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Abstract. The speci�cation language Attempto Controlled English
(ACE) is a controlled natural language, i.e. a subset of standard En-
glish with a domain-speci�c vocabulary and a restricted grammar. The
restriction of full natural language to a controlled subset is essential for
ACE to be suitable for speci�cation purposes. The main goals of this re-
striction are to reduce ambiguity and vagueness inherent in full natural
language and to make ACE computer processable. ACE speci�cations
can be unambiguously translated into logic speci�cation languages, and
can be queried and executed. In brief, ACE allows domain specialists to
express speci�cations in familiar natural language and combine this with
the rigour of formal speci�cation languages.

1 Introduction

Speci�cations state properties or constraints that a software system must satisfy
to solve a problem [IEEE 91], describe the interface between the problem domain
and the software system [Jackson 95], and de�ne the purpose of the software
system and its correct use [Le Charlier & Flener 98]. In which language should
we express speci�cations to accommodate these demands?

The answer to this question depends on many factors, particularly on the
speci�ers and their background. Though many programs are speci�ed by software
engineers, often domain specialists | electrical engineers, physicists, economists
and other professionals | perform this task. There are even situations where
software engineers and knowledge engineers are deliberately replaced by domain
specialists since they are the ultimate source of domain knowledge [Businger
94]. One major goal of our research is to make formal speci�cation methods
accessible to domain specialists in notations that are familiar to them and that
are close to the concepts and terms of their respective application domain.

Traditionally, speci�cations have been expressed in natural language. Natu-
ral language as the fundamental means of human communication needs no extra
learning e�ort, and is easy to use and to understand. Though for particular do-
mains there are more concise notations, natural language can be used to express
any problem. However, experience has shown that uncontrolled use of natural
language can lead to ambiguous, imprecise and unclear speci�cations with pos-
sibly disastrous consequences for the subsequent software development process
[Meyer 85].



Formal speci�cation languages | often based on logic | have been ad-
vocated because they have an unambiguous syntax and a clean semantics,
and promise substantial improvements of the software development process [cf.
www.comlab.ox.ac.uk/archive/formal-methods]. In particular, formal speci�ca-
tion languages o�er support for the automatic analysis of speci�cations such as
consistency veri�cation, and the option to validate speci�cations through execu-
tion [Fuchs 92]. Nevertheless, formal speci�cation languages su�er from major
shortcomings| they are hard to understand and diÆcult to relate to the applica-
tion domain, and need to be accompanied by a description in natural language
that \explains what the speci�cation means in real-world terms and why the
speci�cation says what it does" [Hall 90]. Similar observations were made earlier
by [Balzer 85] and by [Deville 90].

It seems that we are stuck between the over-
exibility of natural language
and the potential incomprehensibility of formal languages. While some authors
claim that speci�cations need to be expressed in natural language and that for-
mal speci�cations are a contradiction in terms [Le Charlier & Flener 98], other
authors just as vigorously defend the appropriateness of formal speci�cation
methods [Bowen & Hinchey 95a; Bowen & Hinchey 95b]. We, however, are con-
vinced that the advantages of natural and formal speci�cation languages should
be and can be combined, speci�cally to accommodate the needs of domain spe-
cialists.

Our starting point lies in the observation that natural language can be used
very precisely. Examples are legal language and the so-called controlled lan-
guages used for technical documentation and machine translation [cf. www-
uilots.let.ruu.nl/~Controlled-languages]. These languages are usually ad hoc de-
�ned and rely on rather liberal rules of style and on conventions to be enforced
by humans. Taking these languages as a lead we have de�ned the speci�cation
language Attempto Controlled English (ACE) | a subset of standard English
with a domain-speci�c vocabulary and a restricted grammar in the form of a
small set of construction and interpretation rules [Fuchs et al. 98; Schwitter 98].
ACE allows users to express speci�cations precisely, and in the terms of the
application domain. ACE speci�cations are computer-processable and can be
unambiguously translated into a logic language. Though ACE may seem infor-
mal, it is a formal language with the semantics of the underlying logic language.
This also means that ACE has to be learned like other formal languages.

