An Introduction to Natural Language Generation

Robert Dale
Microsoft Institute of Advanced Software Technology
and
School of Mathematics, Physics, Computing and Electronics
Macquarie University
Sydney
Australia
rdale@microsoft.com

- 1. An Overview of NLG
- 2. Linguistic Realization
- 3. Text Planning
- 4. Generating Referring Expressions

© Robert Dale 1995 1 ESSLLI August 1995

Topic 2:

Linguistic Realization

© Robert Dale 1995 2 ESSLLI August 1995

Topic 2 Linguistic Realization

Overview

- The Nature of the Input
- Unification-based Approaches to Realisation
- Data-driven Approaches to Realisation
- Systemic Functional Grammar
- Towards a Synthesis

Topic 2 Linguistic Realization

Realisation as Tactical Generation

Topic 2

Common Assumptions about the Input

- 1. Some other process has constructed the message.
- 2. Each message is realisable as a sentence.
- 3. The semantic content of referring expressions has been already determined.
- 4. The open-class lexical items have already been determined.

Topic 2 Linguistic Realization

Example Input #1

Conventional First Order Predicate Calculus:

- 1. gives(m, j, b1)
 - \Rightarrow Mary gave John a book.
- 2. $\forall x \text{ farmer}(x) \rightarrow \exists y \text{ donkey}(y) \land \text{beats}(x, y)$
 - ⇒ Every farmer beats a donkey.

© Robert Dale 1995

5

ESSLLI August 1995

Linguistic Realization

© Robert Dale 1995

ESSLLI August 1995

Topic 2

Linguistic Realization

Example Input #2

Davidsonian logical forms:

```
\bullet \; \exists e,t,x,y,z \; \mathsf{event-type} \big( e, \; \mathsf{giving} \big)
```

$$\land$$
 time $(e,t) \land t < \mathsf{now}$

$$\land$$
 agent $(e, x) \land$ name $(x, "John")$

$$\land$$
 benefactor $(e, y) \land \mathsf{name}(y, "\mathsf{Mary}")$

 \land object $(e, z) \land isa(z, book)$

Topic 2

Linguistic Realization

Example Input #3

SPL expressions:

(p1 / class-ascription

:domain (A2 / adder

:identifiability-q identifiable)

:range (B1 / binary-operator

:identifiabilty-q notidentifiable))

 \Rightarrow The adder is a binary operator.

Example Input #4

Surge IRs:

 \Rightarrow John likes Mary.

© Robert Dale 1995

ESSLLI August 1995

Example Input #5

 ${\rm Topic}\ 2$

Mumble realisation specifications:

```
(discourse-unit
 :head (general-clause
          :head (chase
                  (general-np
                    :head (np-proper-name "Fluffy")
                    :accessories
                       (:number singular
                        :determiner-policy no-determiner))
                  (general-np
                    :head (np-common-noun "mouse")
                    :accessories
                       (:number singular
                        :determiner-policy kind))
                    :further-specifications
                       ((:specification
                           (predication_to-be *self*
                              (adjective "little"))
                         :attachment-function
                            restrictive-modifier)))))
         :accessories (:tense-modal present
                        :progressive
                        :unmarked))))
```

 \Rightarrow Fluffy chases little mice.

© Robert Dale 1995

10

ESSLLI August 1995

Topic 2 Linguistic Realization

Overview

- The Nature of the Input
- Unification-based Approaches
- Data-driven Approaches to Realisation
- Systemic Functional Grammar
- Towards a Synthesis

Linguistic Realization

12

Unification-based Approaches

- PATR-II
- FUG
- PATR-II and FUG compared

Unification Grammar

- Basic idea: linguistic objects described by FEATURE STRUCTURES
- A feature structure is a collection of attributevalue pairs
- The value of an attribute can itself be a feature structure
- Feature structures are combined by means of grammar rules
- Grammar rules impose constraints on legal combinations of feature structures
- A grammar rule consists of a CONTEXT-FREE BACKBONE and a collection of PATH EQUATIONS

Unification Grammar in PATR-II

A simple feature structure:

Topic 2

© Robert Dale 1995 13 ESSLLI August 1995

© Robert Dale 1995 14

ESSLLI August 1995

Topic 2 Linguistic Realization

Grammar Rules in PATR-II

1.
$$X0 \rightarrow X1 \ X2$$

 $\langle X0 \ cat \rangle = s$
 $\langle X1 \ cat \rangle = np$
 $\langle X2 \ cat \rangle = vp$

