
Implementing Prolog-Run WWW Sites
Technical Report 2000.04

June, 2000

Department of Information Technology, University of Zurich

Winterthurerstr. 190 { CH 8057 Zurich, Switzerland

Wamberto Vasconcelos�

wvasconcelos@acm.org

Rolf Schwitter

schwitt@ifi.unizh.ch

Diego Moll�a

molla@ifi.unizh.ch

Jo~ao Cavalcantiy

joaoc@dai.ed.ac.uk

Abstract

We describe a modular and customisable architecture for a WWW server run by Prolog programs and show how
each of its components can be implemented. Our proposal employs standard Prolog-CGI technology but to improve
e�ciency we also use client-server modules to perform the actual services of the WWW site.

1 Introduction
The purpose of this document is to describe a modular and customisable architecture for a WWW server which employs
Prolog programs to handle requests from HTML forms. It is our intention to provide as much detail as necessary for
the appropriate adaptation and customisation of our architecture to other similar contexts.

Our proposed architecture consists of the following components:

� an HTML form { a web page is o�ered as an interface to remote users who want to pose requests to the WWW
server.

� a Prolog-CGI interface { the request posed by users to the WWW site via the HTML form is handled by a
CGI (Common Gateway Interface) application. Our CGI application is a simple Perl program that enables the
requests to be processed by a Prolog program.

� a set of client-server modules { in order to process our requests, a Prolog program is initially run to parse and
tokenise the actual input and only then the requests can be handled. Since the processing of requests can be
quite complex, we suggest splitting these two independent stages (parsing/tokenising and handling the request)
into two programs. However, we notice that the program which processes requests can become very large and
that loading large programs can take considerable time and degrade the server performance due to simultaneous
executions triggered by di�erent requests. We describe how we can use client-server modules to circumvent these
problems.

A graphic representation of our architecture is shown in Figure 1 below. Besides the components of our architecture and

WWW Server

Prolog-CGI Script

2

6

Linda Server

3 4

Main Program

Parser-Tokeniser

5
Web Browser

7

HTML Page

1

HTTP Request

Figure 1: An Architecture for Prolog-Run WWW Servers

their relationships, the diagram also conveys a chronology of the events (numbered circles) involved in an interaction
between a user (client) and the main program (server), in a circular fashion. Initially (step 1), a user �lls out an

�On a Post-Doctoral leave of absence from Departamento de Estat��stica e Computa�c~ao, Universidade Estadual do Cear�a, Cear�a, Brazil,
sponsored by the Brazilian Research Council CNPq, grant no. 201340/91-7.

yArti�cial Intelligence, University of Edinburgh, 80 South Bridge, EH1 1HN Edinburgh, Scotland, UK. On leave of absence from
Departamento de Ciência da Computa�c~ao, Universidade do Amazonas, Amazonas, Brazil, sponsored by the Brazilian Research Council
CAPES, grant no. 1991/97-3.

1

q (y)
script is activated (step 2) and the request is passed on to a Prolog program to parse and tokenise the request (\Parser-
Tokeniser" box). After this, the Parser-Tokeniser (step 3) communicates with a Linda Server Prolog process which,
on its turn (step 4) communicates with the main Prolog program (\Main Program" box) that actually handles the
request1. Either the parser-tokeniser or the main program (or both) can generate output (step 5) which is \piped" to
the CGI script. The main Prolog program handles the request and upon its completion the CGI script returns (step
6) whatever output is produced. The CGI script then directs any output to the user's browser who then gets the
response to the request (step 7).

In the next sections we describe each of the items above, giving their details and explaining how they can be
adapted for di�erent contexts. Throughout this paper we make intensive use of material taken from [5, 7]. However,
we expand and improve on these references by recording the experiences and di�culties we had implementing our
complete WWW server as well as how problems were solved. Although our discussion here deals speci�cally with
SICStus Prolog [10] running on a Unix platform, we believe readers will �nd enough details here so as to enable them
to adapt our techniques to their pet version of Prolog interpreter or even to another language.

