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Abstract—Graph Pattern Matching (GPM) plays a significant
role in social network analysis, which has been widely used in,
for example, experts finding, social community mining and social
position detection. Given a pattern graph GQ and a data graph
GD , a GPM algorithm finds those subgraphs, GM , that match
GQ in GD . However, the existing GPM methods do not consider
the multiple constraints on edges in GQ, which are commonly
exist in various applications such as, crowdsourcing travel, social
network based e-commerce and study group selection, etc.

In this paper, we first conceptually extend Bounded Simulation
to Multi-Constrained Simulation (MCS), and propose a novel
NP-Complete Multi-Constrained Graph Pattern Matching (MC-
GPM) problem. Then, to address the efficiency issue in large-
scale MC-GPM, we propose a new concept called Strong Social
Component (SSC), consisting of participants with strong social
connections. We also propose an approach to identify SSCs, and
propose a novel index method and a graph compression method
for SSC. Moreover, we devise a heuristic algorithm to identify
MC-GPM results effectively and efficiently without decompress-
ing graphs. An extensive empirical study on five real-world large-
scale social graphs has demonstrated the effectiveness, efficiency
and scalability of our approach.

I. INTRODUCTION

A. Background

Online Social Networks (OSNs) have attracted billions
of users worldwide, which have provided rich information
for users to perform various tasks such as detecting social
positions [1], finding experts [2], [3] and making travel plans
[2]. These tasks are typically conducted by applying Graph
Pattern Matching (GPM) which has been widely used in
social network analysis. GPM is typically defined in terms of
subgraph isomorphism, in which, given a data graph GD and
a pattern graph GQ as input, it answers whether GD contains
a subgraph that is isomorphic to GQ.
Example 1: Fig. 1 contains three query pattern graphs GQ1,
GQ2 and GQ3, and four data graphs GD1, GD2, GD3 and
GD4. GQ1 is isomorphic to GD1, but is not isomorphic to
GD2, GD3 or GD4.

However, as shown in [2], the conventional subgraph iso-
morphism is too strictly defined to find useful patterns in the
real-world social graphs. Moreover, due to the NP-complete
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Fig. 1. Pattern graphs and data graphs

time complexity, it is hard to apply isomorphism test to large-
scale social graphs.

In order to address the above-mentioned issues in subgraph
isomorphism, graph simulation [4] has been proposed which
has less restrictions but more capacity to extract more use-
ful subgraphs with better efficiency. In contrast to subgraph
isomorphism, graph simulation supports simulation relations
instead of exact match of vertices. Recalling Fig. 1, GQ1 is not
isomorphic to GD2, but it matches GD2 via graph simulation
as B and C in GQ1 can be simulated to one out of B and C
in GD2 respectively. Graph simulation has been widely used
in structural index and website classification, but it still needs
to perform edge-to-edge mapping (e.g., the edge (A,C) and
(B,C) in the case of graph simulation in Fig. 1). This is still
too strict for some real applications that utilize the connectivity
between vertex pairs via a path with arbitrary or pre-defined
lengths [5], [6] (e.g., path lengths 2 and 3 in GQ2).

To address this issue in graph simulation, Fan et al., [2]
proposed bounded simulation, wherein each vertex has a label
of a category, and each edge is labeled with either a constant
k or a ∗. Graph matching based on bounded simulation maps
edges in a pattern graph to paths within bounded lengths in
a data graph, instead of edge-to-edge mappings in subgraph
isomorphism and graph simulation [2]. As shown in the
example in Fig. 1, GQ2 matches GD1, GD2 and GD3 via
bounded simulations. Based on bounded simulation, some

978-1-4799-7964-6/15/$31.00 © 2015 IEEE ICDE Conference 2015351



studies have been conducted to restrict the simulation structure
[7], match with different edge types [8], and improve the
efficiency of bounded simulation based GPM [9], [10].

B. Problem

The bounded simulation based GPM only considers the
bounded path length of an edge when matching the edges,
which greedily finds the subgraph that has the minimal di-
ameter. However, some graphs have attributes on vertices and
edges, like the Contextual Social Graph (CSG) [11], where
each vertex has the social role information, and each edge
has the social relationships and social trust information. In a
variety of applications in social networks, e.g., crowd-sourcing
travel [12], study group selection (classroomsalon.com), and
social network based e-commerce [11], people are willing to
incorporate multiple social contexts associated with edges in
a CSG, which have significant influence on people’s collabo-
rations and decision making [13].
Example 2: Consider GQ3 and GD4 in Fig. 1, where in
addition to the traditional graph structure, each edge in GD4

is associated with two attributes: a and b that can be social
trust and social relationships between people in CSGs. In
real applications on CSGs, the constraints of social trust (e.g.,
a > m in GQ3) and social relationships (e.g., b < n in GQ3)
can be specified between, for example, a Project Manager A
and an Assistant Manager B to find a trustworthy team, or
between two customers A and B to help retailers find loyal
customers in social network based CRM (Customer Relation
Management) systems. In such multi-constrained graph pattern
matching, a path in GD4 is a match of (A,B) in GQ3, if the
path length is no greater than 2, and the aggregated values of
a and b can satisfy the multiple constraints, i.e., a > m and
b < n, (m and n are constants).

This example illustrates that a new type of Multi-
Constrained GPM (MC-GPM) is an important issue in social
graphs. MC-GPM subsumes the classical NP-Complete multi-
constrained path selection problem [14], and thus is NP-
Complete. So, the main challenge of our work is to design
novel indexing structures and approximation techniques to
effectively and efficiently support MC-GPM queries. To the
best of our knowledge, all the existing methods of GPM do not
support MC-GPM queires. Our contributions are summarized
as follows.

C. Contributions

(1) We propose a new notion of Multiple-Constrainted Sim-
ulation (MCS) by extending bounded simulation. In contrast
to its traditional counterpart, the MCS based MC-GPM is to
find a graph pattern matching result, where each edge of the
matching graph satisfies both the bounded path length and the
multiple constraints on edges, which can better support many
emerging social network based applications.

(2) We propose a concept called Strong Social Component
(SSC), which consists of participants who have strong social
connections, and propose an approach to identify SSCs. As
the social connections in SSC usually stay stable in a very

long period of time [15], we propose a novel index structure
and a graph compression method for SSC with polynomial
time complexity. Our method can match the pattern graph
without any graph decompression, which can reduce storage
consumption and improve efficiency.

(3) Based on the indices and compressed graph, we pro-
pose a Heuristic Algorithm for MC-GPM, called HAMC. In
HAMC, a novel objective function is proposed to test if an
edge matching is included in a data graph. HAMC has the
time complexity of O(EQNDlogND + EQED), where ND
and ED are the number of vertices and edges respectively in
the data graph, and EQ is the number of edges in the query
graph.