2.
$$X0 \rightarrow X1 \ X2$$

 $\langle X0 \ cat \rangle = s$
 $\langle X1 \ cat \rangle = np$
 $\langle X2 \ cat \rangle = vp$
 $\langle X1 \ agreement \rangle = \langle X2 \ agreement \rangle$

Topic 2 Linguistic Realization

Grammar Rules in PATR-II

$$X0 \rightarrow X1 \ X2$$

 $\langle X0 \ cat \rangle = s$
 $\langle X1 \ cat \rangle = np$
 $\langle X2 \ cat \rangle = vp$
 $\langle X0 \ head \rangle = \langle X2 \ head \rangle$
 $\langle X0 \ head \ subj \ head \rangle = \langle X1 \ head \rangle$

$$X0 \rightarrow fred$$

 $\langle X0 \ cat \rangle = np$
 $\langle X0 \ head \ agr \ num \rangle = sing$
 $\langle X0 \ head \ agr \ pers \rangle = 3$

$$X0 \rightarrow sleeps$$

 $\langle X0 \ cat \rangle = vp$
 $\langle X0 \ head \ vform \rangle = fin$
 $\langle X0 \ head \ subj \ head \ agr \ num \rangle = sing$
 $\langle X0 \ head \ subj \ head \ aqr \ pers \rangle = 3$

ESSLLI August 1995

Syntax-Semantics Mapping in PATR-II

Logical expressions as feature structures:

• Uther storms Cornwall

 $\Rightarrow \begin{bmatrix} \mathsf{pred: storm} \\ \mathsf{arg1: uther} \\ \mathsf{arg2: cornwall} \end{bmatrix}$

• Uther persuades Arthur to sleep

© Robert Dale 1995 17 ESSLLI August 1995

Syntax-Semantics Mapping in PATR-II

Lexical entries as syntax—semantics correspondences:

© Robert Dale 1995 18

Topic 2 Linguistic Realization

Syntax-Semantics Mapping in PATR-II

Syntax–semantics correspondence in a lexicalised grammar:

$storms \longmapsto$

Topic 2 Linguistic Realization

Unification-based Approaches

- PATR-II
- FUG
- PATR-II and FUG compared

Topic 2 Linguistic Realization Topic 2 Linguistic Realization

Functional Unification Grammar

- formulated by Kay [1979]
- intended to be neutral between generation and analysis
- can be used to flesh out minimal, conceptually derived functional descriptions
- provides a modular, independent way of supplying purely linguistic information
- imposes no specific demands on the generator's control structure

Motivating Views

Language is a system for encoding and transmitting ideas. A theory that seeks to explain linguistic phenomena in terms of this fact is a *fuctional* theory.

...a theory that shows how the sentences of a language are all generable by rules of a particular formal system ...does not explain anything.

... any reasonable linguistic theory will be functional.

[Kay 1982:251]

 $\ \, \bigcirc$ Robert Dale 1995 $\, \, 21$ ESSLLI August 1995

© Robert Dale 1995

ESSLLI August 1995

Copic 2 Linguistic Realization

What Makes Fug Functional

- primary status given to functional aspects of language; logical aspects are not priveleged
- linguistic structures described in terms of the function a part fills in the whole, rather than in terms of parts of speech and ordering relations
- grammars are required to function: to support language generation and analysis

Topic 2 Linguistic Realization

22

Functional Notions

- given and new
- focus
- speech acts
- . .

© Robert Dale 1995

2

ESSLLI August 1995

© Robert Dale 1995

24

Functional Unification Grammar

- each linguistic object (word, phrase, or clause) is represented by a FUNCTIONAL DESCRIPTION (FD), also called a FEATURE STRUCTURE OF ATTRIBUTE—VALUE MATRIX
- an FD is a collection of FEATURES (or ATTRIBUTES or LABELS) where each feature has a value that can either be atomic or another functional description
- the order of feature—value pairs is not significant
- a unification grammar is itself a large FD that characterizes the features of every possible sentence in the language

© Robert Dale 1995 25 ESSLLI August 1995

Unification

- combines two FDs into a single structure
- result is an FD that contains all attributes of both the original FDs provided they are compatible
- simple atomic values are compatible iff they are identical
- values which are complex FDs are compatible iff all their attributes are compatible
- if a particular attribute is present in both FDs, then its values from both FDs are unified
- attributes which are present only in one FD are retained in the result
- unification is recursive, terminating when all embedded attributes have been unified
- if any attributes fail to unify, then the entire unification fails

 \odot Robert Dale 1995 26 ESSLLI August 1995

Topic 2 Linguistic Realization

A Simple Functional Description

cat: determiner lex: "the"

Topic 2 Linguistic Realization

An FD for a Sentence

He saw her.