2 The HTML Form
HTML forms are interfaces between users and WWW sites. They come in many di�erent formats ranging from simple
click-on buttons to scroll-down menus and areas to type in actual text, etc. on their own and combined together. It
is not within the scope of this document to provide readers with an extensive compilation of HTML forms and we
suggest [3, 6] for that purpose.

We shall employ a simple form comprising an area and a button as shown in the right-hand side of Figure 2, with
its HTML source code on the left-hand side. The user is to type in a piece of text as the \This is a simple input text."
sentence and click on the \submit" button. By doing so, the user requests a service from the web site speci�ed by the

<html>
<title>HTMLForm</title>
<p>Please type your sentence below and

click on the ``submit'' button.
<p><form

action="http://www.yoursite.com/cgi-bin/script.cgi"
method="get">

<textarea name="query" rows = "10"
cols="40" wrap="physical">

</textarea>
<p><input type="submit"

name="send"
value="submit">

</form>
</html>

=)

Figure 2: HTML Code (Left) for Form (Right)

form. A CGI script [5, 7, 8], explained in Section 3 below, must be associated with an HTML form. In our running
example, we have made use of the get method and associated our form with the CGI script script.cgi stored in
http://www.yoursite.com/cgi-bin. When the user clicks on the \submit" button the request query

http://www.yoursite.com/cgi-bin/script.cgi?query=This+is+a+simple+input+sentence.+&send=submit

is sent over to the site www.yoursite.com. The substring of characters starting with \?" and going until the end
comprises the information from the HTML form to be passed on to the script.cgi script which is stored in the
cgi-bin directory of the WWW server machine. However, if the post method had been used, the input string would
not have appeared in the request query as above, rather it would have appeared in the body of the HTTP request.
We explain below some important technical details of scripts.

It should be pointed out that regardless of the method used at least one INPUT element of type SUBMIT or IMAGE
is necessary in all forms. There are two methods to submit forms. Depending on which method is used the encoded
results of the form is passed to the CGI program in a di�erent way. This issue is explained in Section 3.

3 The CGI Script
A CGI script is a special kind of program started via an HTML form and run on the WWW site's machines. Scripts
are sequences of commands like ordinary programs, however their commands consist of instructions at the operating

1In Section 4 we justify the need for this set of client-server modules to implement the WWW server. At this point we simply say that
it is concerned with e�ciency issues.

2

y g (g p g ,) g p p g
programming languages like C or, in our case, Prolog. We suggest [8] for a more thorough explanation on the Common
Gateway Interface.

Any programming language which can read environment variables and which provides executable code (like C,
C++ or Java) can be used as a CGI application. Prolog, being a high-level symbolic language, is an excellent tool for
programming WWW applications [1, 2, 11], but some implementations do not allow the creation of executable code.
Furthermore, in the standard Prolog de�nition [9] there is no way to refer directly to environment variables. That is
why, if we want to use Prolog as a programming language for WWW applications, we have to provide an executable
program (i.e. a binary or script �le) that can invoke the Prolog interpreter, load a given program and run it. For the
sake of convenience, this executable will also deal with the CGI particularities. We have used a CGI script [5, 7, 8]
for this purpose2 and we proceed below to describe this approach.

A �rst piece of technical information is that a CGI script, in order to handle requests of HTML forms, has to be
stored in a special folder, viz. the cgi-bin sub-folder of the WWW server machine, otherwise it just does not work!
In some sites, where security against invaders is a priority issue, very strict policies are enforced concerning access to
cgi-bin folders and what can be made available in them. For instance, some sites may demand that the CGI script
be thoroughly tested before they are made available to outside users. We recommend that readers interact directly
with the computing support and WWW team of their sites to �nd out more about such restrictions. If it turns out
to be a delicate political issue to have a CGI script available via normal means, one can always set up one's own
independent WWW server (for instance, using free software like Jigsaw { see http://www.w3.org/Protocols/ for
more information).