There have been several projects with similar aims, but in most cases the sub-
sets of English were not systematically and clearly de�ned. For example, [Macias
& Pulman 95] developed a system which resembles ours with the important dif-
ference that their system restricts only the form of composite sentences, but
leaves the form of the constituent sentences completely free. As a consequence,
the thorny problem of ambiguity remains and has to be resolved by the users
after the system has translated the speci�cation into a formal representation.

The rest of the paper is organised as follows. In section 2 we motivate the tran-
sition from full English to Attempto Controlled English and present a glimpse
of ACE. Section 3 describes the translation of ACE speci�cations into discourse



representation structures and into other logic languages. In section 4 we outline
the semantics of ACE speci�cations. Section 5 overviews querying and executing
speci�cations. Finally, in section 6 we conclude and address further points of
research. The appendix contains a complete example of an ACE speci�cation
together with its translation into the logic language of discourse representation
structures.

2 From English to Attempto Controlled English

First, we will introduce Attempto Controlled English (ACE) by an example
and then summarise its main characteristics. More information can be found in
[Fuchs et al. 98; Schwitter 98].

2.1 An Example

Speci�cations, and other technical texts, written in full natural language tend
to be vague, ambiguous, incomplete, or even inconsistent. Take for example the
notice posted in London underground trains [Kowalski 90]:

Press the alarm signal button to alert the driver.

The driver will stop immediately if any part of the train is in a station.

If not, the train will continue to the next station where help can be more
easily given.

There is a $50 penalty for improper use.

The notice leaves many assumptions and conclusions implicit. Kowalski shows
that clarity can be improved, ambiguity reduced, and assumptions and conclu-
sions made explicit when one follows guidelines for good language use. To do so,
Kowalski reformulates the notice in the declarative form of logic programs. Take
for instance the �rst part of the third sentence. Filling in the missing condition
referred to by not, Kowalski rewrites it as

The driver stops the train at the next station if the driver is alerted and not
any part of the train is in a station.

Though much improved even this sentence is incomplete since the agent who
alerts the driver is still implicit.

To eliminate this and other de�ciencies of full natural language we have
proposed the speci�cation language Attempto Controlled English (ACE) as a
well-de�ned subset of English. Since ACE is computer-processable we go beyond
what [Kowalski 90] achieved | ACE speci�cations are not only clearer and
more complete, but can also be automatically translated into a logic language,
be queried and executed.

Here is a version of the complete London underground notice in ACE. The
third sentence is the one discussed above. Note that the agent who alerts the
driver is now made explicit.



If a passenger presses an alarm signal button then the passenger alerts the
driver.

If a passenger alerts the driver of a train and a part of the train is in a
station then the driver stops the train immediately.

If a passenger alerts the driver of a train and no part of the train is in a
station then the driver stops the train at the next station.

If the driver stops a train in a station then help is available.

If a passenger misuses an alarm signal button then the passenger pays a $50
penalty.

In the appendix you can �nd this ACE text together with its translation into
the logic language of discourse representation structures.

2.2 ACE in a Nutshell

In this section we brie
y present the components of ACE, viz. the vocabulary
and the construction and interpretation rules.

Vocabulary. The vocabulary of ACE comprises

{ prede�ned function words (e.g. determiners, conjunctions, prepositions),
{ user-de�ned, domain-speci�c content words (nouns, verbs, adjectives, ad-
verbs).

Users can de�ne content words with the help of a lexical editor that presupposes
only basic grammatical knowledge. Alternatively, users can import existing lex-
ica.

Construction Rules. The construction rules de�ne the form of ACE sentences
and texts, and state restrictions on the lexical and phrasal level. The construction
rules are designed to avoid typical sources of imprecision in full natural language.

ACE Speci�cations. An ACE speci�cation is a sequence of sentences. There are

{ simple sentences,
{ composite sentences,
{ query sentences.

Simple Sentences. Simple sentences have the form

subject + verb + complements + adjuncts

where complements are necessary for transitive or ditransitive verbs and adjuncts
are optional. Here is an example for this sentence form:

The driver stops the train at the station.



Composite Sentences. Composite sentences are built from simpler sentences with
the help of prede�ned constructors:

{ coordination (and, or),
{ subordination by conditional sentences (if . . . then . . . ),
{ subordination by subject and object modifying relative sentences (who,

which, that),
{ verb phrase negation (does not, is not),
{ noun phrase negation (no),
{ quanti�cation (a, there is a, every, for every).

