
CLNLP 95, WORKSHOP ON COMPUTATIONAL LOGIC FOR NATURAL LANGUAGE PROCESSING, EDINBURGH, APRIL 3-5, 1995

Specifying Logic Programs in Controlled Natural Language

Norbert E. Fuchs, Rolf Schwitter
Department of Computer Science, University of Zurich

{fuchs, schwitter}@ifi.unizh.ch

Abstract
Writing specifications for computer programs is not easy since one has to take into account the disparate
conceptual worlds of the application domain and of software development. To bridge this conceptual gap we
propose controlled natural language as a declarative and application-specific specification language. Controlled
natural language is a subset of natural language that can be accurately and efficiently processed by a computer,
but is expressive enough to allow natural usage by non-specialists. Specifications in controlled natural language
are automatically translated into Prolog clauses, hence become formal and executable. The translation uses a
definite clause grammar (DCG) enhanced by feature structures. Inter-text references of the specification, e.g.
anaphora, are resolved with the help of discourse representation theory (DRT). The generated Prolog clauses are
added to a knowledge base. We have implemented a prototypical specification system that successfully processes
the specification of a simple automated teller machine.

1 Declarative Specifications
The derivation of formal software specifications from informal requirements is
not easy and cannot be formalised. However, the derivation process can be made
easier by the deliberate choice of a specification language that allows users to
express concepts of an application domain concisely and directly, and to convince
them of the adequacy of the specification without undue difficulty.
Though Prolog has been recommended as a general high-level specification
language, and has often been used as such, application-specific specification
languages seem to be a better choice since they allow users to express the concepts
of the application domain directly, and still can be mapped to Prolog [Sterling 92].
By making "true statements about the intended domain of discourse" [Kramer &
Mylopoulos 92] and "expressing basic concepts directly, without encoding, taking
the objects of the language as abstract entities" [Börger & Rosenzweig 94],
application-specific specification languages are – in the true sense of the word –
declarative, and have all the advantages of declarative programming [Lloyd 94].
In a previous phase of our project we have already shown that graphical and
textual views of logic programs can be considered as application-specific
specification languages [Fuchs & Fromherz 94]. Graphical views include
transition networks for finite state automata and window-oriented user-
interfaces, while textual views comprise formal specification languages.
Each view has an associated editor that allows to compose specifications from
predefined and reusable elements of a repository. Furthermore, there is an
automatic bi-directional mapping between a program and its views.
Both these features have important consequences.
• With the help of the view editors we can compose programs by means of

application-specific concepts.
• The mapping of a view to a program in a logic language assigns a formal

semantics to the view. Thus, though views give the impression of being
informal and have no intrinsic meaning, they are in fact formal and have the
semantics of their associated program.

– 2 –

• The executability of the logic program and the semantics-preserving bi-
directional mapping between a program and its views enable us to simulate
the execution of the program on the level of the views. Thus validation and
prototyping in concepts close to the application domain become possible.

• By providing semantically equivalent representations, we can reduce the gap
between the different conceptual worlds of the application domain specialist
and of the software developer. In addition, the dual-faced informal/formal
appearance of the views provides an effective solution for the critical
transition from informal to formal representations.