Another important technical issue concerns the method employed in the HTML form. Forms are used in various
contexts as a standardised mechanism for bidirectional data exchange over the web [6]. Methods are used to specify
how the form is to be handled by the CGI script and they (method and CGI script) are closely related. We have
experimented with two methods, post and get, and their respective CGI scripts, explained below.

If you use method get in your form, speci�ed by the following HTML command

<form action="http://www.yoursite.com/cgi-bin/script.cgi" method="get">

as part of your HTML web page then your CGI program will receive the encoded form input in the environment
variable QUERY STRING. Since the size of environment variables content is limited, you might not be able to use get
method if the query is too long. Supposing we have access to the cgi-bin folder of our WWW site, we shall store our
script.cgi �le with the contents depicted in Figure 3; the numbering is not part of the actual contents and have
been used to make references to speci�c portions of the script easier. The �rst line informs the operating system

1 #!/bin/perl
2 print "Content-type: text/html\n\n";
3 open(TMP, 'bin/sicstus -r www/cgi-bin/parser token -a $QUERY STRING |');
4 while (($in = <TMP>))
5 f $all = $all . $in;
6 g
7 close(TMP);
8
9 print "$all";

Figure 3: Commands of CGI Script script.cgi (get Method)

that the CGI script makes uses of the scripting language Perl. We shall not go into details as to what precisely
the components of the syntax of each line mean; we refer readers to [12, 13] for a more comprehensive study on
Perl's form and capabilities. We provide here, though, an overall explanation for each command. The second line
prints the preamble to the output which is essential since it will be displayed on a browser as HTML text { if such
a preamble is not printed then the output will be displayed in the browser not as hypertext but simply as a string
of characters (without the formatting/typesetting, graphics, hyperlinks, etc.). The third line consists of a command
to load SICStus (bin/sicstus) and restore (
ag -r) the saved program parser token (stored in www/cgi-bin, the
cgi-bin folder, otherwise it won't work!) using as an input argument (
ag -a) the substring from the HTML form
starting after the \?", referred in Perl simply as $QUERY STRING. This corresponds to step 2 in our diagram of Figure 1.
Any output resulting from running SICStus with restored program parser token should be \piped" (that is, directed)
to temporary area TMP as indicated by the \|" symbol and the TMP as the �rst argument of open. The fourth, �fth
and sixth lines de�ne a simple loop transferring the contents of TMP to variable $all and line 9 prints the contents of
$all, that is, any output of the computations arising after running the command of line 3, onto the browser of the
user who submitted the HTML form. This output process corresponds to step 6 of our diagram shown in Figure 1.

The contents of the CGI script shown above should remain unchanged, with the exception of the path to both
SICStus and the saved program which should be adapted accordingly. The full path to these components should be
provided within Perl scripts, even though the installation has default paths. The names of the �les for the CGI script
and the parser-tokeniser can, of course, be changed.

2Another alternative would be to write a C or Java program to deal with CGI and interface this program with an executable Prolog
program. Although we know that in principle this approach is feasible we haven't investigated it thoroughly.

3

, , y p y , g

<form action="http://www.yoursite.com/cgi-bin/script.cgi" method="post">

as part of your HTML form then your CGI program will receive the encoded form input on STDIN, that is, the standard
input. The server will not send you an EOF (end of �le) at the end of the data. Instead you should use the environment
variable CONTENT LENGTH to determine how much data you should read from STDIN. The CGI script corresponding to
the post method is presented in Figure 4.