28

An FD for a Sentence

She was seen by him.

29 ESSLLI August 1995

An FD for Both Sentences

© Robert Dale 1995 30 ESSLLI August 1995

opic 2 Linguistic Realization

Additional Machinery

- patterns
- paths

© Robert Dale 1995

Topic 2 Linguistic Realization

A Simple Grammar

```
cat: s
prot: [cat: np]
goal: [cat: np]
verb: [cat: vp
number: ⟨prot number⟩]
pattern: (prot verb goal)

cat: np
n: [cat: noun]

alt: {
    [proper: yes
pattern: (n)], | from the pattern to pattern t
```

32

Linguistic Realization

Generation by Unification

• The input FD represents the semantic content of the message to be realised

- The grammar FD describes the space of grammatical alternatives and the correspondences of these to semantic elements
- Generation involves unifying the input FD and the grammar FD
- The output is a sentence expressing this meaning according to the grammatical constraints of the language

Generation by Unification

Topic 2

Two component processes:

- Unification enriches the input FD with word order, syntactic constructions, number agreement ...
- \bullet Linearisation includes morphology

© Robert Dale 1995 33 ESSLLI August 1995

© Robert Dale 1995 34 ESSLLI August 1995

Topic 2 Linguistic Realization

Unification-based Approaches

- PATR-II
- FUG
- PATR-II and FUG compared

Topic 2 Linguistic Realization

A Simple Grammar Rule

In PATR-II:

```
\begin{array}{l} \mathsf{S} \to \mathsf{NP} \; \mathsf{VP} \\ \langle \mathsf{S} \; \mathsf{head} \rangle = \mathsf{VP} \; \mathsf{head} \\ \langle \mathsf{S} \; \mathsf{head} \; \mathsf{subject} \rangle = \langle \mathsf{NP} \; \mathsf{head} \rangle \end{array}
```

In fug:

Constituency and Order

A More Fug-like Rendering

cset: (
$$\langle head \ subject \rangle \ \langle pred \rangle$$
)
pattern: ($\langle head \ subject \rangle \ \langle pred \rangle$)
cat: S
head: $\left[subject: \left[cat: \ NP \right] \right]$
pred: $\left[cat: \ VP \right]$
head: $\langle head \rangle$

© Robert Dale 1995 37 ESSLLI August 1995

 \odot Robert Dale 1995 38 ESSLLI August 1995

Topic 2 Linguistic Realization

Michael Elhadad's FUF

- Extends FUG with a variety of other control elements
- Uses typed feature structures
- Comes with SURGE, a large grammar of English
- Written in Common Lisp
- Available from elhadad@cs.bgu.ac.il

Topic 2 Linguistic Realization

Unification-Based Approaches

- Benefits of declarative representation:
 - perspicuous formalism for the grammar writer
 - independence from process allows varied processing strategies
 - independence from process supports bidirectionality
- Inefficiency is a disadvantage
- Complex grammars are still very complex

Topic 2 Linguistic Realization

Overview

• The Nature of the Input

- Unification-based Approaches to Realisation
- Data-driven Approaches to Realisation
- Systemic Functional Grammar
- Towards a Synthesis

© Robert Dale 1995 41

ESSLLI August 1995

Linguistic Realization

Direct Replacement in SHRDLU

Example output:

By putting a large red block on the table; then letting go of it; then putting a large green cube on it; then letting go of that cube; then putting the red cube on that cube; then letting go of that cube.

The underlying message:

(#puton :B6 :table)

(#ungrasp :B6) (#puton :B3 :B6) (#ungrasp :B3) (#puton :B1 :B3) (#ungrasp :B1) Topic 2

ic 2 Linguistic Realization

Direct Replacement in Shrdlu

Example dialogue:

User: Stack up both of the red blocks and either a green cube or a pyramid.

SHRDLU: Okay.

User: How did you do it?

SHRDLU: By putting a large red block on the table; then letting go of it; then putting a large green cube on it; then letting go of that cube; then putting the red cube on that cube; then letting go of that cube.