Query Sentences. There are

{ yes/no-queries,
{ wh-queries.

Yes/no-queries are derived from simple sentences by inverting the subject and
the verb be (Is the train in the station?), or by inserting do or does if the verb
is not be (Does the driver stop the train?). Wh-queries begin with a so-called
wh-word (who, what, when, where, how, etc.) and contain do or does (Where does
the driver stop the train?), unless the query asks for the subject of the sentence
(Who stops the train?).

Anaphora. ACE sentences and phrases can be interrelated by anaphora, i.e.
by references to previously occurring noun phrases. Anaphora can be personal
pronouns or de�nite noun phrases. In

A passenger of a train alerts a driver. He stops the train.

the personal pronoun he refers to the noun phrase a driver and the de�nite noun
phrase the train refers to the inde�nite noun phrase a train.

Coordination. Coordination is possible between sentences and between phrases
of the same syntactic type, e.g.

A passenger presses an alarm signal button and the driver stops the train.

A passenger presses an alarm signal button and alerts the driver.

A driver stops a train immediately or at the next station.

Coordination of verbal phrases can be simpli�ed. Instead of

A passenger presses a red button or presses a green button.

we can write

A passenger presses a red button or a green button.



Lexical Restrictions. Examples for lexical restrictions and typographical conven-
tions are:

{ verbs are used in the simple present tense, the active voice, the indicative
mood, the third person singular (presses),

{ no modal verbs (may, can, must etc.) or intensional verbs (hope, know, believe
etc.),

{ no modal adverbs (possibly, probably etc.),
{ ACE allows the user to de�ne synonyms (alarm signal button, alarm button)
and abbreviations (ASB standing for alarm signal button),

{ content words can be simple (train) or compound (alarm signal button, alarm-
signal-button).

Phrasal Restrictions. Examples for phrasal restrictions are:

{ complements of full verbs can only be noun phrases (press a button) or prepo-
sitional phrases (send the ambulance to the station),

{ adjuncts can only be realised as prepositional phrases (in a station) or adverbs
(immediately),

{ of -constructions (the part of the train) are the only allowed postnominal
prepositional modi�ers.

Interpretation Rules. Interpretation rules control the semantic analysis of
grammatically correct ACE sentences. They, for example, resolve ambiguities
that cannot be removed by the construction rules. The result of this analysis is
re
ected in a paraphrase. Important rules are:

{ verbs denote events (press) or states (be),
{ the textual order of verbs determines the default temporal order of the as-
sociated events and states,

{ prepositional phrases in adjunct position always modify the verb, e.g. give
additional information about the location of an event (The driver fstops the
train in a stationg.),

{ anaphoric reference is possible via pronouns or de�nite noun phrases; the
antecedent is the most recent suitable noun phrase that agrees in number
and gender,

{ noun phrase coordination within a verb phrase is interpreted as coordination
reduction; the elided verb is distributed to each conjunct (The driver presses
a red button and [presses] a green button.),

{ the textual occurrence of a quanti�er (a, there is a, every, for every) opens its
scope that extends to the end of the sentence; thus any following quanti�er
is automatically within the scope of the preceding one.

Learning ACE. In contrast to rules of formal languages the construction and
interpretation rules of ACE are easy to use and to remember since they are



similar to English grammar rules and only presuppose basic grammatical knowl-
edge. One should bear in mind, however, that in spite of its appearance ACE
is a formal language that | like other formal languages | must be learned.
Companies like Boeing and Caterpillar have been using controlled languages for
technical documentation for many years. They report that these languages can
be taught in a few days, and that users get competent in a few weeks [CLAW
98]. Thus we claim that domain specialists need less e�ort to learn and to apply
the rules of ACE than to cope with an unfamiliar formal language.

3 From ACE to Discourse Representation Structures

ACE sentences are translated into discourse representation structures | a syn-
tactical variant of full �rst-order predicate logic. We will �rst discuss the trans-
lation process, and then the handling of ambiguity.