(4) An extensive empirical study based on five large-scale
real-world social graphs has demonstrated the effectiveness,
efficiency and scalability of our proposed algorithms.

The rest of this paper is organized as follows. We first
review the related work on GPM in Section II. Then we intro-
duce the necessary concepts and formulate the focal problem
of this paper in Section III. The strong social component
identification is presented in Section IV, followed by the
graph compression methods and index structures proposed in
Section V and Section VI respectively. Section VII presents
our proposed MC-GPM algorithm, Section VIII reports the
experimental observations, and Section IX concludes the pa-
per.

II. RELATED WORK

In the literature, GPM methods have already been widely
studied, which can be categorized into (1) the isomorphism-
based GPM to match each of the vertices and edges in GQ
exactly, and (2) the simulation-based GPM to simulate pattern
matching of the vertices and edges in GQ. Below we analyze
them in detail.

Isomorphism-Based GPM: In the studies of isomorphism-
based GPM, Zou et al., [6] index the shortest path length
between any two vertices in a data graph to support the
requirement of the connection length. In addition, Sun et al.,
[16] adopt a graph exploration method to improve the effi-
ciency of subgraph joint processing in graph pattern matching.
Furthermore, Cheng et al., [17] propose a top-k graph pattern
matching approach which builds up a spanning tree of a cyclic
graph query, and rank the answers by the sum of the edge
lengths of an answer.

Given a query graph GQ, usually it is not realistic to find
a isomorphic subgraph as the strict matching. Yan et al.,
[18] propose a similarity based method, where a distance is
computed based on the total number of the matching edges
between a query graph and the data graph. If the distance is
less than a specified threshold, then an answer is returned.
In addition, Shang et al., [19] further improve the similarity-
based method by indexing graphs according to their similarity
to the features in GQ, which can prune those non-promising
graphs. Furthermore, Zhu et al., [20] divide a GD into several
groups of similar graphs and index these graphs to support
effective non-promising graph pruning.
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In order to improve the efficiency of the GPM in large
data graphs, some paralleled and distributed GPM methods
have been proposed recently. In [21], [22] a pattern graph
is decomposed into several small patterns, and they find the
subgraph matchings for each small pattern graph and join
the intermediate results finally. In addition, in [23], they find
multiple GPM answers based on a paralleled framework.
Furthermore, in [24], a large data graph is decomposed into
several small fractions based on a distributed GPM method,
and then they predict the probability of each fraction to having
a GPM answer.

Simulation-Based GPM: As isomorphism-based GPM is
still too strict for some applications, based on graph simulation
[4], Fan et al., [2] propose bounded simulation based GPM
method, where the label of each vertex is not unique and
a bounded length can be specified on the edges in a query
graph. In bounded simulation, it is not necessary to exactly
match each vertex and each edge as the subgraph isomorphism,
instead, matching any vertex having the same labels and the
path whose length is not greater than the bounded length in
a data graph. This type of GPM can be conducted in cubic-
time. In addition, based on bounded simulation, Ma et al., [7]
propose strong simulation to find a small set of matches whose
topologies are more similar with the query graph than bounded
simulation. Moreover, Fan et al., [8] further consider the
requirements of different types of edges in GPM. Furthermore,
in order to improve efficiency, Fan et al., [10] later propose a
graph pattern view based bounded simulation, where a set of
views are defined in a data graph, and an estimation method
has been proposed to predict which view can be used to answer
a specific query. Moreover, they propose a resource-bounded
query [25] where a fraction of a data graph that has a high
probability of containing the query graph is extracted. Finally,
Fan et al., [9] propose a method to find the top-k matching of
the specific vertex patterns, where some patterns that contain
important vertices and edges have high priority to be matched
in a query graph.

Summary: The isomorphism-based GPM are important
in many applications, e.g., 3D object matching [26] and
protein structure matching [27]. The index, and the paralleled
and distributed methods are effective ways to improve the
efficiency of GPM. However, such GPM is still suffering
expensive computation cost as it is NP-Complete. Moreover,
although the similarity-based method enhance the probability
of returning an answer, it still too strict to use in some applica-
tions, e.g., finding social experts [2] and project organization
[9]. Simulation-based GPM methods relax the restrictions
of subgraph isomorphism and thus well address the GPM
in these applications. But all the existing methods do not
consider the multiple constraints on edges in a graph query.
Such a query is popular and fundamental in many social
network based applications, like crowd-sourcing travel [12],
study group selection (classroomsalon.com), and social net-
work based e-commerce [11]. Therefore, the existing methods
cannot support the significant MC-GPM in many applications.
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Fig. 2. Multiple-Constrained GPM in CSGs

III. PRELIMINARIES

A. Data Graph

1) Contextual Social Graph: A Contextual Social Graph
(CSG) [11] is a labeled directed graph G = (V,E,LV, LE),
where
• V is a set of vertices;
• E is a set of edges, and (vi, vj) ∈ E denotes a directed

edge from vertex vi to vertex vj ;
• LV is a function defined on V such that for each vertex
v in V , LV (v) is a set of labels for v. Intuitively, the
vertex labels may for example represent social roles in a
specific domain;

• LE is a function defined on E such that for each link
(vi, vj) in E, LE(vi, vj) is a set of labels for (vi, vj), like
social relationships and social trust in a specific domain.

Example 3: We now give a specific example of a CSG from
[11] to show how the vertex and edge labels can be defined
and used. GD5 in Fig. 2 is a CSG, where each vertex vi ∈ V is
associated with a role impact factor, denoted as ρDi

vi ∈ [0, 1],
to illustrate the impact of participant vi in domain i, which is
determined by the expertise of vi. ρDi

vi = 1 indicates that vi is
a domain expert in domain i while ρDi

vi = 0 indicates that vi
has no knowledge in that domain. Moreover, each edge (vi, vj)
is associated with social trust, denoted as TDi

vi,vj ∈ [0, 1], and
social intimacy degree, denoted as rvi,vj ∈ [0, 1], to illustrate
trust and intimacy social relationships between participants.
T, r and ρ are called social impact factors, whose values can
be extracted by using the data mining techniques [28], [29],
[30].

Based on the theories in Social Psychology [15], we adopt
the multiplication method to aggregate T and r values of a
path, and adopt the average method to aggregate the ρ values
of the vertices in a path. The details of the aggregation method
has been discussed in [11]. The aggregated values of a path
p in domain i is denoted as ASDi(p) = {ATDi(p), Ar(p),
AρDi(p)}. If each of the aggregated social impact factor value
of p is greater than the corresponding one of path p′, then p
dominates p′ in domain i, which is denoted as p >Di

DOM p′.