© Robert Dale 1995

42

ESSLLI August 1995

Linguistic Realization

Topic 2

Direct Replacement in Shrdlu

How it works:

- generation achieved by specialist code fragments associated with terms in the internal representation
- the blocks and the table have special programs associated with them that cause the appropriate sequence of words to be determined
- the generation program for #puton is (append (vbfix 'put) obj1 'on obj2)
- vbfix (verb fix) is a special purpose routine that attunes the verb to the grammatical context

Topic 2

Direct Replacement in Shrdlu

Linguistic Realization

© Robert Dale 1995 45 ESSLLI August 1995

Topic 2 Linguistic Realization

Direct Replacement Approaches

Summary:

- the coherence of the text comes from the coherence of the message
- the generator 'executes' the chosen message
- linguistic resources are chosen by linking objects in the message to their *realization specialists*, which are in most cases simply templates

© Robert Dale 1995 46 ESSLLI August 1995

Topic 2 Linguistic Realization

Direct Replacement Approaches

Limitations:

- direct link between perception and action
- no explicit notion of function
- there is nowhere that linguistic generalizations can be stated

Topic 2 Linguistic Realization

Approaches to Linguistic Realization

In generation, the purpose of a grammar is to define and constrain linguistic choices. Two perspectives:

Grammar-directed: Taking the language as a whole, what information-bearing distinctions does it possess, and what are the dependencies on their co-occurrence?

Message-directed: for a given element of the content or intent, what are the alternative linguistic resources available for its realization and the constraints on their use?

 \odot Robert Dale 1995 47 ESSLLI August 1995

© Robert Dale 1995

Topic 2 Linguistic Realization

McDonald's MUMBLE

- 1. The basic ideas
- 2. Data structures:
 - The Message Specification
 - Realisation Classes
- 3. MUMBLE's control structure
- 4. A worked example

© Robert Dale 1995 49 ESSLLI August 1995

McDonald's MUMBLE: Basic Ideas

Topic 2

MUMBLE provides an input specification language to be used by a text planner, which must specify:

Linguistic Realization

- the units from which the utterance is to be composed
- the functional relationships between the units
- choice of lexical heads

Main characteristics:

- description directed
- indelible process
- psychologically motivated

 \odot Robert Dale 1995 50 ESSLLI August 1995

Copic 2 Linguistic Realization

McDonald's MUMBLE: Basic Ideas

The input to generation: the MESSAGE LEVEL

- specifies what is to be said
- constrains how it is to be said
- consists of REALIZATION SPECIFICATIONS

What MUMBLE does:

- assembles text, guaranteeing grammaticality and expression of the indicated functional relationships
- maintains syntactic context and morphological specifications
- defines and applies contextual constraints on realization

Topic 2 Linguistic Realization

An Example Bundle Specification

Topic 2 Linguistic Realization Topic 2 Linguistic Realization

The Input Specification Language

bundle → bundle-type head accessories further-specs bundle-type discourse-unit | general-np | general-clause | conjunction-bundle head :head r-spec r-spec bundle | kernel

kernel realization-function argument* | realization-function word

realization-function chase | ...

argument r-spec

accessories → :accessories accessory* accessory :aspect | :number | ...

further-specs further-spec*

further-spec :specification :attachment-function

© Robert Dale 1995 ESSLLI August 1995 Bundle Specifications in MUMBLE

- Bundles belong to one of four types: GENERAL CLAUSE, GENERAL-NP, DISCOURSE-UNIT, and CONJUNCTION
- Each bundle type has a different driver and a different set of possible accessories: for example, GENERAL-CLAUSE has associated accessories TENSE-MODAL and QUESTION, and GENERAL-NP has accessories NUMBER and GENDER

54 © Robert Dale 1995 ESSLLI August 1995

Linguistic Realization

McDonald's MUMBLE: Realization Classes

- the same internal objects and relations may be realized in different ways in different situations, depending on the con-
- in MUMBLE, the process of choice is managed by grouping the alternatives according to the type of object involved
- these groupings are called REALIZATION CLASSES