3.1 Translation

ACE speci�cations are analysed and processed deterministically by a uni�cation-
based phrase structure grammar enhanced by linearised feature structures writ-
ten in GULP, a preprocessor for Prolog [Covington 94]. Uni�cation-based gram-
mars are declarative statements of well-formedness conditions and can be com-
bined with any parsing strategy. Prolog's built in top-down recursive-descent
parser uses strict chronological back-tracking to parse an ACE sentence. Top-
down parsing is very fast for short sentences but for longer composite sentences
the exponential costs of backtracking can slow down the parsing. It turns out
that we can do better using a hybrid top-down chart parser that remembers
analysed phrases of an ACE sentence. Actually, the chart is only used if it is
complete for a particular phrase type in a speci�c position of an ACE sentence
| otherwise the Attempto system parses the sentence conventionally.

Correct understanding of an ACE speci�cation requires not only processing
of individual sentences and their constituents, but also taking into account the
way sentences are interrelated to express complex propositional structures. It is
well-known that aspects such as anaphoric reference, ellipsis and tense cannot be
successfully handled without taking the preceding discourse into consideration.
Take for example the discourse

A passenger enters a train. The train leaves a station.

In classical predicate logic these two sentences would be represented as two
separate formulas

9X9Y (passenger(X) ^ train(Y ) ^ enter(X;Y ))

9U9W (train(U) ^ station(W ) ^ leave(U;W ))

This representation fails to relate the anaphoric reference of the de�nite noun
phrase the train in the second sentence to the inde�nite noun phrase a train in



the �rst sentence. We solve this problem by employing discourse representation
theory that resolves anaphoric references in a systematic way combining the two
propositions into one [Kamp & Reyle 93].

In our case, ACE sentences are translated into discourse representation theory
extended by events and states (DRT-E) [cf. Kamp & Reyle 93, Parsons 94].
DRT-E is a variant of predicate logic that represents a multisentential text as
a single logical unit called a discourse representation structure (DRS). Each
part of an ACE sentence contributes some logical conditions to the DRS using
the preceding sentences as context to resolve anaphoric references. A DRS is
represented by a term drs(U,Con) where U is a list of discourse referents and
Con is a list of conditions for the discourse referents. The discourse referents
are quanti�ed variables that stand for objects in the speci�ed domain, while the
conditions constitute constraints that the discourse referents must ful�l to make
the DRS true. Simple DRS conditions are logical atoms, while complex DRS
conditions are built up recursively from other DRSs and have the following forms
ifthen(DRS1,DRS2), or(DRS1,DRS2, . . . ), not(DRS), ynq(DRS) and whq(DRS)
representing conditional sentences, disjunctive phrases, negated phrases, yes/no-
queries, and wh-queries.

The translation of the two ACE sentences

A passenger enters a train. The train leaves a station.

generates the DRS

[A,B,C,D,E]

passenger(A)

train(B)

event(C,enter(A,B))

station(D)

event(E,leave(B,D))

The �rst ACE sentence leads to three existentially quanti�ed discourse referents
([A,B,C]) and the �rst three conditions of the DRS. The second ACE sentence is
analysed in the context of the �rst sentence. It contributes two further discourse
referents ([D,E]) and the fourth and the �fth condition of the DRS. The two
event conditions have been derived from lexical information that classi�es the
verbs enter and leave as being associated with events.

Analysing the second sentence in the context of the �rst one allows the At-
tempto system to resolve the train as anaphoric reference to a train. The search
space for antecedents of anaphora is de�ned by an accessibility relation among
nested DRSs. A discourse referent is accessible from a DRS D if the discourse
referent is in D, in a DRS enclosing D, in a disjunct that precedes D in an
or -DRS, or in the antecedent of an ifthen-DRS with D as consequent. The reso-
lution algorithm always picks the closest accessible referent that agrees in gender
and number with the anaphor.