1 #!/bin/perl
2 print "Content-type: text/html\n\n";
3 read(STDIN, $buffer, $ENV'CONTENT LENGTH');
4 open(TMP, "bin/sicstus -r www/cgi-bin/parser token -a $buffer |");
5 while (($in = <TMP>))
6 f $all = $all . $in;
7 g
8 close(TMP);
9 print $all;

Figure 4: Commands for CGI Script script.cgi (post Method)

Basically, the di�erences between the get method script and the post one are lines 3 and 4. In line 3 a sequence
of bytes de�ned by CONTENT LENGTH is read in from STDIN and stored in variable $buffer. This variable is passed
on to our SICStus Program via command line 4. One should notice that the variable $buffer is used in place of the
environment variable QUERY STRING of our previous script for the get method.

An essential issue concerns the format of the output of our programs. Since the output is to be viewed through
a web browser, its format should re
ect this, with suitable HTML typesetting commands and tags. It is important
that the very �rst string to be output should be \Content-type: text/html" followed by at least one blank line
which works as a preamble to an HTML document. This has been ensured in our scripts above by their second line.
Without this command the output will be shown as a string without any HTML formatting even though the HTML
tags are in the appropriate places. Caution should be employed when programming so as to make sure that the �rst
thing to be output is the string above.

3.1 The Parser-Tokeniser

The above CGI script interfaces the HTML form with a Prolog program. The restored Prolog program, the parser-
tokeniser, is run with the contents of the HTML form. Each user who submits a request via our HTML form above
will trigger an execution of the CGI script on the WWW server machine.

In order to provide a quick and smooth upload of the Prolog program that initially handles the HTML form we
restore a program whose state has been previously saved. This is quicker than loading the actual program. Besides,
when we save a program, we can specify the predicate that is to be invoked whenever the program is restored. More
details on saving and restoring SICStus Prolog programs can be found in [10].

We show in Figure 5 a simpli�ed edited version of our parser-tokeniser with its overall structure (again, numbers
have been used to make references to speci�c lines easier). The �rst line informs SICStus that two of its library modules,
linda/client and system, are to be loaded for the program to be run. As mentioned above, our architecture employs
Prolog client-server technology to improve e�ciency of the WWW site, hence the need to load linda/client. The
predicate main=0 de�ned from line 2 to 9 is to be invoked initially when the program is restored (this is speci�ed by
one of the arguments of SICStus save program=2 built-in, explained below).

Predicate main=0 starts o� (line 3) by importing into the program the contents of the CGI script's variable
$QUERY STRING, that is, the contents of the HTML form; built-in prolog flag=2 is part of the library system, hence
the need to load it in line 1. The contents of the HTML form is made available as string of characters assigned to variable
Arg, all performed by prolog flag=2. Lines 4{8 comprise two nested if-then-else commands which tokenise and parse
the input string into a list of keys, handling the potential errors by appropriate messages (predicate displayMessage/2
pretty prints messages and prepares the HTML page taking care of all its details). We have used the code provided
in [5] for the actual parsing and tokenising (predicates tokenizeatom=2 and parse cgi=2). If the input string has
successfully been tokenised and parsed, then we proceed to predicate process/1 carrying with us a list of keys each
of which is of the form key(KeyName,KeyContent). Again, more details can be found in [5].

The predicate process=1 handles a speci�c list of keys as shown in the pattern of its arguments. This predicate
simply establishes a communication link between the parser-tokeniser and the main Prolog program that actual handles
the HTML forms. In this sense, the parser-tokeniser is like a \receptionist" that receives the input from the CGI script,
makes sure this is OK then passes it on to the main program. Lines 11{18 comprise the usual sequence of commands
for achieving Linda client-server communication [10]: initially (line 11) the �le server.addr, previously recorded (see
below for more details) is opened and its contents, of the form Host:Port is read (line 12) and then the �le is closed
(line 13). A communication channel (called a \handle") is then opened (line 14) between the program parser token
and the Linda server, a message is passed (line 15) to the server via out=1 and the control of execution waits for the
server response which is received in line 16. The \Result" is processed in line 17 (an adequate de�nition for this

4

1 :- use module(library('linda/client')), use module(library(system)).

