotiation, arbitration decision appeal and

enforcement, which are the subjects of future work.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Service-Oriented Architecture (SOA) is a new paradigm that turns a technology-focused

software function to a business-specific representation of function that includes a no-

tion of “contract” [23]. The notion of contract implies the accountability requirements

for the service provider. Additionally, under SOA, a Web service becomes a com-

modity that can be bought, sold, and delivered in a similar manner to any other kind

of service such as electricity or telecommunications [2]. The implication is that ac-

countability will become a key consideration for the consumer when selecting a de-

sired service. Also the boundary of IT and business is increasingly blurring, where

business services are increasingly delivered through the IT service platform and, in

the meantime, ever more IT services become important business services. Hence, it

is imperative to establish a service accountability mechanism in the service-oriented

architecture.

In this thesis, we have investigated the accountability literature in both the business

and IT domains. A key finding of the investigation is that researchers in the IT com-

munity share a quite different view on the accountability concept than their counter-

parts in the business community. While in business accountability means transparency,

responsibility, responsiveness and willingness to assume liability, the accountability

concept usually gets mixed with QoS concepts or technical concerns, such as security,

provenance and auditability, in IT. The gap in the conceptual understanding between

195
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IT and business also leads to a gap between the business’s expectation and the actual

accountability capabilities in IT services. Both gaps present a worrying sign for the

development of service computing.

Since nowadays cloud services have a much bigger business impact than that of

other type of services, we have therefore focused our discussions on the context of

cloud services. However, by no means can the accountability principles not be applied

to other online services in general.

The first objective of this thesis is to raise awareness of the accountability gap

between business and IT. The second objective is to provide a clearly defined ser-

vice accountability foundation model that clarifies the confusion on the concept of

accountability in service computing and highlights the notion of the “service contract”

as the key concern in building service accountability and, more importantly, proposes

a service accountability framework helping service providers to strength accountabil-

ity in their service offering. The third objective is to provide practical approaches

for building advanced service accountability mechanisms within the service-oriented

architecture.

As a result of achieving the above three objectives, the contributions of this thesis

are summarised below:

1. Presenting a unique view on service accountability that unifies the concerns from

both business and the IT domains, which is crucial to bridge the accountability

gap existing today.

2. Laying down a solid foundation model for service accountability, which in-

cludes:

a) a precise definition of the basic service accountability concepts;

b) clearly articulated accountability processes involving disclosure, contract-

ing, monitoring and liability assignment;

c) a quantitative accountability measurement approach; and
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d) a service accountability framework that addresses the weaknesses of cur-

rent SOA architecture in accountability, helping service providers to build

proper accountability capabilities into their service offerings.

3. Proposing a novel semantic service contract model that provides a machine-

readable service contract representation, which enables advanced service ac-

countability, such as automation of disclosure, monitoring and liability assign-

ment processes.

4. Applying the semantic service contract model in service contract monitoring,

extending the mainstream Representational State Transfer (REST) architecture

to a novel Accountable State Transfer architecture and strengthening service

accountability in SOA.

5. Proposing a novel algebraic service contract model that provides fine-grained

obligation decomposition and efficient contract disclosure features. It provides:

a) a formal logic called Dynamic Logic for Accountability (DLA) extended

from Dynamic Logic, which addresses the unmanaged accountability is-

sues such as the absence of SOW, lack of formal representations and vali-

dations of a contract in a cloud service;

b) a simple tool called the Obligation Flow Diagram (OFD) for model valida-

tion and conflict resolution;

c) a new approach that models a cloud service as a proactive system, rather

than as a reactive system like that in the traditional modelling approach.

The proactive system is concerned with the actors who conduct the activ-

ities and the exceptions which occur during the action execution, plus the

causality behind them; and

d) a novel Accountable Process Algebra (APA), which extends the traditional

process algebra to a form of process algebra suitable for proactive systems

like cloud services. APA allows analysis of the execution behaviour of a
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cloud service contract based on an algebraic approach, which produces a

more concise model to reflect the dynamics of service accountability dur-

ing the provision, as well as the consumption, of a cloud service.