Here is a more complex example from the ACE version of the underground
notice. The sentence



If a passenger alerts a driver of a train then the driver stops the train in a
station.

is translated into the DRS

[]

IF

[A,B,C,D]

passenger(A)

driver(B)

train(C)

of(B,C)

event(D,alert(A,B))

THEN

[E,F]

station(E)

event(F,stop(B,C))

location(F,in(E))

The outermost DRS has an empty list of discourse referents and an ifthen-DRS
as condition. Both the if -part and the then-part are DRSs. The discourse refer-
ents ([A,B,C,D]) occurring in the if -part of the DRS are universally quanti�ed,
while the discourse referents ([E,F]) in the then-part of the DRS are existen-
tially quanti�ed. The prepositional phrase in a station leads to the condition
station(E) and to the prede�ned condition location(F,in(E)) that indicates
the location of the event F. The Attempto system resolves the driver and the train
as anaphoric references to a driver and to a train, respectively.

A DRS can be automatically translated into the standard form of �rst-order
predicate logic and into clausal form. ACE sentences without disjunctive conse-
quences lead to Prolog programs.

3.2 Constraining Ambiguity

Ambiguity is the most prevalent problem when natural language is processed by
a computer. Though ambiguity occurs on all levels of natural language, here we
will only discuss a case of syntactical ambiguity. Take the three sentences

The driver stops the train with the smashed head-light.

The driver stops the train with great e�ort.

The driver stops the train with the defect brake.

Note that all three sentences have the same grammatical structure, and that
all three sentences are syntactically ambiguous since the prepositional phrase
with. . . can be attached to the verb stops or to the noun train. A human reader
will perceive the �rst and the second sentence as unambiguous since each sen-
tence has only one plausible interpretation according to common sense, while



the third sentence allows two plausible interpretations since with the defect brake
can refer to stops or to train. For this sentence additional contextual knowl-
edge is necessary to select the intended interpretation. Altogether, we �nd that
humans can disambiguate the three sentences with the help of contextual, i.e.
non-syntactical, knowledge.

Standard approaches to handle ambiguity by a computer rely on Generate
and Test or on Underspeci�ed Representations.

Generate and Test. The traditional account is �rst to generate all possible
interpretations, and then to eliminate those which are not plausible. The elimina-
tion of implausible interpretations can be done by presenting all interpretations
to the user who selects the intended one [e.g. Macias & Pulman 95], or by formal-
ising relevant contextual knowledge and automatically selecting the most �tting
interpretation on the basis of this knowledge [e.g. Hindle & Rooth 93]. Generate
and Test su�ers from several shortcomings: it is ineÆcient and can lead to the
combinatorial explosion of interpretations; manually selecting one of many in-
terpretations is a burden on the user; formalising relevant contextual knowledge
for the automatic disambiguation is diÆcult.

Underspeci�ed Representations. A sentence gets just one semantic represen-
tation based on its syntactic form leaving certain aspects of the meaning unspec-
i�ed [Alshawi 92; Reyle 93]. Fully speci�ed interpretations are obtained by �lling
in material from formalised contextual knowledge. This approach has a drawback
that we encountered already: it is diÆcult to formalise rules that lead to more
speci�c interpretations because complex contextual e�ects | world knowledge,
linguistic context, lexical semantics of words etc. | play a crucial role in the
human disambiguation process.

In approaches based on Generate and Test or on Underspeci�ed Representa-
tions disambiguation depends in one way or other on context. Thus the same
syntactic construct could get di�erent interpretations in di�erent contexts which
are perhaps only vaguely de�ned [Hirst 97]. This may be desirable for the process-
ing of unrestricted natural language but is highly problematic for speci�cations.
Writing speci�cations is already very hard. If on top of this the speci�cation lan-
guage allowed context-dependent interpretations then writing, and particularly
reading, speci�cations would indeed be very diÆcult, if not entirely impossible.

To avoid this problem, ACE resolves ambiguity by a completely syntactical
approach without any recourse to the context.

More concretely, ACE employs three simple means to resolve ambiguity:

{ some ambiguous constructs are not part of the language; unambiguous al-
ternatives are available in their place,

{ all remaining ambiguous constructs are interpreted deterministically on the
basis of a small number of interpretation rules that use syntactic information
only; the interpretations are re
ected in a paraphrase,

{ users can either accept the assigned interpretation, or they must rephrase
the input to obtain another one.