Altogether, the characteristics of the views let us call them specifications of the
program. Furthermore, since the views are semantically equivalent to the
program, they can even be considered as executable specifications.
In the following, we describe an approach using controlled natural language – a
subset of natural language characterised by a restricted grammar and an
application-specific vocabulary – as a further view of a logic program. Users
compose specifications for logic programs in controlled natural language that are
automatically translated into Prolog clauses. As pointed out above, this
translation makes seemingly informal specifications in controlled natural
language formal, assigns them a semantics, and gives them the combined
advantages of informality and formality. The generated Prolog knowledge base
can be queried and executed. Its clauses can also be paraphrased in controlled
natural language. However – contrary to the system described in [Fuchs &
Fromherz 94] – the exact original cannot be reproduced since the controlled
natural language system uses a finely-grained lexicon instead of a repository of
larger chunks of interrelated information.
We have implemented a specification system offering the following
functionality. The user enters interactively specification text in controlled
natural language that is parsed by a DCG enhanced by feature structures, analysed
for discourse references, and translated into Prolog clauses that are added to a
knowledge base. The user can ask questions that are processed as Prolog queries
and answered with the help of the knowledge base. Our main specification
example is a simple automated teller machine.
Section of this paper 2 describes the motivation for controlled natural language
and delineates its syntactical constructs. In section 3 we briefly introduce phrase
structure grammars and GULP, a linearised notation for feature structures.
Section 4 summarises discourse representation theory and gives examples of
simple and complex discourse representation structures. Furthermore, we show
how eventualities – events and states – can be represented by discourse
representation structures in a natural way. In section 5 we give an overview of
the prototypical specification system that we have been implementing. Section 6
shows the translation of an example sentence in controlled natural language
into a discourse representation structure, and then into Prolog. This section also
addresses the paraphrasing of specifications, query answering, and the execution
of a specification. In section 7 we conclude and outline future research.

– 3 –

2 Controlled Natural Language
A software specification is a statement of the services a software system is
expected to provide to its users. It should be written in a concise way that is
understandable by all potential users of the system [Sommerville 92]. Strangely
enough, this goal is hard to achieve if specifications are expressed in full natural
language. Natural language terminology tends to be ambiguous, imprecise and
unclear. Also, there is considerable room for errors and misunderstandings since
people may have different views of the role of the software system.
Furthermore, requirements vary and new requirements arise so that the
specification is subject to frequent change. All these factors can lead to
incomplete and inconsistent specifications that are difficult to validate against
the requirements. People have advocated the use of formal specification
languages to eliminate some of the problems associated with natural language,
but formal languages have a grave disadvantage: they are not easily understood
by untrained users.
Though it may seem that we are stuck between the over-flexibility of natural
language and the potential incomprehensibility of formal languages, there is a
solution. To improve the quality of specifications without loosing their
readability we propose to restrict the use of natural language in specifications to a
controlled subset with a well-defined syntax and semantics. On the one hand this
subset should be expressive enough to allow natural usage by non-specialists,
and on the other hand the language should be accurately and efficiently
processable by a computer.
We suggest that the basic model of controlled natural language should cover the
following constructs:
• simple declarative sentences of the form subject – predicate – object
• relative clauses, both subject and object modifying
• comparative constructions like bigger than, smaller than and equal to
• compound phrases like and-lists, or-lists, and-then-lists
• if ... then sentences
• negation like does not, is not and has not
• yes/no queries, wh-queries
Similar constructs have been proposed for the computer-processable natural
language of Pulman and collaborators [Macias & Pulman 92, Pulman 94].
Furthermore, the controlled language is characterised by a vocabulary that
comprises the usual closed word classes – prepositions, determiners etc. – and
application-specific subsets of the open classes – e.g. nouns and verbs.
Users seem to be able to construct sentences in controlled natural language, and
to avoid constructions that fall outside the bounds of the language, particularly
when the system gives feedback of the analysed sentences in a paraphrased form
[Epstein 85, Capindale & Crawford 89]. We are convinced that employing
controlled natural language for specifications will be most successful when users
are trained and willing to strive for clear writing.

– 4 –

An additional benefit of controlled natural language is that it may help finding
an agreement concerning the correct interpretation of a specification. This is of
utmost importance because a software specification will be read, interpreted,
criticised, and rewritten, many times until a result is produced that is satisfactory
to all participants.