B. Pattern Graph

A Pattern Graph is defined as GQ = (Vq, Eq, fv, fe, se),
where
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• Vq and Ep are the set of vertices and the set of directed
edges, respectively;

• fv is a function defined on Vq such that for each vertex
u, fv(u) is the vertex label of u;

• fe is a function defined on Eq such that for each edge
(u, u′); fe(u, u′) is the bounded length of (u, u′) which
is either a positive integer k or a symbol *;

• se is a function defined on Eq such that for each edge
(u, u′), se(u, u′) is the multiple constraints of the aggre-
gated social impact factor values of (u, u′) represented
by, λDi

T , λr and λDi
ρ , which are in the scope [0,1];

From GQ4 in Fig. 2, we can see the constraints, i.e., λDi

T , λr
and λDi

ρ on edges (B,C) and (B,D), respectively.

C. Multi-Constrained Graph Pattern Matching (MC-GPM)

In this section, we introduce MC-GPM via Multi-
Constrained Simulation (MCS) in CSGs.

Bounded Simulation [2]: Given a data graph G =
(V,E,LV ) and a pattern graph Q = (Vq, Eq, fv, fe), a data
graph G matches a pattern graph Q via bounded simula-
tion, denoted as Q EB

simG, if there exists a binary relation
S ⊆ VQ × V such that
• for all u ∈ VQ, there exists v ∈ V such that (u, v) ∈ S;
• for each pair (u, v) ∈ S,

– u ∼ v, and
– for each edge (u, u′) in EQ, there exists a nonempty

path p from v to v′ in G such that (u′, v′) ∈ S, and
Slen(p) 6 k if fe(u, u′) = k.

Then S is a match in G for Q via bounded simulation.
Multi-Constrained Simulation (MCS): MCS is a non-

trivial extension of bounded simulation. Consider a data
graph GD = (V,E, LV, LE) and a pattern graph GQ =
(Vq, Eq, fv, fe, se). GD matches GQ via MCS, denoted by
GQ EMC

simGD, if there exists a binary relation S ⊆ VQ × V
such that
• for all u ∈ VQ,there exists v ∈ V such that (u, v) ∈ S;
• for each pair (u, v) ∈ S,

– u ∼ v, and
– for each edge (u, u′) in EQ, there exists a nonempty

path p from v to v′ in G such that (u′, v′) ∈ S, and
Slen(p) 6 k, if fe(u, u′) = k;

– ATDi(v, v′) > λT , Ar(v, v′) > λr and
AρDi(v, v′) > λρ, if se(u, u′) = {λT , λr, λρ};

Then S is a match in GD for GQ via multi-constrained
simulation.

If an edge (u, u′) in GQ is mapped to a nonempty path p
from v to v′ in GD based on MCS, then (v, v′) is an edge
pattern matching (u, u′) in GD (denoted as (v, v′, GD) '
(u, u′, GQ)), and (u, v) ∈ S. If for each edge in GQ, there is
a matching edge in GD, then an MC-GPM answer is returned
(denoted as GM = (V,E, LV, LE), GM ⊆ GD).
Example 4: Suppose GQ4 in Fig. 2 is a query given by a
user to select a group of participants from a CSG to finish a
project. Based on data graph GD5, we can get the MC-GPM
answer as (1) vertex SPM (i.e., A, a Senior Project Manager)

and vertex PM (i.e., B, a Project Manager) in GQ4 can be
mapped to the same vertices SPM and PM in GD5, which
is part of subgraph isomorphism; (2) the vertex AM (i.e., C,
an Assistant Manager) in GQ4 corresponds to multiple AMs
(i.e., C1 and C2) in GD5. This relationship can be captured by
using graph simulation; (3) the edge with a bounded length in
GQ4 can be mapped to a path length in GD5 by using bounded
simulation; and (4) the edge with multiple constraints can be
mapped to the aggregated social impact factor values of a path
in GD5 by using multi-constrained simulation.

D. A Baseline Algorithm

As there are no existing methods for MC-GPM, and MCS
is an extension of bounded simulation, in this section, we
introduce a baseline method (named as BaseLine) that extends
the GPM algorithm via bounded simulation. The details of
BaseLine are as follows,

Step 1: For each constrained edge in GQ, compute the
mapped shortest path length, Slen(p), in GD.

Step 2: If Slen(p) is no greater than the bounded length
(denoted as Blen) specified on the corresponding edge, i.e.,
Slen(p) 6 Blen(p), investigate if the aggregated social
impact factor values of p can satisfy the corresponding con-
straints.
• If each of the constraints can be satisfied, an edge

matching result is returned.
• Otherwise, compute the second shortest path length based

on the top-k shortest path selection algorithm [31] and go
to Step 2.

Step 3: After investigating all the edges in GQ, if there is
an edge matching for each of the edge in GQ, return an answer
by the exploration based graph pattern matching method (see
details in Section VII-B). Otherwise, there are no GPM answers
included in GD.
Example 5: Consider the case of MC-GPM shown in
Fig. 2, BaseLine can return the edge mapping answer,
(A,C1, GD5) ' (A,C,GQ4), and (A,C1, D,GD5) '
(A,D,GQ4). Then it returns the edge mapping answer
of (B,C) in GQ4 are (B,C2, GD5) ' (B,C) and
(B,C2, C1, GD5) ' (B,C,GQ4), and the edge mapping
of (B,D) is (B,D,GQ4) ' (B,C2, C1, GD5) because the
constraints cannot be satisfied by another path via B,C2, F
and D, i.e., ATDi(P(B,C2,F,D)) < 0.6. As there is at
least an edge matching result for each edge in GQ4, an
MC-GPM answer can be returned by using the explo-
ration based GPM method. The matching graph is GM =
(V,E, LV, LE), where V = {A,B,C1, C2, D} and E =
{(A,C1), (B,C2), (C2, C1), (C1, D)}.

Suppose for each edge in GQ, BaseLine needs to perform
the Dijkstra’s algorithm in GD for N times. Then the time
complexity of BaseLine is O(EQNNDlogND +NEQED).

IV. STRONG SOCIAL COMPONENT

In order to enhance the efficiency and effectiveness of our
MC-GPM method, in this section, we propose a strong social
component identification method. In graph theory [32], a graph

354



B

E

C

FD

G H

strong social component 

in domain !
strong social component 

in domain "

T
Dj

CF = 0.95

T
Dj

FH = 0.9T
Dj

EH = 0.98

TDi

BD = 0.89

TDi

DG = 0.9

rBD = 0.88

rDG = 0.98

rCE = 0.92

rEH = 0.96

rCF = 0.9

rFH = 0.9

ρDi

B = 0.9

ρDi

D = 0.93

ρDi

G = 0.89

ρ
Dj

E = 0.9

ρ
Dj

C = 0.98

ρ
Dj

F = 0.82

ρ
Dj

H = 0.86

T
Dj

CE = 0.98

Fig. 3. An example of strong social component

G is said to be strongly connected if every vertex is reachable
from every other vertex, and a strongly connected component
of a directed graph G is a subgraph that is strongly connected.
Based on the definition of the strong connection, we give the
definition of Strong Social Component as below.
Definition 1: Strong Social Component. In a CSG, a sub-
graph is said to be socially strongly connected if each vertex
associated with a high role impact factor value in a specific
domain is connected with the edges associated with intimate
social relationships and strong social trust relationships. A
Strong Social Component (SSC) is a subgraph that is socially
strongly connected.
Example 6: In an SSC, suppose the T, r and ρ values
associated with each of the vertices and edges should be
greater than 0.8. Fig. 3 depicts a graph that has two strong
social components in domain i and domain j respectively,
where the T, r and ρ values are greater than 0.8.