Linguistic Realization

McDonald's MUMBLE

A realization class:

```
(define-realization-class LOCATIVE-RELATION
 :parameters (Relation Arg1 Arg2)
 :choice
     ((Arg1-is-Relation-Arg2)
      ;; The driveway is next to the house
     clause focus(Arg1))
    ((Arg2-has-Arg1-Relation-Arg2)
     ;; The house has a driveway in front of it
     clause focus(Arg1))
     ((There-is-a-Arg1-Relation-Arg2)
     ;; There is a driveway next to the house
     root-clause shifts-focus-to(Arg1))
     ((Relation-Arg2-is-Arg1)
     ;; Next to the house is a driveway
     root-clause shifts-focus-to(Arg1)
     final-position(Arg1))
     ((with-Arg1-Relation-Arg2)
     ;; \dots with a driveway next to it
     prepp modifier-to(Arg1)))
```

McDonald's MUMBLE: Control Structure

Basic mode of operation:

- two cascaded transducers driven by the input data structure
- first transducer replaces part of the message with some structural realization
- second transducer walks around the tree, producing words or invoking the first transducer

It is always the message that determines what happens next; at any time the message is a mixture of syntactic, semantic and pragmatic elements.

The Control Structure in MUMBLE

© Robert Dale 1995 58 ESSLLI August 1995

© Robert Dale 1995 57 ESSLLI August 1995

Fopic 2 Linguistic Realization

The Surface Structure in MUMBLE

Surface structure is represented in POSITION PATH NOTATION:

- linked list of positions corresponding to depth first left to right traversal of the tree
- positions annotated with labels carrying grammatical constraints, specifications of action to be carried out, and indications of where phrases may be attached
- positions have contents: a position directly dominates a word, an unrealized specification, or a rooted phrase

Topic 2 Linguistic Realization

The Surface Structure in MUMBLE

A Worked Example: The Input Expression

```
(discourse-unit
 :head (general-clause
          :head (chase
                  (general-np
                    :head (np-proper-name "Fluffy")
                    :accessories
                       (:number singular
                        :determiner-policy no-determiner))
                  (general-np
                    :head (np-common-noun "mouse")
                    :accessories
                       (:number singular
                        :determiner-policy kind))
                    :further-specifications
                       ((:specification
                           (predication\_to-be *self*
                              (adjective "little"))
                         :attachment-function
                             restrictive-modifier)))))
          :accessories (:tense-modal present
                        :progressive
                        :unmarked))))
```

© Robert Dale 1995 61 ESSLLI August 1995

Initializing the Linguistic Context

[TURN] **↓**↑ discourse-unit [SENTENCE] (general-clause :head (chase (general-np :head (np-proper-name "Fluffy") :accessories (:number singular :determiner-policy no-determiner)) (general-np :head (np-common-noun "mouse") :accessories (:number singular :determiner-policy kind)) :further-specifications ((:specification (predication_to-be *self* (adjective "little")) :attachment-function restrictive-modifier))))) :accessories (:tense-modal present :progressive unmarked)))

© Robert Dale 1995 62 ESSLLI August 1995

Opic 2 Linguistic Realization

Phrase Structure Execution

Traverses the tree so far.

- Notes a grammatical constraint that the unit should be realized as a clause.
- Adds tokens to indicate that the unit should begin with a capital letter and terminate with a period.
- Passes control to REALIZATION.

Topic 2 Linguistic Realization

Realization

The specification is a bundle, so the appropriate driver is called. This defines the order of realization of the parts.

- 1. Realize the head of the bundle.
- 2. Process the accessories.
- 3. Realize any further specifications.