3 Unification-Based Phrase Structure Grammars (PSGs)
The framework of phrase structure grammars builds the theoretical background
for the syntactic and semantic processing of controlled language texts [Borsley 91].
For our implementation we are using Definite Clause Grammars enhanced by
feature structures. These feature structures are written in GULP (Graph
Unification Logic Programming) – a syntactic extension of Prolog that supports
the implementation of unification-based PSGs by adding a notation for
linearised feature structures [Covington 94], e.g.

case:nom .. agr:(person:third .. number:sg)

GULP adds to Prolog two operators and a number of system predicates. The first
operator ':' binds a feature name to its value that can be a category. The second
operator '..' joins one feature-value pair to the next.
GULP feature structures can be combined with the DCG formalism to yield a
powerful lingua franca for natural language processing. Technically, this means
introducing GULP feature structures as arguments into nodes of DCGs. Thus we
can write

sentence --> noun_phrase(case:nom .. agr:Person_Number),
verb_phrase(agr:Person_Number).

The GULP translator accepts a Prolog program, scans it for linearised feature
structures and converts them – by means of automatically built translation
schemata – into an internal term representation called value list. Grammar rules
are parsed top-down by the Prolog interpreter.

4 Discourse Representation Theory (DRT)
Correct understanding of a specification requires not only processing of
individual sentences and their constituents, but also taking into account the way
sentences are interrelated to express complex propositional structures. It has been
recognised that aspects such as pronominal reference, tense and propositional
attitudes cannot be successfully handled without taking the preceding discourse
into consideration. We do this by employing discourse representation theory
[Kamp & Reyle 93], and by extending our parser to extract the semantic structure
of a sentence in the context of the preceding sentences.
DRT represents a multisentential natural language discourse in a single logical
unit called a discourse representation structure (DRS). In general, a DRS K is
defined as an ordered pair <U, Con> where U is a set of discourse referents
(discourse variables) and Con is a set of conditions. The conditions Con are
either atomic (of the form P(u1, ..., un) or u1 = u2), or complex (negation,
implication, or disjunction). A DRS is obtained through the application of a set
of syntax-driven DRS construction rules R. These rules do not only examine the

– 5 –

sentence under construction, but also the DRS that has been built so far. Thus we
can define the meaning of a sentence S as the function M from a given DRS K to
an extended K´ induced by R.

Simple DRSs
The specification of the automated teller machine contains the two sentences

SimpleMat is a simple money dispenser.
It has a user interface.

Starting from the empty DRS K0, the discourse representation structure for the
two sentences is constructed by processing each sentence in turn. A first DRS K1
corresponds to the processing of the first sentence. While the sentence is parsed
top-down, the DRS K1 is composed simultaneously, eventually yielding the
following result.

named(X1,simplemat)
money_dispenser(X2)
simple(X2)
is(X1,X2)

X1 X2

The DRS K1 says that the bearer of the name SimpleMat is identical with the
object that was indicated by the noun phrase a simple money dispenser. This
indefinite noun phrase contributes two conditions to the DRS: one condition for
the compound noun money dispenser and one for the descriptive adjective
simple. The function of the verb to be in the above discourse is to express that
the two noun phrases have the same referent. To reflect this relation in the DRS
a condition of the form is(X1,X2) has been introduced, which asserts that the
objects represented by X1 and X2 coincide.
At this point, we will incorporate the second sentence into the established DRS
K 1 by extending it to K 2 . In order to do it, we have to find a suitable
representation of the relation which holds between the anaphoric pronoun it
and its antecedent in the first sentence. We will represent this information in
the form of an equation, with the new referent on the left and the referent that is
chosen as antecedent on the right of the equality sign. The referent chosen is the
closest antecedent that agrees in case, number and gender.
Incorporating the whole information of the second sentence, we get three new
conditions and obtain DRS K2:

named(X1,simplemat)
money_dispenser(X2)
simple(X2)
is(X1,X2)