6. Presenting a decentralised service contract management scheme that fits in the

Internet environment and avoids the issues associated with centralisation, like

cost, scalability, resilience, fairness and objectivity. It includes:

a) a service contract management scheme to enable automatic publication of

a service contract, automatic service discovery and selection. It improves

transparency and accountability in service computing by eliminating the

information asymmetry;

b) a service blockchain that can be used as an anti-tamper public “activity

ledger” for recording the interactions between the service provider and the

consumer, enabling monitoring of contract obligation fulfilment in an open

and objective environment;

c) a novel dispute arbitration protocol that uses anonymous POW miners act-

ing as arbiters to arbitrate a service contract dispute. Coupled with the

commitment scheme and the majority function techniques, the protocol is

designed to be fair, accurate and free from the influence of any authorities;

and

d) a study on the dynamics of the key parameters of the arbitration proto-

col through experiments and various scenarios analysis. The optimal pa-

rameter settings are studied, striking the balance of fairness, accuracy and

accountability.

7.2 Future Work

Service accountability is a relatively new discipline that increasingly demonstrates its

relevance in today’s service computing environment, and it will become more im-
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portant in the future while technologies in artificial intelligence (AI) and Internet of

things (IOT) advance. This thesis lays down a foundation for service accountability in

service-oriented architecture, paving the way for further research on accountability in

IT in general. The following are some suggestions for future research in this direction.

From a service contract management life-cycle perspective, there is room for sig-

nificant future work in each of the disclosure, contracting, monitoring, liability assign-

ment and remedy processes.

A full semantic disclosure approach relies on a comprehensive set of ontologies

covering all aspects of accountability, including domain knowledge concepts, espe-

cially for legal and regulation compliance and social ethics. Building and integrating

ontologies for accountability is a huge undertaking, and thus is an ongoing, long term

effort.

An important phase of contracting process is contract negotiation, an area that is

predominantly conducted through manual process by humans at the moment. Using

service agents to automate the negotiation process, based on a set of predefined rules,

can provide efficiency, flexibility and elegance in forming a service contract.

In the monitoring process, research on reasoning and detection of obligation breach

based on the evidence of the service contract execution is required to improve accuracy

and efficiency in fault detection, while reducing the false-alarm rate.

The liability assignment process needs further research on the root cause diagnosis

of an obligation breaches to ensure a high accuracy in arbitration decisions. It should

also cater for an automatic arbitration decision appeal process.

The remedy process should provide capabilities in automatic rectifying of faults

during service contract execution, as well as automatic means for the enforcing of a

liability assignment.

As service computing is moving towards a proactive system-based paradigm, it

is predicted that upholding service accountability will increasingly rely on artificial

intelligence and computer cognition technologies. The interesting question of whether

or not an intelligent agent should be accountable for the service obligation may become
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a research topic for future researchers.



Appendix A

Notations Used in This Thesis

Table A.1: Notations used in Chapter 3

First
Notation Representation occurrence

s a service Section 3.3.2
CP a set of collaboration process Section 3.3.2
i a service interface Section 3.3.2
A a set of actors Section 3.3.2
cs a cloud service Section 3.3.2
CIid the cloud infrastructure ID Section 3.3.2
ecs Amazon EC2 service Section 3.3.2
O the service obligation Section 3.3.2
a an action Section 3.3.2

input the input object Section 3.3.2
output the output object Section 3.3.2
pre the precondition Section 3.3.2
post the post condition Section 3.3.2
e the evidence Section 3.3.2

timestamp the timestamp for object creation Section 3.3.2
Op the provider obligation Section3.3.2
Oc the consumer obligation Section 3.3.2
sc the service contract Section 3.3.2
P a pair of party Section 3.3.2
sla service level agreement Section 3.3.2
sow statement of work Section 3.3.2
sp the service provider Section 3.3.2
sc the service consumer Section 3.3.2
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Table A.2: Notations used in Chapter 3 (continued)