64

© Robert Dale 1995 63 ESSLLI August 1995

 \odot Robert Dale 1995

Topic 2 Linguistic Realization Topic 2 Linguistic Realization Topic 2

Realizing the Head

© Robert Dale 1995 65 ESSLLI August 1995

A Realization Class

```
(define-realization-class
   TRANSITIVE-VERB\_TWO-EXPLICIT-ARGS (verb agent patient)
   ((SVO agent verb patient)
:grammatical-characteristics (clause)
   :required-accessories (:unmarked))
((SVO-subj-rel agent (agent :trace) verb patient)
     :grammatical-characteristics (relative-clause)
     :argument-characteristics (identical-with-root agent))
   ((SVO-obj-rel patient agent verb (patient :trace))
     grammatical-characteristics (clause)
     :argument-characteristics (identical-with-root patient))
   ((SVO-for-inf agent verb patient)
:grammatical-characteristics (for-infinitive))
   ((SVO-for-inf (agent :trace) verb patient)
     :grammatical-characteristics (for-infinitive)
:required-accessories (:purpose-clause-object agent))
   ((SVO-for-inf (agent :trace) verb patient)
     :grammatical-characteristics (for-infinitive)
     :argument-characteristics (available agent))
   ((SVO-for-inf agent verb (patient :trace))
     :grammatical-characteristics (for-infinitive)
   :required-acccessories (:purpose-clause-object patient))
((SVO-for-inf (agent :trace) verb (patient :trace))
     grammatical-characteristics (for-infinitive)
     :required-acccessories (:purpose-clause-object patient)
     argument-characteristics (available agent))
  ((SVO-subj-whq agent (agent :trace) verb patient) :grammatical-characteristics (clause)
:required-accessories (:wh agent))
10 ((SVO-obj-whq patient agent verb (patient :trace))
     :grammatical-characteristics (clause)
     required-acccessories (:wh patient))
11 ((SVO (agent :trace) verb patient)
     :grammatical-characteristics (clause)
     :required-acccessories (:command)))
```

66

Topic 2 Linguistic Realization

Realization Classes

A predefined set of alternatives annotated by the characteristics that distinguish them.

- Grammatical characteristics compared with grammatical constraints on the current position.
- Required accessories compared with the current bundle's accessories.
- First of the remaining phrases is chosen.

Topic 2 Linguistic Realization

Realization of the Head

© Robert Dale 1995

Processing the Accessories

ESSLLI August 1995 © Robert Dale 1995

Realizing the Subject

 ${\rm Topic}\ 2$

PSE continues from where it was interrupted.

- Reaches the SUBJECT slot.
- Passes control to realization.
- The GENERAL-NP bundle driver is called.
- The driver first checks if pronominalization is required; otherwise follows same strategy as before: realize head, process accessories, attach further specifications.

70 © Robert Dale 1995 ESSLLI August 1995

Linguistic Realization

Realizing the Subject

- Realization here is a single choice.
- Grammatical constraints are checked.
- Processing the accessories involves setting the state of the NP in the phrasal context.
- No more specifications, so the NP is spliced into tree.
- Control is returned to PSE.

Linguistic Realization

Realizing the Subject

Realizing the Verb Group

- PSE passes through the [TNS-MODAL] and [BE+ING] slots.
- Morphological routines are called to utter the verb group.

Realizing the Verb Group

Topic 2

© Robert Dale 1995

ESSLLI August 1995

© Robert Dale 1995

ESSLLI August 1995

Linguistic Realization

Realizing the Object

The realization specification:

```
(general-np
   :head (np-common-noun "mouse")
   :accessories
      (:number singular
       :determiner-policy kind))
   :further-specifications
      ((:specification
           (predication_to-be *self*
              (adjective "little"))
        :attachment-function
           restrictive-modifier))))
```

Linguistic Realization

Realizing the Object

A further specification has two parts:

- a kernel or bundle specification
- an attachment function, which defines the possible points in the surface structure where a specification may be attached.

```
(define-attachment-class
 RESTRICTIVE-MODIFIER ()
    ((ADJECTIVE
     (RESTRICTIVE-APPOSITIVE)
     (RESTRICTIVE-RELATIVE-CLAUSE)
     (NP-PREP-COMPLEMENT)))
```

ESSLLI August 1995 © Robert Dale 1995

© Robert Dale 1995

Topic 2 Linguistic Realization

Realizing the Object

© Robert Dale 1995 77 ESSLLI August 1995

Finishing

 ${\rm Topic}\ 2$

• The result of realization is knit into the surface structure.

Linguistic Realization

- PSE takes over from the NP node.
- A determiner is printed.
- The contents of the NP are printed.
- PSE returns to the SENTENCE node.
- The final full stop is printed.

© Robert Dale 1995 78 ESSLLI August 1995

Topic 2 Linguistic Realization

The Final Surface Structure

[TURN] **↓**↑ discourse-unit [SENTENCE] clause :state progressive $[SUBJECT] \longrightarrow [TNS-MODAL] \longrightarrow [BE-ING]$ → [PREDICATE] **↓**↑ <pres> **↓**↑ np vp [NP-HEAD] [OBJECT] [VERB] -"Fluffy" J↑ "chase np :state indef/sing [ADJECTIVE] → [NP-HEAD] "little" "mouse

Topic 2 Linguistic Realization

McDonald's MUMBLE

Summary:

- MUMBLE represents surface structure explicitly and has it interpreted
- conceptual items or item types control the selection and instantiation of the appropriate surface forms directly, through the realization classes that the planner associates with them
- there is no distinct grammar in the sense of a set of rules for deriving linguistic forms from primitive features

 $\ \, \bigcirc$ Robert Dale 1995 $\,\,$ 79 ESSLLI August 1995

© Robert Dale 1995 8

Topic 2 Linguistic Realization Topic 2 Linguistic Realization

McDonald's MUMBLE

- The lack of an explicit grammar can be seen as a deficiency.
- McDonald sees it as a strong hypothesis about the character of linguistic knowledge: the space of valid feature configurations is smaller, less arbitrary and more structured than a feature-heap notation can express.

Overview

- The Nature of the Input
- Unification-based Approaches to Realisation
- Data-driven Approaches to Realisation
- Systemic Functional Grammar
- Towards a Synthesis

© Robert Dale 1995 81 ESSLLI August 1995

© Robert Dale 1995 82 ESSLLI August 1995

Topic 2 Linguistic Realization

Systemic Functional Grammar

- 1. Background
- 2. The formalism
- 3. Its use in NLG systems

Topic 2 Linguistic Realization

Systemic Grammar: General Orientation

- emphasises the FUNCTIONAL ORGANIZA-TION of language: how language presents speakers with systems of meaningful options as a basis for communication
- surface forms are viewed as the consequences of selecting a set of abstract functional features
- choices correspond to minimal grammatical alternatives
- the interpolation of an intermediate abstract representation allows the specification of the text to accumulate gradually

 \odot Robert Dale 1995 83 ESSLLI August 1995

 Topic 2

Linguistic Realization

Topic 2

Linguistic Realization

Systemic Grammar: The Metafunctions

SFG emphasises the use of multiple descriptive dimensions:

ideational: the traditional notion of meaning, as expressed in the transitivity structure of a clause

interpersonal: why the utterance is there: primarily embodied in the mood structure

textual: the glue that holds the communication together, based on information packaging needs

• roots in anthropology and sociology

• Firth, Halliday, Hudson

Systemic Grammar: History

Early themes in the development of systemic grammar:

- What are the social functions of language?
- How does language fulfill these social functions?
- How does language work?

Language as DOING rather than language as KNOWING: LINGUISTIC BEHAVIOUR POTENTIAL as a property of a speech community.

© Robert Dale 1995

85

ESSLLI August 1995

© Robert Dale 1995

86

ESSLLI August 1995

Topic 2 Linguistic Realization

Systemic Grammar: The Formalism

- The grammar is composed of CHOICE SYSTEMS.
- Each system is a set of simultaneous alternatives.
- Each alternative is named; these are referred to as TERMS, OUTPUT FEATURES, or GRAMMATICAL FEATURES.
- Each alternative corresponds to a minimal grammatical alternation.
- Each system has an entry condition.

Topic 2 Linguistic Realization

Systemic Grammar: The Formalism

Every item is either a CLAUSE, a GROUP or a WORD:

Systemic Grammar: The Formalism

The selection of one alternative determines what further systems may be entered:

The second system is more DELICATE than the first because it doesn't apply to Groups or Words.

Systemic Grammar: The Formalism

Additional expressive power offered by square OR brackets and round AND brackets:

- facing right means 'select one' or 'select all'
- facing left means one or all of the entry conditions must be satisfied.

© Robert Dale 1995 89 ESSLLI August 1995

© Robert Dale 1995

90

ESSLLI August 1995

Topic 2 Linguistic Realization

The unmarked choice:

Topic 2 Linguistic Realization

A Systemic Fragment

Mood in the English clause:

Topic 2 Linguistic Realization

Clause Choices

Major Indicative Declarative: The cat is on the mat.

Major Indicative Declarative Relative: [He didn't see the cat] that chased the rat.

 $\label{eq:major Indicative Declarative Bound} \mbox{Major Indicative Declarative Bound} : [\mbox{It only hurts}] \mbox{ when } \mbox{I laugh}.$

 $\begin{tabular}{ll} \textbf{Major Indicative Interrogative Polar} : Has anybody seen \\ my gull? \end{tabular}$

 $\begin{tabular}{ll} \textbf{Major Indicative Interrogative Wh-} : When will they ever learn? \end{tabular}$

Major Imperative : Don't be ridiculous.

Minor Present-Participle: [You'll enjoy] having more free time.