X1 X2 X3 X4

user_interface(X4)
have(X3,X4)
X3 = X1

– 6 –

Complex DRSs
DRSs that represent conditional, universal or negative sentences are complex,
i.e. they contain sub-DRSs.
Sentences in which a subordinate if-clause combines with a main then-clause are
usually referred to as conditional sentences. Such sentences serve the purpose of
making hypothetical claims. The supposed if-clause is called the antecedent and
the hypothetically asserted then-clause the consequent of the conditional.
Intuitively, the consequent provides a situational description which extends that
given by the antecedent.
In general, a conditional sentence of the form if A then B contributes to a DRS K0
a condition of the form K1 => K2, where K1 is a sub-DRS corresponding to A and
K2 is the sub-DRS resulting from extending K1 through the incorporation of B.
For instance, the conditional sentence of our specification

If the trap-door-algorithm calculates a number
then the number equals the check code.

is represented in DRT as:

=>

X1 X2

trap_door_algorithm(X1)
number(X2)
calculate(X1,X2)

number(X3)
X3 = X2
check_code(X4)
equal(X3,X4)

X3 X4

In terms of truth conditions, the above conditional K1 => K2 is satisfied if and
only if there are individuals X1 and X2 that make the sub-DRS K1 and the sub-
DRS K2 true simultaneously. This definition contrasts with classical logic where
the implication is also true in the situation when the antecedent is false.
Note the unique reference use and the anaphoric use of the definite noun
phrases. A unique reference X1 of the definite noun phrase the trap-door-
algorithm is created in the if-sub-DRS because no antecedent can be found in
the superordinate DRS. The definite noun phrase the number is used
anaphorically in the then-sub-DRS. Consequently, an equation of the form X3 =
X2 is generated, where X2 is the discourse referent of the antecedent object noun
phrase in the if-sub-DRS.
DRT claims that an anaphor can only refer to a discourse referent in the current
DRS or in a DRS superordinate to it. Though this restriction makes correct
predictions about the accessibility of antecedents to anaphors, it needs to be
relaxed in practical applications to avoid contrived sentences.

– 7 –

As mentioned above DRSs are restricted formulas of predicate calculus, and
resemble Horn clauses. All conditions in the antecedent are implicitly
universally quantified and each condition in the consequent has an implicit
existential quantifier contingent on the antecedent. The sub-DRS K1 – on the left
of the arrow – is called the restrictor of the quantifier, the one on the right – K2 –
its scope. In formalisms like predicate logic the semantic contributions of the
words if ... then would have to be simulated by appropriate combinations of the
universal quantifier and the implication connector. DRT seems to offer a much
more natural representation for the systematic correlation between syntactic
form and linguistic meaning of conditional sentences. This reflects the
contextual role that a DRS was intended to play, namely mainly as a context for
what is to be processed next, and not only as a representation of what has been
processed already.

DRT with Eventualities (DRT-E)
DRT-E investigates further details of the semantics of verbs, taking into account
the theory of underlying eventualities (events or states) and handling temporal
and aspectual information [Kamp & Reyle 93, Reichenbach 47]. A prototypical
implementation of DRT-E is described in [Brown 94].
Investigating sentences like

The customer enters the card.
SimpleMat checks the card.

and
Every customer has a personal code.

we recognise that the first two sentences are naturally understood as a report of
temporally ordered events, while the second sentence describes something like a
condition or state.
Verbs like enter or check introduce the existence of an event in much the same
way as a noun phrase introduces the existence of an object. Events involve some
kind of change in the universe of discourse, they persist through a certain
interval of time and come eventually to a culmination point. They imply that
some non-temporal condition, which is true when the event starts, is
terminated by the event, and is replaced by further events.
States differ from events. A state verb such as have expresses a quality that is true
indefinitely – it involves the continuation of a condition.
Sometimes the distinction between state-sentences and event-sentences is
recognisable from the syntactic form of the verb, but it is well known that it is
not the verb alone which decides about the eventuality introduced by a new
sentence. The different thematic roles may exert a major influence.
In our approach, we represent the statement that E1 is the event of X1 entering
X2 as enter(E1,X1,X2) and use the special predicate cul(E1,T1) to express
that the event E1 culminates at time T1. The relation between the reference time
T1 of E1 and the speech time N is established with the help of the additional
predicate at(T1,N). With these notational changes, the DRS looks like