2 main:-
3 prolog flag(argv,[Arg]),
4 (tokenizeatom(Arg,TokenList) ->
5 (parse cgi(TokenList,KeyVals) ->
6 process(KeyVals)

;
7 displayMessage(Arg,'Could not be parsed'))

;
8 displayMessage(Arg,'Could not be tokenised')),
9 halt.

10 process([key(query, Query),key(send,[submit])]):-
11 see('server.addr'),
12 read(Host:Port),
13 seen,
14 linda client(Host:Port),
15 out(query(Query)),
16 in(result(Result)),
17 process result(Result),
18 close client.

19 my save:- save program(parser token, main).

Figure 5: Edited Version of Parser-Tokeniser parser token.pl

predicate should be supplied as part of your Parser-Tokeniser program). Finally (line 18) the communication channel
is closed.

For the sake of completion, we have also included a my save/0 predicate which saves the program (informing the
predicate that should be initially invoked, that is, main/0) in order for it to be restored by the CGI script. Once the
program parser token.pl is loaded in SICStus, the command my save should be typed in and a (large-ish) �le will
be created as parser token. This is the �le that should be stored in the cgi-bin folder, because the CGI script will
need it.

An altogether di�erent alternative to this approach is to use existing Prolog libraries (such as PiLLoW/CIAO
[4]) as ready-to-use Prolog code to handle CGI and long HTML typesetting commands. Such ready-made mac-
ros/subroutines can save a great deal of time (programming and debugging) and allow for a cleaner programming
style. However, as is the case with all ready-to-use libraries, some time must be invested in learning to correctly use
their constructs. Moreover, when more sophisticated or special-purpose programming is being carried out, limitations
and/or idiosyncrasies of the library may be found.

4 A WWW Server as Client-Server Modules
Our WWW server architecture is based on client-server modules. Our design decision was based on performance
concerns. One could use a single program to deal with both the reception and the actual dealing of the HTML form
{ in such case it would not be necessary to use any of this client-server technology. Our Prolog program of Figure 5
could be altered in a straightforward fashion: the body of process=1 would contain the actions related to the HTML
form. However, we envisage a not-so-simple setting in which our assumptions and constraints are:

1. We suppose that our site will need a large Prolog program to handle all its services.

2. We have adopted CGI scripts as a means to interface the network protocol with Prolog.

3. CGI scripts can only do as good as the operating system allows them to: the only way to run a Prolog program
is by initially invoking SICStus then loading the program. However, rather than loading the program code and
interpreting it, we can do better by restoring a saved state, thus making the uploading a lot more e�cient. We
have pro�tably made use of this trick in our small \receptionist" program parser token above.

4. Notwithstanding, our main program is large enough to make even the saved state/restore trick not much help.
Saved states can get very large if the source program is large; loading big �les can take considerable amounts of
time.

5. Furthermore, for each user that submits an HTML form a copy of parser token is run. If there are too many
requests being dealt at the same time (and each request requires a huge �le to be loaded) then this may seriously
a�ect the performance of the server. Although in remote applications the overhead of data transfer across narrow
bandwidth (slow transfer rate) can overshadow any other delays, the degradation of the server performance is
not irrelevant.

With this rationale, we have split our WWW server into two parts: a �rst simple part that receives the input from the
CGI script (checks its correctness) and a second more sophisticated part that handles the form request. The former

5

y p g q ; y py p y g
server, and handling the requests from our simple programs. The simple programs are started, run, interact with the
main program of our server, and then disappear; our main program will persist all the way through.

4.1 The WWW Server Main Program

In this section we show and explain the actual contents of our main program. In Figure 6 we can see the Prolog
source code for the main program, main.pl. The �rst line tells SICStus that the linda/client library is used in the

1 :- use module(library('linda/client')).