First
Notation Representation occurrence
Fp provider forbidden clause Section 3.3.2
Fc consumer forbidden clause Section 3.3.2
R the horn rule Section 3.3.2
T the contract period Section. 3.3.2

start time the started time Section 3.3.2
end time the end time Section 3.3.2

sce the service contract execution Section 3.3.2
I contract execution information Section 3.3.2

complete time complete time Section 3.3.2
se the contract execution state Section 3.3.2
SE the set of contract execution state Section 3.3.2

consequent the consequent in a horn rule Section 3.3.2
antecedent the antecedent in a horn rule Section 3.3.2

Pp Burnoulli probability distribution Eq. 3.1
p the success probability Eq. 3.1
q the failure probability Eq. 3.1
n the number of success run Eq. 3.1
N the number of trials Eq. 3.1
f(t) the logistic function Eq. 3.2
e the base of the natural logarithm Eq. 3.2
t the logistic score Eq. 3.2
pi value of logistic function Eq. 3.2
V the set of all CTA invariants Section 3.5.3
vk an invariant Section 3.5.3
PR the set of preconditions Section 3.5.3
PO the set of postconditions Section 3.5.3
prj a precondition Section 3.5.3
pok a post condition Section 3.5.3
en runtime nonfunctional error Eq. 3.4
ef runtime functional error Eq. 3.5
cn nonfunctional compensation indicator Eq. 3.6
cf functional compensation indicator Eq. 3.7
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Table A.3: Notations used in Chapter 3 (continued)

First
Notation Representation occurrence

cd the cumulated compensation deficits Eq. 3.8
ce the cumulated expected total compensation Eq. 3.8
ca the cumulated actual compensation Eq. 3.8
dn non functional disclosure indicator Eq. 3.9
df functional disclosure indicator Eq. 3.10
dp precondition disclosure indicator Eq. 3.11
re the responsiveness indicator Eq. 3.12
ep evidence provision indicator Eq. 3.13
βk weight on kth variable Eq. 3.14
xk kth independent variable Eq. 3.14
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Table A.4: Notations used in Chapter 4

First
Notation Representation occurrence
SCM a semantic service contract model Section 4.2.2.2
Kscm a service contract knowledge base Section 4.2.2.2

a Tbox consists of a finite setT of concept inclusion axioms Section 4.2.2.2

an Abox consists of a finite setA of individual or role assertions Section 4.2.2.2

H a finite set of horn clause axioms Section 4.2.2.2
C v D the concept inclusion axiom Section 4.2.2.2
R v S the role inclusion axioms Section 4.2.2.2

Trans(R) the transitivity axiom Section 4.2.2.2
C,D OWL-DL concepts Section 4.2.2.2
R, S OWL-DL roles Section 4.2.2.2
a, b the individual objects in OWL-DL Section 4.2.2.2
r, rn atoms in rules Section 4.2.2.2
P an individual value property Section 4.2.2.2
Q a data value property Section 4.2.2.2
x, y either individuals or variables Section 4.2.2.2
z either a variable or a data value Section 4.2.2.2
act an action Section 4.2.2.2
input input of the action Section 4.2.2.2
output output of the action Section 4.2.2.2
pre precondition of an action Section 4.2.2.2
ϕ a set of assertion in A Section 4.2.2.2
χ a set of assertion of primitive literals for T Section 4.2.2.2
ev an evidence object Section 4.2.2.2
obj an individual in Kscm Section 4.2.2.2

timestamp the timestamp that obj is created Section 4.2.2.2
cond a set of assertions with regard to obj Section 4.2.2.2
ack an acknowledgement object Section 4.2.2.2
K apply the rule only to those known instances Section 4.2.2.2
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Table A.5: Notations used in Chapter 4 (continued)