– 8 –

named(X3,simplemat)
card(X4)
check(E2,X3,X4)
X4 = X2
cul(E2,T2)
at(T2,N)

customer(X1)
card(X2)
enter(E1,X1,X2)
cul(E1,T1)
at(T1,N)

N E1 T1 X1 X2 E2 T2 X3 X4

As mentioned above, a state is temporally extended and homogenous. It
describes a static situation S that holds or does not hold at a given time T. The
function of the verb have is twofold: it introduces a discourse referent S which
represents a state of affair and it provides a descriptive characterisation of this
state represented by S. We will retain this information as a predicate of the form
have(S,X1,X2). The additional predicate hold(S,T) asserts that S holds at T
and the condition at(T,N) indicates that the eventuality described is located at
the same time as the utterance time of the discourse that the DRS is taken to
represent.

=>customer(X1)

X1
personal_code(X2)
have(S,X1,X2)
hold(S,T)
at(T,N)

N S T X2

Ways to Investigate DRSs
It is important to realise that a DRS can be investigated in several different ways.
First, it can be given a model-theoretic semantics by embedding it in a model.
Second, a DRS can be manipulated deductively to infer further information
using rules which operate only upon the structural content of the logical
expressions. Third, a DRS can be investigated from a more psychological point of
view as a contribution of building up a mental model of a language user.
The second and the third ways lead to the concept of knowledge assimilation
[Kowalski 93]. According to this proof theoretic approach a DRS is processed by
resource-constrained deduction and tested whether it can be added to a
continuously changing theory. The terms truth and falsity of DRSs in model

– 9 –

theory are replaced by the proof of consistency and inconsistency in the process of
knowledge assimilation.

From DRSs to Prolog
Translating DRSs into Prolog clauses poses a problem – free variables in Prolog
clauses have implicit universal quantifiers. It is not possible to translate the DRS
for

SimpleMat is a simple money dispenser.

namely

named(X1,simplemat)
money_dispenser(X2)
simple(X2)
is(X1,X2)

X1 X2

into Prolog as

named(X1,simplemat).
money_dispenser(X2).
simple(X2).
is(X1,X2).

The first fact would mean "Anything is named SimpleMat". We would not even
be able to say that the money dispenser is the same thing as the object named
SimpleMat, because variables in different clauses are distinct even if they have
the same name. What we need is a discourse marker for each existentially
quantified entity. For that reason, a constant (integer) is randomly chosen to
represent the individual X1 . Then the DRS conditions – with the constants
instantiated for the discourse referents – would be asserted in the knowledge
base

named(1,simplemat).
money_dispenser(1).
simple(1).

Two additional problems arise when we translate conditions which use sub-
DRSs. First, Prolog clauses cannot have two predicates in its consequent, i.e.
clauses of the form

a,b :- c,d.

are not permitted. To deal with this problem, Covington and his collaborators
introduce a special operator (::-) as intermediate representation for clauses with
more than one consequent [Covington et al. 88]. Now we can write

a,b ::- c,d.

Since this rule cannot be asserted directly into the knowledge base it is split up
into several Prolog clauses by distributing the consequents:

a :- c,d.
b :- c,d.

– 10 –

Second, if the consequent of a conditional sentence introduces new variables,
these variables have implicit existential quantifiers which depend on the
antecedent. Since Prolog cannot represent this dependence directly, we have to
simulate it by a form of skolemisation as

card([2,X1]), have(X1,[2,X1]) ::- customer(X1).

respectively as the two Prolog clauses

card([2,X1]) :- customer(X1).
have(X1,[2,X1]) :- customer(X1).

The Prolog term [2,X1] can be interpreted as a value that is a function of the
value of X1.