Based on the theories in Social Psychology [15], in an SSC,
the social structure and the social contexts, including the social
trust and social relationships on edges, and the social roles
associated with vertices usually stay stable in a very long
period of time. This property makes it is realistic to index
and compress the graph in an SSC with low update cost.

Identifying all the SSCs in a specific domain subsumes the
classical NP-Complete maximum clique problem [32], which
is very time consuming. Alternatively, we can identify up to
K SSCs for MC-GPM. We propose an SSC identification
method which first randomly selects K vertices that are
associated with high role impact factor values as the seeds.
Then from each of the seeds, our algorithm adopts the Breadth-
First Search (BFS) method to find the vertices associated
with high role impact factor values connected by the edges
associated with high social intimacy degrees and social trust
values. In the worst case, our method needs to visit all the
vertices and edges in a data graph. The time complexity of
the SSC identification is O(NDED). The pseudo-code of the
algorithm is shown in Algorithm 1.

V. CONTEXT-PRESERVED GRAPH COMPRESSION FOR SSC

In this section, based on the existing graph compression
method for bounded simulation [33], we propose a context-
aware graph compression method, where the reachability,
graph pattern and social contexts are preserved. Moreover, the
graphs compressed by our approach can be directly queried

Algorithm 1: Strong Social Component Identification
Data: CSG: G(V,E, LV, LE), k, λV , λE

Result: SSCi (i ∈ [1, k])
begin1

Select vi i ∈ [1, k], LV (vi) > λV ;2
Set vi.visit = 0;3
Put vi into ExpSet;4
while ExpSet 6= ∅ do5

Get vi from ExpSet;6
Remove vi from ExpSet;7
if vi.visit = 0 then8

Set vi.visit = 1;9
for each vj , (vj is neighbour vertices of vi) do10

if LV (vj) > λV and LE(vi, vj) > λE then11
Put vj into ExpSet;12
Add vj and E(vi, vj) into SSC;13

end

without any decompression. In contrast, the existing com-
pression methods are not designed for solving the MC-GPM
problem, and thus they cannot preserve the social context
information. Rather, the existing approaches have to restore
the original graph from compact structures to answer a graph
pattern query.

A. Compression for Reachability

A reachability query for a pair of vertices in a pattern graph
GQ is to investigate if there exists at least one path linking
the two vertices in a data graph, e.g., (B,C) of GQ3 in Fig.
1. The graph compression property captured by Theorem 1
preserves reachability information, which is called reachability
preserved compression, denoted as GRD.
Theorem 1: The compressed graph is reachability preserved
when the compressed two vertices have the same ancestors
and can reach the descendants of each other.
Proof: Suppose there is a data graph GD = (V,E),
where V = {A,B1, ..., Bn, C1, ..., Cn, D1, D2} and
E = {(A,B1), ..., (A,Bn), (A,C1), ..., (A,Cn), (B1, D1)
, ..., (Bn, D1), (C1, D2), ..., (Cn, D2), (D1, D2), (D2, D1)}.
GRD = (V,E), where is V = {A,B1...nC1...n, D1, D2} and
E = {(A,B1...nC1...n), (B1...nC1...n, D1), (D1, D2)}. For a
reachability query GRD = (V,E), where V = {A,Bi, Dj},
i ∈ [1, n] and j ∈ [1, 2], GRD is not reachability
preserved compression if and only if A and Bi,
or Bi and Dj is not reachable, which contradicts
E = {(A,B1...nC1...n), (B1...nC1...n, D1), (D1, D2)} in
GRD. Therefore, Theorem 1 is proven. �
Example 7: Fig. 4 contains two groups of graphs1. Consider
Fig. 4 (a), where GD7 is the original data graph and GRD7

is the compressed graph. From GD7, we can see that both
A and B do not have any ancestors, and they can reach the
same descendants (C, D and E). Therefore, A and B can be
compressed as one vertex in GRD7, where the reachability of
A and B to other vertices is preserved.

1As the compressions do not consider any social context, in order to clearly
display the graph structure, the social contexts of the graphs are not shown
in this example.
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B. Compression for Graph Pattern

In addition to reachability preserved compression, to support
the graph pattern query, e.g., (A,D) of GQ4 in Fig. 2,
we propose a graph compression method that can preserve
such graph patterns, which is called graph pattern preserved
compression, denoted as GPD. The property the compression
method is captured by Theorem 2.
Theorem 2: The compressed graph is graph pattern preserved
when the compressed two vertices have the same label, the
same ancestors and the same descendants.
Proof: Suppose B1, ..., Bn are vertices in GD. A and C are
their ancestor and descendant respectively. Then we can have
a compressed graph GPD, where B1, ..., Bn are compressed as
a single vertex B. If GQ = (V,E), where V = {A,B,C} and
E = {(A,B), (B,C)}, GQEB

simGD. If GPD is not graph pat-
tern preserved, for an edge (u, u′) in GQ, there exists an edge
(v, v′) in GPD such that (u′, v′) /∈ S, (S ⊆ GQ×GD). Namely,
there exists vertex Bi such that (A,Bi, GD) 6' (A,B,GPD) or
(Bi, C,GD) 6' (B,C,GPD). This contradicts the assumption
that B,..., Bn have the same label. Therefore, Theorem 2 is
proven. �
Example 8: Consider the example shown in Fig. 4 that
contains a data graph GD8 and the corresponding compressed
graph GPD8. In GD8, we can see that B1 and B2 have the same
ancestor A and the same descendant C. Therefore, based on
Theorem 2, GPD8 is a graph pattern preserved compression of
GD8.
Theorem 3: The graph pattern preserved compression is
reachability preserved
Proof: As illustrated in Theorem 1 and Theorem 2, the
compression condition of graph pattern preserved compression
is more strict than that of reachability preserved compression.
Therefore, Theorem 3 is proven. �

C. Compression for Social Contexts

In order to support MC-GPM, e.g., (B,D) of GQ4 in
Fig. 2, we propose a graph compression method that can
preserve social context information, which is called social
context preserved compression, denoted as GSD. The property
the compression method is captured by Theorem 4.
Theorem 4: The compressed graph is social context preserved
when the compressed two vertices have the same label, the
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Fig. 5. Social context preserved compression

same ancestors, the same descendants, and AS of the path
via one of the vertex dominates that of the other one.
Proof: Suppose B1, ..., Bn have the same ancestor A and
the same descendant C in GD. AS(A,C) via Bi (1 ≤
i ≤ n) dominates others. Then, GD is compressed as
GSD = (V,E), where V = {A,B1...Bn, C}, E =
{(A,B1...Bn), (B1...Bn, C)} and AS(A,C) via B1...Bn
equals to AS(A,C) via Bi. Given a query GQ for (A,C)
with Blen(A,C) and the multiple constraints of social im-
pact factors on edge (A,C), only the constraints on edge
(A,B) will be investigated as Slen(A,C) = 2 via any
Bk (1 ≤ k ≤ n). If GSD is not social context preserved,
then the edge matching (A,C,GQ) ' (A,C,GD) is missing
in GSD, namely one of the social impact factor in AS(A,C)
via Bj (1 ≤ j ≤ n, and i 6= j) in GD is greater than that
of (A,C) in GSD (i.e., AS(A,C) via Bi). This contradicts the
assumption that AS(A,C) via Bi (1 ≤ i ≤ n) dominates
others. Therefore, Theorem 4 is proven. �
Example 9: Consider the example shown in Fig. 5 which
contains a data graph GD9 and the corresponding compressed
graph GSD9. In GD9, we can see that C1 and C2 have the same
ancestor A and same descendant D. In addition, AS(A,D) via
C1 dominates AS(A,D) via C2. Then, based on Theorem 4,
GD9 is compressed as GSD9, where C1 and C2 in GD9 are
compressed as one vertex and AS(A,D) via C1C2 in GSD9

equals to the dominated one in GD9, i.e., AS(A,D) via C1.
Then GSD9 is a social context preserved.
Theorem 5: The social context preserved compression is
graph pattern preserved and reachability preserved
Proof: As illustrated in Theorem 3 and Theorem 4, the com-
pression condition of social context preserved compression
is more strict than that of that of graph pattern preserved
compression. Therefore, Theorem 5 is proven. �

D. Summary

Our graph compression method can preserve important
information of a CSG, including reachability, graph pattern
and social contexts information. Thus, a graph pattern query
of MC-GPM can be answered based on the compressed data
graph without any decompression. By compressing vertices
and edges in the graph of an SSC, our graph compression
method can greatly save the memory and query processing
time (see details in experiments). In addition, in the worst
case, our compression method needs to visit all the vertices
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and edges in a data graph. Therefore, the time complexity
of our compression method is O(NDED). As mentioned in
Section IV, the structure and the social contexts of the graph in
an SSC usually stay stable in a very long period of time [15].
Therefore, it is not necessary to update the compressed data
graph frequently. When there are some changes of the social
contexts and/or graph structure in an SSC, some efficient
incremental graph compression methods in the literature can
be adopted [10], [33]. These methods investigate if the changes
affect the GPM in the compressed graph, and they only
recompress a small subgraph that is affected by the changes,
instead of recompressing the whole data graph.

VI. INDEX OF STRONG SOCIAL COMPONENTS

In order to improve the efficiency of MC-GPM, we propose
a novel index structure to index the reachability, graph pattern
and social contexts in the compressed graphs.

A. Reachability Index

This index records a list of vertices that one can research
another in a graph, where the index of each vertex contains
the ancestors and predecessors of the vertex.
Example 10: Fig. 6 is an example of our index for the SSC
in domain j of the graph depicted in Fig. 3. From the figure,
we can see the the indices of each vertex include three parts:
they are reachability index, graph pattern index and social
context index. We take vertex E as an example, as it has
both ancestors and descendants. The reachability index of E
records its ancestor C (i.e., Anc.: C), and its descendant H
(i.e., Des.: H). Similarly, we construct the reachability index
for each of the other vertices of the graph.

Given a reachability query, e.g., (B,C) of GQ3 in Fig. 1, if
the query vertices are included in the SSC, we can investigate
the reachability immediately, greatly saving query processing
time.

B. Graph Pattern Index

After indexing the reachability information, we further
index the graph pattern information to improve the efficiency
of graph pattern queries. This index records the shortest path
length between any two vertices in the graph of an SSC.
Example 11: Consider the graph pattern index shown in
Fig. 6. For vertex E, in addition to index the reachability
information, the graph pattern index records the shortest path
length from its ancestor C to E (i.e., Slen = 1), and from E
to its descendant H (i.e., Slen = 1). Similarly, we construct
the graph pattern index for each of the other vertices.

Given a query of a graph pattern with the bounded length,
e.g., (A,D) of GQ4 in Fig. 2, based on the graph pattern index,
we can investigate if the indexed path length is greater than
the bounded length, and thus can efficiently answer a query.

C. Social Context Index

In order to improve the efficiency of MC-GPM, we construct
the social context index to record the maximal aggregated
social impact factor values of the mapped paths in a data graph.
Below are the details of the index.
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Fig. 6. The index of SSC in domain j

• If each of the aggregated T , r and ρ values of one of the
paths between two vertices dominates others, we index
that path length and the corresponding aggregated social
impact factor values.

• Otherwise, we index up to three paths that have the
maximal aggregated T , r and ρ values respectively.

Example 12: Consider the social context index shown in Fig.
6. Here we take the vertex C as an example, where there are
two paths from C to its descendant H , e.g., path p1(C,E,H)

and p2(C,F,H). As AS(p1(C,E,H)) dominates AS(p2(C,F,H)).
Then, we index AS(p1(C,E,H))={0.96,0.88,0.91} and its path
length Plen(p1(C,E,H)) = 2 at C. Similarly, we construct the
social context index for each of the other vertices.

Given a graph pattern query with multiple constraints, e.g.,
(B,D) of GQ4 in Fig. 2, based on the social context index, we
can quickly investigate if there exists an edge pattern matching
in the data graph, and thus saving query processing time.

D. Summary

The above three indices record important information of
the graph in an SSC. Given an MC-GPM query, if the two
vertices of a query edge can be mapped into a path in SSCs,
this indexed information can be used to quickly investigate if
there is an edge pattern matching, and thus greatly saving
query processing time (see details in the experiments). In
addition, in the worst case, we need to perform the Dijkstra’s
algorithm four times, and thus the time complexity of the
indices construction is O(NDlogND + ED). Furthermore, as
mentioned in Section IV, the structure and the social contexts
of the graph in an SSC usually stay stable in a very long
period of time. Therefore, usually it is not necessary to
update the indices frequently, which reduces the cost of index
maintenance. Moreover, the index update methods have been
well developed in the literature [16], [20]. Thus, we would not
discuss it in detail.