For the third example sentence



The driver stops the train with the defect brake.

the Attempto system would generate the paraphrase

The driver fstops the train with the defect brakeg.

that re
ects ACE's interpretation rule that a prepositional phrase always modi-
�es the verb. This interpretation is probably not the one intended by the user. To
obtain the other interpretation the user can reformulate the sentence employing
the interpretation rule that a relative sentence always modi�es the immediately
preceding noun phrase, e.g.

The driver stops the train that has a defect brake.

yielding the paraphrase

The driver stops fthe train that has a defect brakeg.

Altogether, ACE has just over a dozen interpretation rules to handle ambiguity.

4 Semantics of ACE Speci�cations

In this chapter we introduce the model-theoretic interpretation of ACE, and
explain ACE's model of time, events and states.

4.1 Model-Theoretic Interpretation

A discourse representation structure is a syntactic variant of full �rst-order predi-
cate logic and thus allows for the usual model-theoretic interpretation. According
to [Kamp & Reyle 93] any interpretation of a DRS is also an interpretation of
the text from which the DRS was derived. Concretely, we have the following
de�nition:

Let D be the DRS derived from the set S of ACE sentences with the
vocabulary V , andM be a model of V . Then S is true in M i� D is true
in M .

Thus we can associate meaning to ACE speci�cations in a way that is completely
analogous to the model-theoretic interpretation of logic formulas. We can give
each ACE sentence a truth value, i.e. we call a sentence true if we can interpret
it as describing an actual state of a�airs in the speci�ed domain, or we label the
sentence false if we cannot establish such an interpretation.

We can interpret simple sentences as descriptions of distinct events or states.
The sentence

A driver stops a train.



is true if the word driver can be interpreted as a relation driver that holds for
an object A of the speci�ed domain, the word train as a relation train that
holds for an object B of the speci�ed domain, and the word stop as a relation
stopping event that holds between A and B. Otherwise, the sentence is false.

Once we have assigned meaning to simple sentences we can give meaning
to composite sentences. Again, this is completely analogous to classical model
theory. A conjunction of sentences is true if all conjoined sentences are true. A
disjunction of sentences is true if at least one of the sentences of the disjunction
is true. A sentence with a negation is true if the sentence without the negation
is false. An ifthen-sentence is only false if the if -part is true and the then-
part is false; otherwise, the ifthen-sentence is true. A sentence with a universal
quanti�er is true if the sentence without the universal quanti�er is true for all
objects denoted by the quanti�ed phrase.

4.2 Events and States

Attempto Controlled English has a model of time, events and states that closely
resembles that one of the event calculus [Sadri & Kowalski 95].

Each verb in a sentence denotes an event or a state. Events occur instanta-
neously, while states | i.e. relations that hold or do not hold | last over a time
period until they are explicitly terminated.

Each occurrence of a verb is implicitly associated with a time. If the verb
denotes an event this is the time point at which the event occurs; if the verb
denotes a state this is the time point from which on the state holds.

Per default the textual order of verbs establishes the relative temporal order
of their associated events or states. E.g. in

A passenger alerts a driver. The driver stops a train. The train is in a station.

the event alert is temporally followed by the event stop which is temporally
followed by the onset of the state be in a station. Our default assumption \textual
order = temporal order" is supported by psychological and physiological evidence
[M�unte et al. 98].

Users can override the default temporal order by explicitly specifying times
through prepositional phrases like at 9 o'clock, and by adding prepositional
phrases like at the same time, or in any temporal order. A future version of ACE
will allow users to combine sentences with the help of temporal prepositions like
before, after and while.

5 Deductions from Discourse Representation Structures

We describe how deduction from discourse representation structures can be used
to answer queries, to perform hypothetical and abductive reasoning, and to exe-
cute a speci�cation. Furthermore, we brie
y indicate how users can de�ne domain
theories and ontologies.