5 Overview of the Specification System
In this section we briefly describe the components of our specification system,
most of which have already been implemented in a prototypical form.
The user enters specification text in controlled natural language which the
Dialog Component forwards to the parser in tokenised form. Parsing errors and
ambiguities to be resolved by the user are reported back by the dialog component.
The user can also query the knowledge base in controlled natural language.
The Parser uses a predefined definite clause grammar with feature structures and
a predefined linguistic lexicon to check sentences for syntactical correctness, and
to generate syntax trees and sets of nested discourse representation structures.

Text

Dialog
Component

Linguistic
Lexicon

Knowledge
Base

Parser

Discourse
Handler

Translator
to Prolog

Knowledge
Assimilator

Answer
Generator

Inference
Engine

– 11 –

The Linguistic Lexicon contains an application-specific vocabulary. The lexicon
can be modified by an editor invokable from the dialog component. This editor
will be called automatically when the parser finds an undefined word.
The Discourse Handler analyses and resolves inter-text references and updates
the discourse representation structures generated by the parser.
The Translator translates discourse representation structures into Prolog clauses.
These Prolog clauses are either passed to the knowledge assimilator, or – in case
of queries – to the inference engine.
The Knowledge Assimilator adds new knowledge to the knowledge base in a
way that avoids inconsistency and redundancy.
The Inference Engine answers user queries with the help of the knowledge base.
In a preliminary version the inference engine is just the Prolog interpreter.
The Answer Generator takes the answers of the inference engine, reformulates
them in restricted natural language, and forwards them to the dialog
component.

6 Using the Specification System

An Example Translation
As a simple example we will demonstrate the translation of the sentence

Every customer has a card.

into Prolog. The discourse representation structure is built up by the parser and
represented by a Prolog term of the form drs(U,Con). U is a list of discourse
referents represented by unique Prolog variables and Con is a list of terms
containing these variables. For the example sentence the DRS becomes

drs([],
 [ifthen(
 drs([X1], [gender(X1,[m,f]), number(X1,sg), customer(X1)]),
 drs([X2,X1],[gender(X2,n), number(X2,sg), card(X2), have(X1,X2)]))
])

This initial DRS contains gender and number conditions that are employed for
the resolution of anaphoric references. The discourse handler simplifies the DRS
by eliminating the gender and number information, and by unifying terms. We
get

drs([],
 [ifthen(
 drs([X1], [customer(X1)]),
 drs([X2,X1],[card(X2), have(X1,X2)]))
])

which is finally translated into the two Prolog clauses

card([2,X1]) :- customer(X1).
have(X1,[2,X1]) :- customer(X1).

that are added to the knowledge base. The Prolog term [2,X1] can be interpreted
as a Skolem function assigning each customer his/her individual card.

– 12 –

Querying the Knowledge Base
Like any other Prolog program the knowledge base can be queried by standard
Prolog queries. But doing so would defy our tacit assumption that the user need
not look at the internal representations of the specifications. Thus we allow
certain classes of queries to be formulated in controlled natural language.

Yes/No Queries
The first class of queries just examines the factual information in the knowledge
base. Let us assume that the user entered the text

SimpleMat is a simple money dispenser.
It has a user interface.

Now we can ask
Is SimpleMat a money dispenser?

This query will be translated into the Prolog query
named(1, simplemat), money_dispenser(1)

and the system will respond with
yes

Similarly
Does SimpleMat have a simple user interface?

no

Wh-Queries
Another class of queries contains pronouns like who and what. These pronouns
are represented internally as variables that can be instantiated by Prolog terms
during the inference process. The query

Who is a money dispenser?

is answered by the system in a form that shows the instantiation
[SimpleMat] is a money dispenser.

Paraphrasing
To hide the internal representations of specifications, paraphrasing of analysed
sentences in natural language is necessary in two situations – when the system
gives feedback to the user, and when the user wants to examine the knowledge
base.

Feedback
Let us assume that the user entered the text

SimpleMat is a simple money dispenser.
It has a user interface.