VII. AN MULTI-CONSTRAINED GRAPH PATTERN
MATCHING ALGORITHM

Based on the compressed data graph and the indices in
SSCs, we propose a novel heuristic algorithm for MC-
GPM, called HAMC, with our proposed novel heuristic search
strategies. HAMC firstly performs a Multi-Constrained Edge
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Algorithm 2: MC-EPM
Data: (v, v′), (v, v′) ∈ GQ, GD

Result: (v∗, v∗∗), (v∗, v∗∗) ∈ GD and (v∗, v∗∗GD) ' (v, v′, GQ)
begin1

while ∃v∗, v∗.visit = false do2
Compute minδ(v∗, v∗∗);3
if minδ(v∗, v∗∗) > 1;4
then

return (v∗, v∗∗);5

else6
v∗.visit = true;7

return ∅;8

end

Algorithm 3: Exploration-based graph pattern matching
Data: GD, GQ

Result: GM

begin1
GM = ∅ and Gtemp = ∅;2
while ∃(v, v′) ∈ GQ, (v, v

′).explore = false do
Select (sv, vj) from GQ;3
if MC− EPM(sv, vj) 6= ∅ then4

(sv, vj).explore = true;5
(va, vb) = MC − EPM(sv, vj);6
Gtemp = (V,E, LV, LE), where V = {va, vb} and7
E = {(va, vb)};
GM = GM

⋃
Gtemp;8

Gtemp = ∅;9
if vj is not a leaf vertex then10

Select (sv, vk) from GQ;
if (sv, vk).explore = false and
MC − EPM(sv, vk) 6= ∅ then

(va, vc) = MC − EPM(sv, vk);11
Gtemp = (V,E, LV, LE), V = {va, vc} and12
E = {(va, vc)};
GM = GM

⋃
Gtemp;13

Gtemp = ∅;14
(sv, vk).explore = true;15

else
Select (vj , vm) from GQ;16
if (vj , vm).explore = false and
MC − EPM(vj , vm) 6= ∅ then

(vd, ve) = MC − EPM(vj , vm);17
Gtemp = (V,E, LV, LE), V = {vd, ve} and18
E = {(vd, ve)};
GM = GM

⋃
Gtemp;19

Gtemp = ∅;20
(vj , vm).explore = true;21

return GM ;22
end

Pattern Matching (MC-EPM) based on the novel objective
function to investigate if there is an edge pattern matching in
the data graph. If an answer is returned, HAMC then performs
an exploration-based GPM to answer an MC-GPM query.

A. Multi-Constrained Edge Pattern Matching

Multi-Constrained Edge Pattern Matching (MC-EPM)
method first investigates if an edge pattern query in GQ can
be mapped into a path in SSCs. If so, MC-EPM checks the
indices of each vertex in an SSC to determine if there is an
edge pattern matching. Otherwise, it performs the Dijkstra’s
algorithm to investigate the minimal value of the objective
function in Eq. (1), which can help find an edge matching if
one exists in GD.

δ(p) , max{(
λDi

Tp

ATDi
p

), (
λrp
Arp

), (
λDi
ρp

AρDi
p

), (
Plen

Blen
)} (1)

where ATDi
p , Arp and AρDi

p are the aggregated social impact
factor values of path p; λDi

Tp
, λrp and λDi

ρp are the correspond-
ing constraints; Blen and Plen are the bounded path length
and the identified path length respectively.

From the objective function, we can see that if an edge
pattern query can be mapped into a path p in a data graph,
δ(p) 6 1. Otherwise δ(p) > 1. Based on this property, HAMC
adopts the Dijkstra’s algorithm to identify the path with the
minimal δ value (denoted as δmin). If δmin(p) 6 1, there is
an edge pattern matching. The pseudo-code of MC-EPM is
shown in Algorithm 2.
Example 13: Consider the example shown in Fig. 2, where
the multiple social impact factor constraints and the bounded
length are given to edge (B,D) in GQ4. In order to re-
turn an edge pattern matching answer in GD5, MC-EPM
computes δmin(B,D) = 1 in GD5. Therefore, there is an
edge pattern matching in GD5 for (B,D) in GQ4. The path
with edges (B,C2), (C2, C1) and (C1, D) has δmin, and thus
(B,C2, C1, D,GD5) ' (B,D,GQ4).

Below Theorem 6 establishes that HAMC is an effective
algorithm in MC-GPM.
Theorem 6: HAMC can return an edge pattern matching
answer if one exists in the data graph.
Proof: Assume GQ = (V,E), and (vi, vj) ∈ E is an edge
pattern query. Let p∗ be a path from vi to vj in GD with the
minimal δ at vi returned by the HAMC, and p∗∗ is another path
between vi and vj in GD, where (vi, vj , GQ) ' (p∗∗, GD).
Then, assume (vi, vj , GQ) 6' (p∗, GD), then ∃ϕ ∈ {T, r, ρ}
that ASϕp∗ < λDi

ϕ(vi,vj)
or Plen(p∗) > Blen(vi, vj). Hence,

δ(p∗) > 1. Since p∗∗ is an edge pattern matching, then
δ(p∗∗) ≤ 1 and δ(p∗) > δ(p∗∗). This contradicts δ(p∗) ≤
δ(p∗∗). Therefore, (vi, vj , GQ) ' (p∗, GD). Theorem 6 is
proven. �

Summary: MC-EPM is the first part of HAMC, which is
effective in MC-GPM as it can return an edge pattern matching
answer if one exists in GD. In addition, in the worst case there
is no vertex included into any SSCs of GD. Then, for an edge
pattern query in GQ, HAMC employs a Dijkstra’s algorithm
for M pairs of vertices in GD. Therefore, the time complexity
of MC-GPM is O(MNDlogND +MED).

B. Exploration-Based Graph Pattern Matching

In the literature, there are two popular methods to answer
a GPM query based on the edge pattern matching. They are
the join-based method [2], [9], [10] and the exploration-based
method [16], [17]. The join-based method aims to find a
maximal matching that contains all matching subgraphs in
a data graph, while the exploration-based method aims to
quickly answer a GPM query.

As MC-GPM is NP-Complete, it is computationally in-
feasible to find all the matching subgraphs in GD. In or-
der to quickly answer an MC-GPM query, we propose
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an Exploration-Based Graph Pattern Matching (EB-GPM)
method, presented below.
Step 1: Starting from a source vertex (a vertex with indegree
zero, denoted as sv), EB-GPM firstly returns an edge pattern
matching result based on the above introduced MC-EPM.
Step 2: Mark the matching edge as explored and investigate
if the end point of the edge (denoted as ep) is a leaf vertex in
the query.
• If the end point of the edge is a leaf vertex, EB-GPM

rolls back to the start point of the edge (denoted as sp)
and matching another unmatched edge starting from sv
in GQ.

• Otherwise, EB-GPM continues to investigate another
unexplored edge from ep.