5.1 Theorem Prover for Discourse Representation Structures

On the basis of a proposal by [Reyle & Gabbay 94] we have developed a correct
and complete theorem prover for discourse representation structures. To prove
that a discourse representation structure DRS2 can be derived from a discourse
representation structure DRS1

DRS1 ` DRS2

the theorem prover proceeds in a goal-directed way without any human inter-
vention. In the simplest case an atomic condition of DRS2 is a member of the
list of conditions of DRS1 | after suitable substitutions. In other cases, the left
or the right side of the turn-stile are reformulated and simpli�ed, e.g. we replace

L ` (R1 _ R2) by L ` R1 and L ` R2

or

L ` (R1) R2) by (L [ R1) ` R2

This theorem prover will form the kernel of a general deduction system for
DRSs. The deduction system will answer queries, perform hypothetical reason-
ing (`What happens if ... ?'), do abductive reasoning (`Under which conditions
does . . . occur?'), and execute speci�cations. All interactions with the deduction
system will be in ACE.

5.2 Query Answering

A speci�cation in a logic language describes a particular state of a�airs within a
problem domain. We can examine this state of a�airs and its logical consequences
by querying the speci�cation in ACE. ACE allows two forms of queries

{ yes/no-queries asking for the existence or non-existence of the state of a�airs
de�ned by the ACE speci�cation,

{ wh-queries (who, what, when, where, how, etc.) asking for speci�c details of
the state of a�airs described by the ACE speci�cation.

Here is an example of a wh-query. Once we have translated the ACE sentence

A passenger enters a train.

into the DRS S

[A,B,C]

passenger(A)

train(B)

event(C,enter(A,B))

we can ask



Who enters a train?

The query sentence is translated into the DRS Q

[]

WHQ

[A,B,C]

who(A)

train(B)

event(C,enter(A,B))

and answered by deduction

S ` Q

Query words | like who | are replaced during the proof and answers are
returned to the user in ACE, i.e.

[A passenger] enters a train.

5.3 Hypothetical Reasoning

When a logic speci�cation partially describes a state of a�airs there can be
various possibilities to extend the speci�cation. These extensions can lead to
diverse logical consequences, some of which are desirable, while others are not.
That is, we may want to ask the question `What happens if . . . ?'.

`What happens if . . . ?' questions mean that we test a particular hypothe-
sis H by examining its implied consequence C in the context of a given logic
speci�cation S.

S ` (H ) C)

With the help of the deduction theorem this can be restated as

(S [H) ` C

i.e. we derive the logical consequence C of the union of S and H .
Here is a simple example shown on the level of ACE. If we extend the speci-

�cation

If a passenger alerts a driver then the driver stops a train.

by the sentence

A passenger alerts a driver.

then we can deduce the ACE sentence

A driver stops a train.

as the logical consequence of the speci�cation and its extension.



5.4 Abductive Reasoning

Once we have devised a logic speci�cation we may want to investigate under
which conditions a certain state of a�airs occurs. If the conditions are already
described by the logic speci�cation we have the situation of a simple query.
However, if the speci�cation does not yet contain the pre-conditions of the state
of a�airs we are interested in then the question `Under which conditions does ...
occur?' can lead to abductive extensions of the speci�cation.

Abduction investigates under which conditions A we can derive a particular
consequence C from the logic speci�cation S.

(S [A) ` C

Again a simple example. Given the speci�cation

If a passenger alerts a driver then the driver stops a train.

If a train arrives at a station then a driver stops the train.

we want to know under which conditions the state of a�airs occurs that is de-
scribed by the sentence

A driver stops a train.

Abduction will give us �rst the ACE sentence

A passenger alerts a driver.

and then the ACE sentence

A train arrives at a station.

as two possible conditions.

5.5 Executing an ACE Speci�cation

Model-oriented logic speci�cations build a behavioural model of the program to
be developed [Wing 90], and one might be interested in executing this model to
demonstrate its behaviour, be it for validation, or for prototyping. Formally, this
form of execution is based on the re
exivity of the deduction relation.

S ` S

The derivation succeeds trivially. However, it can be conducted in a way that the
logical and the temporal structure of the speci�cation are traced, and that users
can convince themselves that the speci�cation has the expected behaviour. Fur-
thermore, if predicates have side-e�ects | i.e. operations that modify the state
of the system such as input and output | these side-e�ects can be made visi-
ble during the derivation. The concrete side-e�ects are realised by the execution
environment.