In this situation the system could reply like CLE [Alshawi 92] by
[SimpleMat] has a user interface.

to inform the user how the anaphoric reference was resolved. Similarly, for an
ambiguous input

Every customer has a card.

– 13 –

the system could reply

Every customer has [an individual] card.

to tell the user which of the possible interpretations was chosen.

Examining the Knowledge Base
Prolog clauses of the knowledge base can be paraphrased in a simple way with
the help of predefined schemata that access the linguistic lexicon. Here is an
example schema.

named(X, <proper noun>)
<adjective>(Y)
<noun>(Y)
is(X,Y)

<proper noun>g is a/an <adjective>g <noun>g.

Terms in angular brackets are schema variables that denote the relation names
of preterminals. In the paraphrased sentence schema variables are replaced by
the pertinent graphemes as indicated by the g superscript. With the help of this
schema the Prolog clauses

named(1, john).
known(2).
customer(2).
is(1,2).

can be paraphrased as

John is a known customer.

Since the specification language is controlled and the translation into Prolog is
very regular, paraphrasing schemata can be readily derived though they may not
be as simple as in the example. Paraphrasing schemata can either be represented
as Prolog terms or as simple grammars.

Executing the Specification
In the preceding discussion we have regarded the knowledge base only as a data
base to be queried or examined. However, the knowledge base can also be used
for simulation or prototyping by executing it. In our example specification, this
means executing/running the specification of the automated teller machine. As
it stands the specification does not provide all the necessary information and
needs to be enhanced in three ways.
• Most importantly, an order of events has to be established, e.g. we have to

make sure that during the simulation the event of entering a card has to
precede the event of checking it. [Ishihara et al. 92] who translate natural
language specifications into algebraic ones use contextual dependency and
properties of data types to establish the correct order of events. In our
approach based on discourse representation theory the order of events is to a
great extent established when we introduce eventualities (events and states)
into the processing of our controlled natural language. Following Kamp we
interpret the sentences
The customer enters the card.
SimpleMat checks the card.

– 14 –

as an entering event temporally followed by a checking event , and the
sentences

The customer enters the card.
SimpleMat is checking the card.

as an entering event that temporally overlaps with a checking state. This leads
to an ordering of events or times, respectively. On the basis of this
information a simple forward chaining meta-interpreter can execute the
Prolog clauses in their correct order.

• Many relations representing events are not only truth-functional, but also
cause side-effects, e.g. I/O operations. The required side-effects can be defined
by interface predicates, e.g.

enter(X, Y) :- prompt_read(['Enter your card'], Y).

that depend on the simulation environment. One could, for example,
envisage that the interface predicates do not simply simulate the automated
teller machine but cause the execution of a real automated teller machine.

• Finally, the execution needs some situation specific information. For
example, to execute the Prolog clauses

card([2,X1]) :- customer(X1).
have(X1,[2,X1]) :- customer(X1).

derived from the input

Every customer has a card.

the goal customer(X1) must be provable. We can either provide the relevant
Prolog facts, or more conveniently, get the information by querying the user.

7 Conclusion and Future Research
The present prototypical implementation of our system proves that controlled
natural language can be used for the non-trivial specification of an automated
teller machine, and that the specification can be translated as coherent text into
Prolog clauses.
More work needs to be done, however, to turn the prototype into a useful tool.
Besides extending the functionality of the existing system, we plan to enhance it
in at least two ways. To specify time-dependencies explicitly, we will add
constructs like before, after and when to the controlled natural language, and
introduce event semantics into the DRSs. Though natural language – even in a
controlled form – is a universal specification notation, we believe that it is not
always the optimal one. Thus we will add graphical notations, e.g. for window-
oriented user interfaces, and specific notations for algorithms.

Acknowledgements
We would like to thank Jaume Agusti, Michael Hess, David Robertson,
Wamberto Vasconcelos and Martin Volk for many stimulating discussions, and
the anonymous reviewers of the extended abstract of this paper for valuable
advice.