2 start main:-
3 see('server.addr'),
4 read(Host:Port),
5 seen,
6 linda client(Host:Port),
7 main loop.

8 main loop:-
9 repeat,
10 in(query(Query)),
11 services(Query,Answer),
12 out(result(Answer)),
13 fail.
14
15 services(Query,Answer):- ...

16 :- start main.

Figure 6: Edited Version of WWW Main Program main.pl

program { our main program is another Linda client (and not a server!) process but contrary to the parser token
program, it will run permanently. The start main=0 predicate, similar to what happens in the process=1 pre-
dicate of parser token.pl program, reads in the Host:Port address through which the communication between
parser token.pl and main.pl will take place. In line 7, we have a call to main loop=0, de�ned in lines 8{13: that
predicate is an endless loop receiving requests (line 10), processing them (line 11) and outputting the result (line
12). One should notice the reverse order in the sequence of in=1 and out=1 subgoals in the programs. The predicate
services=2 is the \core" of the server, where the processing of the query actually takes place. Line 16 starts up the
server and should be the very last line of the �le: this command is necessary when bootstrapping the server, as we
shall see below.

\Blockages" or long delays may happen during the main loop (lines 8{13) if too many copies of the CGI script
simultaneously try to communicate with main.pl. Blockages may happen if a request makes the main program stop
and return an error. This can be handled by catching all the exceptions that occur while processing a request. Long
delays, on the other hand, may happen if a request takes too long to process: all the other (posterior) requests will
have to wait for the long one to �nish. Timeout and exception handling can be implemented with SICStus' module
"timeout" and SICStus' exception handling mechanisms [10]. In Figure 6 timeout and exception handling routines
would have to be part of predicate services=2 in line 11.

4.2 Bootstrapping the WWW Server

We explain here the two-step procedure for bootstrapping our WWW server, implemented as a set of Linda client-
server processes. The two programs parser token.pl and main.pl will be run as Linda clients. A third server process
is necessary to establish the communication channels (i.e. the \handle") between them. The set comprising these
three processes comprises our WWW server (plus, of course, the Prolog-CGI Script { see Figure 1). There is no need
to write yet another Prolog program for this purpose. The following bootstrapping command, to be run in the WWW
server machine is enough to start up our Linda server process:

echo "use_module(library('linda/server')),
linda((Host:Port)-(tell('server.addr'),

write('\''),write(Host),write('\':'),write(Port),write('.'),
told))." | sicstus &

Although we have prettyprinted it above to improve visualisation this command should be all in one line otherwise
it won't work! The command above invokes SICStus and pipes in a query. The query is the actual bootstrapping
program to start up the Linda server and to record the host name and port number in the server.addr �le. The \'"
around the host name are essential if the site employs machine names containing special characters or dots. Since they
will not interfere when the names are strings of simple characters just leave them there. After the above command is
executed, a SICStus process will run in the background and the �le server.addr will be open with the Host:Port
information stored in it.

6

(y ,) p
It should run in the background, hence the need to bootstrap it. The following command should be typed for that
purpose:

nohup echo "[main]." | sicstus &

It simply invokes SICStus and loads in program main.pl shown in Figure 6. Notice that line 16 will cause the execution
of predicate start main=0 upon the upload of the �le (and hence that start-up command should be at the very end,
or any remaining clauses won't be loaded).

5 Final Remarks and Summary
In this document we have de�ned, explained, and justi�ed an architecture for a WWW Server fully run by Prolog
programs. We have tried to provide su�cient implementational details so as to allow the reproduction and adaptation
of our experiments. The actual code of the programs has been edited for the sake of saving space, but all the essential
parts have been kept.