First
Notation Representation occurrence

SHOIN (D) OWL-DL language Section 4.2.2.3
SROIQ(D) OWL-2 language Section 4.2.2.3

Pro a rule program Section 4.2.2.3
CPN a coloured Petri-net Section 4.2.3.1

Σ a finite set of colour sets Section 4.2.3.1
PL a finite set of places Section 4.2.3.1
TR a finite set of transitions Section 4.2.3.1
AR a finite set of arcs between place and transition Section 4.2.3.1
ND node function Section 4.2.3.1
CF a coloured function Section 4.2.3.1
GF a guard function Section 4.2.3.1
EX an arc express function Section 4.2.3.1
IF an initialization function Section 4.2.3.1
v a variable Section 4.2.3.1

Type(v) return the type of variable v Section 4.2.3.1
expr an expression Section 4.2.3.1

V ar(expr) return the set of variables in expression expr Section 4.2.3.1
B denotes the boolean type Section 4.2.3.1
∂ a color set Section 4.2.3.2
M0 an initial marking Section 4.2.3.2
I model of T and A Section 4.2.3.2
Ac a set of consumer action Section 4.2.3.2
Tc a set of consumer transition Section 4.2.3.2
Ap a set of provider action Section 4.2.3.2
Tp a set of provider transition Section 4.2.3.2
Pi a set of token colours Section 4.2.3.2
Ei an input inscription Section 4.2.3.2
Eo an output inscription Section 4.2.3.2
I ′ transition from I Section 4.2.3.2
I ′′ transition from I ′ Section 4.2.3.2
N a Petri-net Section 4.2.3.3
sup the token upper bound Section 4.2.3.3
RS a reachability set Section 4.2.3.3
Eo an output inscription Section 4.2.3.3
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Table A.6: Notations used in Chapter 5

First
Notation Representation occurrence
acs an accountable cloud service Section 5.2.1
i a service interface Section 5.2.1
CP a set of collaboration process Section 5.2.1
CIid a cloud infrastructure id Section 5.2.1
sc a service contract Section 5.2.1
P a pair of party Section 5.2.1
sow a statement of work Section 5.2.1
sla service level agreement Section 5.2.1
R a set of horn rules Section 5.2.1
T the contract period Section 5.2.1
sp the service provider Section 5.2.1
sc the service consumer Section 5.2.1
Op the service provider obligation Section 5.2.1
Oc the service consumer obligation Section 5.2.1
Fp service provider forbidden clauses Section 5.2.1
Fo service consumer forbidden clauses Section 5.2.1
act an action Section 5.2.1
input input of the action Section 5.2.1
output output of the action Section 5.2.1
pre precondition of an action Section 5.2.1
r an individual rule Section 5.2.1

start time the contract starting time Section 5.2.1
end time a contract end time Section 5.2.1

obj an individual in Kscm Section 5.2.1
timestamp the timestamp that obj is created Section 5.2.1
L(SigDyn) dynamic logic Section 5.3

Asn a set of assertion formulas Section 5.3
φ an assertion Section 5.3
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Table A.7: Notations used in Chapter 5 (continued)

First
Notation Representation occurrence
t1, t2, tn the first order logic terms Section 5.3.0.1
ψ an assertion Section 5.3.0.1
∀x universal quantifier function Section 5.3.0.1
∃x existential quantifier function Section 5.3.0.1
P a predicate symbol Section 5.3.0.1

Φ,Φ1,Φ2 dynamic logic terms Section 5.3.0.1
β a process term Section 5.3.0.1
a an actor Section 5.3.0.1

V : a : α a illegally performed or failed to perform α Section 5.3.0.1
α) an action Section 5.3.0.1
P (α) α is permitted Section 5.3.0.1
O(α) α is obligatory Section 5.3.0.1
F (α) α is forbidden Section 5.3.0.1

an obligation to perform action α, and
O([α]φ) the outcome of α must satisfy φ Section 5.3.0.2