– 15 –

References
[Alshawi 92] H. Alshawi, The Core Language Engine, MIT Press, 1992
[Borsley 91] R. D. Borsley, Syntactic Theory, Edward Arnold, London, 1991
[Börger & Rosenzweig 94] E. Börger, D. Rosenzweig, A Mathematical Definition of Full

Prolog, Science of Computer Programming, 1994 (to appear)
[Brown 94] D. W. Brown, A Natural Language Querying System Based on

Discourse Representation Theory and Incorporating Event
Semantics, Report AI-1994-03, Artificial Intelligence Center,
University of Georgia, 1994

[Capindale & Crawford 89] R. A. Capindale, R. G. Crawford, Using a natural language
interface with casual users, International Journal Man-Machine
Studies, 32, pp. 341-362, 1989

[Covington et al. 88] M. A. Covington, D. Nute, N. Schmitz, D. Goodman, From
English to Prolog via Discourse Representation Theory, Research
Report 01-0024, Artificial Intelligence Programs, University of
Georgia, 1988

[Covington 94] M. A. Covington, GULP 3.1: An Extension of Prolog for
Unification-Based Grammar, Research Report AI-1994-06,
Artificial Intelligence Center, University of Georgia, 1994

[Epstein 85] S. S. Epstein, Transportable Natural Language Processing
Through Simplicity - the PRE System, ACM Transactions on
Office Automation Systems, 3(2), pp. 107-120, 1985

[Fuchs & Fromherz 94] N. E. Fuchs, M. P. J. Fromherz, Transformational Development of
Logic Programs from Executable Specifications – Schema-Based
Visual and Textual Composition of Logic Programs, in C.
Beckstein, U. Geske (eds.), Entwicklung, Test und Wartung
deklarativer KI-Programme, GMD Studien Nr. 238, Gesellschaft
für Informatik und Datenverarbeitung, 1994

[Ishihara et al. 92] Y. Ishihara, H. Seki, T. Kasami, A Translation Method from
Natural Language Specifications into Formal Specifications
Using Contextual Dependencies, in: Proceedings of IEEE
International Symposium on Requirements Engineering, 4-6 Jan.
1993, San Diego, IEEE Computer Society Press, pp. 232 - 239, 1992

[Kamp & Reyle 93] H. Kamp, U. Reyle, From Discourse to Logic, Introduction to
Modeltheoretic Semantics of Natural Language, Formal Logic
and Discourse Representation Theory, Kluwer Academic
Publishers, Dordrecht, 1993

[Kowalski 93] R. A. Kowalski, Logic without Model Theory, Technical Report,
Imperial College, 1993

[Kramer & Mylopoulos 92] B. Kramer, J. Mylopoulos, Knowledge Representation, in: S. C.
Shapiro (ed.), Encyclopedia of Artificial Intelligence, Wiley,
1992

[Lloyd 94] J. Lloyd, Practical Advantages of Declarative Programming,
Invited Lecture, GULP-PRODE '94, Peñiscola (Spain), September
1994

[Macias & Pulman 92] B. Macias, S. Pulman, Natural Language Processing for
Requirements Specifications, in: F. Redmill, T. Anderson (eds.),
Safety-Critical Systems, Current Issues, Techniques and
Standards, Chapman & Hall, pp. 67-89, 1993

– 16 –

[Pulman 94] S. G. Pulman, Natural Language Processing and Requirements
Specification, Presentation at the Prolog Forum, Department of
Computer Science, University of Zurich, February 1994

[Reichenbach 47] H. Reichenbach, Elements of Symbolic Logic, Macmillan, 1947
[Sommerville 92] I. Sommerville, Software Engineering, Fourth Edition, Addison-

Wesley, Wokingham, 1992
[Sterling 92] L. Sterling, A Role for Prolog in Software Engineering, Computer

Science Colloquium, Department of Computer Science,
University of Zurich, 1992