Step 3: If sp = sv and each of the edge pattern queries in GQ
corresponds to an explored edge in GD, an MC-GPM query
answer is returned.
Example 14: Consider the MC-GPM example in Fig. 2,
which contains two source vertices, A and B. Then from A,
MC-EPM returns an edge pattern matching result in GD5 as
(A,C1, D,GD5) ' (A,D,GQ4). As D is a leaf vertex in
GQ4, EB-GPM rolls back to source vertex A to investigate if
an edge from A has not been explored in GQ4. As (A,C) is
unexplored, MC-EPM returns another edge pattern matching
result in GD5 as (A,C1, GD5) ' (A,C,GQ4). Since all
the edges from A are explored, EB-GPM then completes
the same process from the other source vertex B by MC-
EPM. Then EB-GPM can return an MC-GPM answer as
GM = (V,E,LV, LE), where V = {A,B,C1, C2, D} and
E = {(A,C1), (B,C2), (C2, C1), (C1, D)}.

If there are more than one MC-GPM results included in
a data graph, we can use EB-GPM to return other results
by replacing one of the explored matching edge with another
unexplored matching edge in the data graph.

The pseudo-code of EP-GPM method is shown in Algo-
rithm 3. EP-GPM performs EQ times of MC-EPM methods.
The time complexity of HAMC is O(EQMNDlogND +
MEQED). But EQ and M have an inverse relation as
M = ED

EQ
[4]. Namely, when EQ has a large value, e.g.,

EQ = ED, M = 1, and vice versa. Therefore, the time
complexity of our HAMC is O(EDNDlogND + EQED).

C. Summary

Our proposed HAMC algorithm is an efficient and ef-
fective method for the NP-Complete MC-GPM problem in
large-scale contextual social graphs. Our method achieves in
O(EDNDlogND+EQED) computation cost. Moreover, if the
matching edges are included into the graphs of SSCs, HAMC
achieves the outstanding O(EQ) computation cost.

VIII. EXPERIMENTS

We conduct experiments on five large-scale real-world so-
cial graphs to evaluate (1) the performance our algorithm in
answering MC-GPM queries; (2) the effectiveness of our index
for SSC in improving the efficiency of MC-GPM, and (3) the

TABLE I
THE SOCIAL DATASETS

Name vertices Edges Description
Epinions 75,879 508,837 A trust-oriented social network
DBLP 317,080 1,049,866 A co-author relationship network

Youtube 1,134,890 2,987,624 A video recommendation social network
Pokec 1,632,803 30,622,564 A general online social network

LiveJournal 4,847,571 68,993,773 A general online social network

effectiveness of our graph compression approach in reducing
memory usage and improving the efficiency of MC-GPM.

A. Experiment setting

Datasets:
We use five large-scale real-world social graphs available at

snap.stanford.edu, which have been widely used in the litera-
ture for graph pattern matching and social network analysis.
The details of these datasets are shown in Table I.
Graph Pattern Query and Paramater Setting:
• As we discussed in Section III, the social context impact

factor values (i.e., T , r and ρ) can be mined from the
existing social networks, which is another very challeng-
ing problem, but out of the scope of this work. Moreover,
in the real cases, the values of these impact factors can
vary from low to high value without any fixed patterns.
Without loss of generality, we randomly set the values of
these impact factors by using the function rand() in SQL.
In addition, in each of the datasets, the SSC number is
set to 20, 40, 60, 80 and 100 respectively.

• We use a simple MC-GPM query that has the same
graph structure as the graph in Fig. 6. Moreover, a set of
relative low constraints are specified as λDi

T = 0.05, λr =
0.05, λDi

ρ = 0.2, and Blen = 4. These settings ensure
the high possibility of returning MC-GPM answers in
a data graph. Otherwise, no or only few answers might
be returned by all the algorithms, making it difficult to
investigate their performance.

Implementation:
As we discussed in Section II, there is no existing GPM

method in the literature for the MC-GPM problem. There-
fore, in the experiments, (1) we first implement BaseLine
extended from bounded simulation [2] to illustrate a baseline
performance of MC-GPM; (2) we then implement our HAMC
algorithm without graph compression (denoted as HAMC-
NoCompression) to investigate the influence of indices on MC-
GPM; (3) we implement HAMC algorithm with both indices
and graph compression to further investigate the influence of
graph compression on MC-GPM; and (4) As returning all the
MC-GPM answers included in a GD is NP-Complete [34],
we compare the performance of three algorithms in finding a
certain number of answers.

All BaseLine, HAMC-NoCompression and HAMC algo-
rithms are implemented using Visual C++ running on a PC
with Intel Core i5-3470 3.20GHz CPU, 16GB RAM, Win-
dows 7 operating system and MySql 5.6 database. All the
experimental results are averaged based on five independent
runs.
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Fig. 7. The average number of answers returned after visiting 1000 mapped
paths

B. Experimental Results and Analysis

Exp-1: Effectiveness. This experiment is to investigate the
effectiveness of our HAMC by comparing the average number
of GPM answers returned by the three methods.

Results: Fig. 7 depicts the average number of GPM answers
returned by each of BaseLine, HAMC-NoCompression and
HAMC after visiting 1,000 mapped paths on the five datasets.
From the figure, we can see that (1) the number of answers
returned by BaseLine is always less than that of HAMC-
NoCompressions and HAMC; and (2) HAMC returns the same
number of answers as HAMC-NoCompression. Statistically,
on average, HAMC and HAMC-NoCompression can return
37.8% more answers than BaseLine. Thus, they are more
effective than BaseLine.

Analysis: The experimental results illustrate that (1) Base-
Line ineffectively visits many paths that do not corresponding
to any matching edge in GPM, while based on Theorem 6,
our HAMC and HAMC-NoCompression can return an edge
pattern matching result if one exists in a data graph, showing
they are more effective in answering MC-GPM queries than
BaseLine; and (2) As illustrated in Theorem 5, our compres-
sion method is reachability preserved, graph pattern preserved
and social context preserved. Therefore, HAMC and HAMC-
NoCompression can visit the same mapped path based on
the same MC-EPM, thus they can return the same number
of answers based on EP-GPM.
Exp-2: Efficiency. This experiment is to investigate the ef-
ficiency of our HAMC by (1) comparing the average query
processing time of the three methods for outputting different
numbers of answers, and (2) comparing their average query
processing time under different numbers of SSCs when re-
turning 100 query answers.

Result-1: Fig. 8 depicts the average query processing time
of BaseLine, HAMC-NoCompression and HAMC in returning
the answers (i.e., GM ) of the MC-GPM query on the five
datasets. From the figure, we can see that (1) when the
number of answers increases, the total average query pro-
cessing time of the three methods increases for datasets; (2)
BaseLine spends more query processing time than HAMC-
NoCompression and HAMC in all the cases; and (3) HAMC
has the best efficiency for the MC-GPM in all the five datasets.
Statistically, on average, the query processing time of HAMC
is 21.6% less than that of BaseLine, and 5.7% less than that
of HAMC-NoCompression.