Executing the ACE speci�cation



A passenger alerts the driver. The driver stops the train. The train is in the
station.

leads to the execution trace:

event: A alerts B

A: passenger

B: driver

event: B stops D

D: train

state: D is in F

F: station

Validating a speci�cation can be diÆcult since users may �nd it hard to relate
its logical consequences to the | possibly implicit or incomplete | require-
ments. The Attempto system eases this task by expressing the execution trace
in the terms of the problem domain. This not only reduces the semantic distance
between the concepts of the application domain and the speci�cation but also
increases the eÆciency of the validation process.

5.6 Domain Knowledge

The Attempto system is not associated with any speci�c application domain, nor
with any particular software engineering method. By itself it does not contain any
knowledge or ontology of application domains, of software engineering methods,
or of the world in general. Thus users must explicitly de�ne domain knowledge.
Currently, this is possible with the help of ACE sentences like

Waterloo is a station.

Every train has a driver.

Even constraints can be expressed. If a speci�cation states in one place that a
train is out of order, and in another place that at the same time the same train
is available, the contradiction can be detected if we explicitly de�ne that out of
order and available exclude each other, e.g.

No train is out of order and available at the same time.

In the future, ACE will provide meta-statements like

De�ne a train as a vehicle.

which will allow users to de�ne domain theories and ontologies more concisely.
With other meta-statements users will be able to specify constraints, safety
properties, and exceptions.



6 Conclusions

We have developed Attempto Controlled English (ACE) as a speci�cation lan-
guage that combines the familiarity of natural language with the rigour of formal
speci�cation languages. Furthermore, we have implemented the Attempto spec-
i�cation system that allows domain specialists with little or no knowledge of
formal speci�cation methods to compose, to query and to execute formal spec-
i�cations using only the concepts and the terms of their respective application
domain.

The Attempto system translates ACE speci�cations into discourse represen-
tation structures (DRSs). Being a variant of �rst-order predicate logic, DRSs
can readily be translated into a broad range of other representations. While the
Attempto system comprises an automatic translation of DRSs into �rst-order
predicate logic, clausal logic and Prolog, other DRSs were manually translated
into the input language of the Fin�mo theorem prover [Bry et al. 98]. This means
that ACE is not only a speci�cation language but also a convenient means to
express theorems, integrity constraints and rules.

Currently, we are extending ACE with plurality and with complementary
notations for graphical user interfaces and algorithms. Furthermore, we are in-
vestigating ways how to structure large ACE speci�cations.
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Appendix

Original Version of the London Underground Notice

Press the alarm signal button to alert the driver.

The driver will stop immediately if any part of the train is in a station.

If not, the train will continue to the next station where help can be more easily given.

There is a $50 penalty for improper use.

ACE Version with Sentence by Sentence Translation into DRSs

If a passenger presses the alarm signal button then the passenger alerts the driver.

[]

IF

[A,B,C]

passenger(A)

alarm_signal_button(B)

event(C,press(A,B))

THEN

[D,E]

driver(D)

event(E,alert(A,D))

If a passenger alerts the driver of a train and a part of the train is in a station then the

driver stops the train immediately.

[]

IF

[A,B,C,D,E,F,G]

passenger(A)

driver(B)

train(C)

of(B,C)

event(D,alert(A,B))

part(E)

of(E,C)

station(F)

state(G,be(E))

location(G,in(F))

THEN

[H]

event(H,stop(B,C))

manner(H,immediately)

If a passenger alerts the driver of a train and no part of the train is in a station then the

driver stops the train at the next station.

[]

IF

[A,B,C]

passenger(A)

driver(B)



train(C)

of(B,C)

event(D,alert(A,B))

IF

[E]

part(E)

of(E,C)

THEN

[]

NOT

[F,G]

station(F)

state(G,be(E))

location(G,in(F))

THEN

[H,I]

next(H)

station(H)

event(I,stop(B,C))

location(I,at(H))

If the driver stops the train in a station then help is available.

[]

IF

[A,B,C,D]

driver(A)

train(B)

event(C,stop(A,B))

station(D)

location(C,in(D))

THEN

[E,F]

help(E)

state(F,available(E))

If a passenger misuses the alarm signal button then the passenger pays a $50 penalty.

[]

IF

[A,B,C]

passenger(A)

alarm_signal_button(B)

event(C,misuse(A,B))

THEN

[D,E]

$_50_penalty(D)

event(E,pay(A,D))