B(t) term t is breached Section 5.3.0.2
v a variable Section 5.3.0.2
M a DLA model Section 5.3.0.3
W the set of all possible states Section 5.3.0.3

a function which associates each state
Γ with the condition it satisfies Section 5.3.0.3

R a collection of binary relations on states Section 5.3.0.3
w,w′ world state Section 5.3.0.3

s0, s1, s2, s3 world states Section 5.3.0.3
Σ a signature Section 5.4.1
f, g function symbols Section 5.4.1
ar(f) arity of function f Section 5.4.1

x, y, z, ... a countable set of variables Section 5.4.1
T (Σ) a set of open term over Σ Section 5.4.1
T ′(Σ) set of closed term over Σ Section 5.4.1
S a non-empty set of states Section 5.4.1
L a finite, non-empty set of transition labels Section 5.4.1

state s can evolve into state s′
s

α−→ s′ by the execution of action α Section 5.4.1

s
α−→ √ s can execute α Section 5.4.1
ρ a transition rule Section 5.4.1
H
π

positive premise H , conclusion π Section 5.4.1
ε(a) exception raised when perform a Section 5.4.1
Σ1 a collaboration process term Section 5.4.1
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Table A.8: Notations used in Chapter 6

First
Notation Representation occurrence

so a service offer Section 6.2.1
Pr a service provider Section 6.2.1
Odag an obligation flow diagram Section 6.2.1
sw a service network Section 6.2.1
N a set of nodes in a service network Section 6.2.1
CN a set of connections between nodes Section 6.2.1
n a node in a service nework Section 6.2.1
tx a service transaction Section 6.2.1
Sign a signing function Section 6.2.1
Hash a hashing function Section 6.2.1
txp the previous service transaction Section 6.2.1

pubknxt act the public key of the counter-party nxt act Section 6.2.1
prikcur act the private key of the current actor cur act Section 6.2.1
pow a proof of work Section 6.2.1
pbh the previous block hash Section 6.2.1
rh the transaction root hash Section 6.2.1
D the difficulty set in the Bitcoin network Section 6.2.1
non a nonce Section 6.2.1
bh a block hash Section 6.2.1∏
PL a public ledger Section 6.2.3
m the number of blocks ahead of a transaction Section 6.2.3
OA an obligation-activity pair Algorithm 5
Cid a service contract id Algorithm 5
CEid a contract execution id Algorithm 5

providerLiable provider liable boolean indicator Algorithm 5
Arb[] array for arbiters Algorithm 5

Decision[] decision array Algorithm 5
Msg[] message array Algorithm 5
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Table A.9: Notations used in Chapter 6 (continued)

First
Notation Representation occurrence

B the arbitration fee Section 6.3.3
C the cost for an arbitration Section 6.3.3

the probability for an arbiter
p to make a correct judgement α Section 6.3.3

the probability of a correct judgment
p′ becoming a majority decisionα Section 6.3.3

the probability of a provider
q being correctα Section 6.3.3

Ih expected incentives for a honest arbiter Section 6.3.3
Ir expected incentives for a rebel Section 6.3.3
If expected incentives for a free rider Section 6.3.3
Ip expected incentives for a pro-provider Section 6.3.3
Ic expected incentives for a pro-consumer Section 6.3.3
Rhm the honest/malicious hashing power ratio Section 6.4.2
Rhr the honest/rebellion hashing power ratio Section 6.4.2
Rhf the honest/freerider hashing power ratio Section 6.4.2
Rhc the honest/pro-consumer hashing power ratio Section 6.4.2
Rhp the honest/pro-provider hashing power ratio Section 6.4.2

the honest/even distribution of
Rhem malicious hashing power ratio Section 6.4.2
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