Analysis-1: Result-1 illustrates (1) BaseLine needs more
query processing time than others as it spends much time in

TABLE II
THE COMPARISON OF THE AVERAGE QUERY PROCESSING TIME BETWEEN

HAMC AND OTHERS WITH DIFFERENT NUMBER OF SSC

SSC
Comparison with

BaseLine
Comparison with

HAMC-NoCompression
20 13.27% less 4.67% less
40 19.89% less 4.76% less
60 24.06% less 5.60% less
80 27.64% less 6.09% less
100 32.19% less 4.27% less

TABLE III
THE COMPARISON OF THE AVERAGE QUERY PROCESSING TIME BETWEEN

HAMC AND OTHERS ON FIVE DATASETS

Dataset
Comparison with

BaseLine
Comparison with

HAMC-NoCompression
Epinions 8.11% less 2.09% less
DBLP 16.9% less 7.82% less

Youtube 35.88% less 8.84% less
Pokec 39.67% less 8.59% less

LiveJournal 34.18% less 2.81% less

each edge pattern query; (2) our novel heuristic search strategy
and the proposed index structure can greatly save the query
processing time, as some of the edge pattern matching can
be returned via searching indexed information; and (3) the
proposed graph compression reduces the index search space,
and thus HAMC is more efficient than the other two methods.

Result-2: Fig. 9 depicts the average query processing time
when returning 100 answers for the MC-GPM query with
different numbers of SSCs on the five datasets. From the
figure, we can see that (1) with the increase of the number
of SSC, the average query processing time of both HAMC-
NoCompression and HAMC decreases in all the cases; (2)
BaseLine needs more query processing time than others even
at SSC = 20 on the five datasets; and (3) under a certain
number of SSCs, HAMC has the minimal query processing
time among all the three methods. The detailed experimental
results are listed in Table II. Statistically, on average, the query
processing time of HAMC is 21.4% less than that of BaseLine
and 4.2% less than that of HAMC-NoCompression.

Analysis-2: Result-2 illustrates (1) the large query process-
ing time of BaseLine is consistent with the first analysis in
Analysis-1; (2) the more the SSCs, the higher the probability
of finding the mapped edges based on the indexed information,
and thus the query processing time decreases with the increase
of the number of SSC; and (3) as analysed in Analysis-1, our
graph compression reduces the index search space, and thus
HAMC has the minimal query processing time of all methods,
which is consistent with Analysis-1.
Exp-3: Scalability. This experiment is to investigate the
scalability of our HAMC by comparing the average query
processing time of returning a query answer in social graphs
with different scales.

Results: Fig. 10 depicts the average query processing time
of the MC-GPM query under different scales of social graphs
with a certain number of SSCs. From the figure, we can see
that (1) both HAMC-NoCompression and HAMC scales better
than BaseLine; (2) The larger the number of SSCs, the better
the scalability of our method, and (3) HAMC has the best
scalability among all the three methods. The detailed results
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Fig. 11. The memory usage

are listed in Table III.
Analysis: The scalability experiment illustrates that (1)

BaseLine has the worst scalability in all the three meth-
ods which is consistent with the time complexity analy-
sis, i.e., O(EQNNDlogND + NEQED) for BaseLine and
O(EQNDlogND+EQED) for the other two methods; (2) the
larger the number of SSC, the more the vertices and edges
are indexed, hence improving the scalability; and (3) HAMC
has the best scalability as graph compression can reduce the
size of the original data graph.
Exp-4: Memory Usage. This experiment is to investigate the
memory usage of three methods.

Results: Fig. 11 depicts the memory usage of the three

methods under different numbers of SSCs on the five datasets.
From the figure, we can see that (1) with the increase of
the number of SSC, the memory usage of both HAMC-
NoCompression and HAMC increases; (2) The memory usage
of HAMC is lower than that of HAMC-NoCompression in
all the cases; and (3) BaseLine consumes less memory than
HAMC and HAMC-NoCompression in all the cases except
for SSC = 20 in LiveJournal dataset, where HAMC con-
sumes less memory than BaseLine. The memory usage with
different number of SSC is listed in Table IV. Statistically,
on average, HAMC can save 1,267 KB memory than HAMC-
NoCompression for a single dataset.

Analysis: The experimental results of memory usage illus-
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TABLE IV
THE COMPARISON OF MEMORY USAGE BETWEEN HAMC AND

HAMC-NOCOMPRESSION WITH DIFFERENT NUMBERS OF SSC

SSC HAMC HAMC-NoCompression Save
20 4,649,427 KB 4,650,041 KB 614 KB
40 4,649,917 KB 4,650,848 KB 931 KB
60 4,650,298 KB 4,651,579 KB 1,281KB
80 4,650,835 KB 4,652,467 KB 1,632 KB

100 4,651,275 KB 4,653,153 KB 1,878 KB

trate that (1) HAMC-NoCompression needs to index the graph
structures and social context in an SSC, thus it consumes more
memory than BaseLine; (2) HAMC compresses the graph in an
SSC, thus can reduce the memory of storing and indexing the
vertices and edges that are removed by the graph compression
method. In addition, the larger the number of SSC, the higher
the probability of compressing more vertices and edges. Thus
HAMC consumes less memory than HAMC-NoCompression;
and (3) All the social impact factors in an SSC are required to
have high values. Usually, only a few vertices and edges can
be included and compressed in an SSC, and thus the saved
memory by graph compression is usually less than the usage
of storing indices. So, in most of the cases of SSC, HAMC
consumes more memory than BaseLine.
Summary:

The above experimental results have demonstrated that the
proposed heuristic matching strategies adopted in HAMC
provide an effective means to answer MC-GPM queries. In
addition, with our proposed index structure and graph com-
pression methods, HAMC can greatly save query processing
time, which makes HAMC significantly outperform BaseLine
in effectiveness, efficiency and scalability with low memory
usage. Therefore, our HAMC is a very competitive algorithm
for the new NP-Complete MC-GPM problem in social network
based applications.

IX. CONCLUSION

In this paper, we have proposed a new Multi-Constrained
Simulation (MCS) to support a new type of Multi-Constrained
Graph Pattern Matching (MC-GPM) that is a corner stone
for many social network based applications. Then, we have
developed a novel concept, strong social component, upon
which we have designed a novel index structure and a
context-preserved graph compression method. Finally, we have
proposed a heuristic algorithm, HAMC employs our novel
heuristic matching strategies for the NP-Complete MC-GPM
problem. HAMC achieves O(EDNDlogND+EQED) in time
cost, and the experiments conducted on five real-world large-
scale social graphs have demonstrated the superiority of our
proposed approaches in terms of effectiveness, efficiency,
scalability and memory cost.
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