In order to deal with e�ciency issues, we have split our server into two specialised programs, parser token.pl
and main.pl, the former responsible for the reception and checking of the HTTP request (provided by the HTML
form) and the latter concerned with providing the actual services of the WWW site, and connected these by means of
client-server modules. By splitting our WWW server into these two programs we are able to circumvent the overhead
of uploading huge �les to process each request. It may be argued that this division is subjective and that the actual
parsing/tokenising could be performed by the server or, conversely, that some simpler services could be handled by
the initial program. However, one should try and keep the initial program as small as possible because each time a
request is posed via an HTML form a new process will be started in the WWW server machine thus taking up time
and computational resources.

A summary of this paper with suggestions on what one should do to adapt our ideas is as follows:

1. A CGI script interfaces the HTML form with a simple Prolog program parser token.pl. The contents of the
CGI script should not be changed, with the exception of the paths for SICStus and the cgi-bin directory.

2. A simple Prolog program parser token.pl receives the HTML form, checks its format and issues appropriate
messages if contents are not correct. This program makes use of SICStus Linda Client-Server technology. There
is no need to change it unless an altogether di�erent architecture is envisaged. Once the program is stable, it
should be saved (to be later restored by the CGI script).

3. The actual WWW server handling the queries is programmed as main.plwhich communicates with parser token.pl
via Linda Client-Server technology. This program should embed all the processing of the site and the predicate
services=2 should be adequately programmed for that purpose.

4. The bootstrapping procedure should be carried out in the sequence above: �rst the Linda Server process should
be triggered o� to establish the handle through which parser token.pl and main.pl can communicate, then
the server should be started o�. There's no need to change any of the bootstrapping steps. The SICStus process
running the server should never stop { when that happens, the WWW server will be knocked out. This will
happen if the machine running the processes crashes, in which case the bootstrapping procedure will have to be
performed again (the bootstrapping commands could be included in the batch �le used to re-start the machine).

References
[1] H. Boley. Knowledge Bases in the World-Wide Web: a Challenge for Logic Programming. Technical Memo TM-96-02,

Deutsches Forschungszentrum f�ur K�unstliche Intelligenz, October 1997.

[2] H. Boley. Beziehungen zwischen Logikprogrammierung und XML. In Workshop Logische Programmierung, W�urzburg,
Germany, Jan 2000. published as GMD Report 90.

[3] M. Bryan. SGML and HTML Explained. Addison-Wesley, U.S.A., 1997.

[4] D. Cabeza, M. Hermenegildo, and S. Varma. WWW Programming using Computational Logic Systems (and the
PiLLoW/CIAO Library). Technical report, Computer Science Department, Technical University of Madrid, 1996.

[5] B. Carpenter. A Prolog CGI Interface. http://www.colloquial.com/tlg/cgi.html, 1999.

[6] W3 Committee. HyperText Markup Language Home Page. http://www.w3.org/MarkUp/, February 2000.

[7] M. Grobe and H. Naseer. An Instantaneous Introduction to CGI Scripts and HTML Forms. http:// www.cc.ukans.edu/
acs/docs/other/ forms-intro.shtml, 1994.

[8] NCSA HTTPd. The Common Gateway Interface. http://hoohoo.ncsa.uiuc.edu/cgi/, 1998.

[9] ISO. ISO Prolog Standard. Technical Report ISO/IEC DIS 13211-1:1995(E), International Organisation for Standardisa-
tion, Geneva, Switzerland, 1995.

[10] Intelligent Systems Laboratory. SICStus Prolog User's Manual. Swedish Institute of Computer Science, available at http://
www.sics.se/isl/sicstus2.html#Manuals, February 2000.

[11] S. W. Loke and A. Davison. Logic Programming with the World-Wide Web. In Proc. Hypertext'96, pages 235{245,
Washington, DC, 1996. ACM.

[12] R. L. Schwartz, T. Christiansen, and L. Wall. Learning Perl. O'Reilly & Associates, U.S.A., 2nd edition, 1997.

[13] L. Wall, T. Christiansen, R. L. Schwartz, and S. Potter. Programming Perl. O'Reilly & Associates, U.S.A., 2nd edition,
1996.

7