Minor Past-Participle: [He had a face] weathered by the years.

Minor Infinitive: [The hard part is] to do it without smiling.

© Robert Dale 1995 93 ESSLLI August 1995

Topic 2 Lin

Linguistic Realization

Ranks in Systemic Grammar

- clause/sentence
- group/phrase
- \bullet word
- morpheme

Topic 2 Linguistic Realization

How a Systemic Grammar is Used

- Start with rank of least delicacy
- Make choices until maximally delicate distinctions offered have been drawn
 - result is a complete description of a linguistic unit at that rank
 - this set of features is called the SE-LECTION EXPRESSION
 - the selection expression will classify a linguistic unit in terms of all three metafunctions
- Repeat for next rank

Topic 2 Linguistic Realization

A Systemic Fragment

Pronominal resources:

Topic 2 Linguistic Realization Topic 2

A Systemic Fragment

Realization rules question animate subjective whoquestion animate objective whomquestion animate possessive whosequestion inanimate whatthisdemonstr singular near demonstr singular far thatdemonstr plural near \rightarrow these demonstr plural far thosepersonal first singular subjective $\rightarrow I$ personal first singular objective $\rightarrow me$ personal first singular reflexive $\rightarrow myself$ personal first singular possessive minepersonal first singular possdet mypersonal second singular subjective \rightarrow you personal second singular objective youpersonal second singular reflexive yourself personal second singular possessive yourspersonal second singular possdet your personal third plural possdet \rightarrow their

© Robert Dale 1995 ESSLLI August 1995

Systemic Grammar: Advantages

capture functional similarity

ter stated in functional terms

Why might systemic grammar be better

• may be more natural and economical to

state syntactic regularities in a functional

framework: a constituent framework may

require additional levels of structure to

• cross-language generalizations may be bet-

• the analysis embodies several aspects of

meaning: propositional content (tran-

sitivity), the speaker's focus and goals

(theme), and the discourse context (in-

than immediate constituent approaches?

Linguistic Realization

ESSLLI August 1995

Linguistic Realization

Systemic Grammar

What we still need:

- some way of making choices in systems
- some way of producing text from sets of features

Linguistic Realization

The Development of Nigel

formation structure)

© Robert Dale 1995

The Nigel grammar = a component of the Penman Text Generation project.

- Penman, a continuation of the work on KDS at ISI, started around 1979–1980
- Nigel was the first part of Penman to be worked on: first version provided by Halliday in 1980
- Subsequently developed by Matthiessen and Bateman and others
- Originally about 80 systems, now contains 600–650 systems

ESSLLI August 1995 © Robert Dale 1995

ESSLLI August 1995 © Robert Dale 1995

The Nigel Systemic Grammar

How it works:

- choices are made using INQUIRY SEMANTICS
- for each choice system in the grammar, a set of criterial predicates known as a CHOOSER are defined
- these tests are functions from the internal state of the planner and underlying program to one of the features in the system the chooser is associated with

The Strata

© Robert Dale 1995

102

ESSLLI August 1995

 \odot Robert Dale 1995

101

ESSLLI August 1995

Topic 2 Linguistic Realization

Choosers and Inquiries

Topic 2 Linguistic Realization

Choosers

Topic 2 Linguistic Realization Topic 2 Linguistic Realization

The Nigel Systemic Grammar

NIGEL contains 200–300 choosers. An example: to choose between a definite and an indefinite article, a chooser might query

- the knowledge base to determine whether the head of the NP refers to a generic or individual concept
- the discourse model to determine whether the object has been previously mentioned

ic 2 Linguistic (canzación

The Nigel Systemic Grammar

Three data structures updated as the grammar is traversed:

- the Selection Expression
- The Function Association Table
- Realization Statements

© Robert Dale 1995 105 ESSLLI August 1995

© Robert Dale 1995 106 ESSLLI August 1995

Topic 2 Linguistic Realization

Realization Operators

Realization rules specify minimal aspects of structural organisation:

- Structure building: Insert, Conflate, Expand.
- Order-constraining: Partition, Order, OrderAtFront, OrderAtEnd
- Associating features with functions: Preselect, Classify, OutClassify, Lexify

Topic 2 Linguistic Realization

Realization Operators

Insert SUBJECT: an element functioning as SUBJECT will be present

Conflate SUBJECT ACTOR: the constituent functioning as SUBJECT = the constituent functioning as ACTOR

Expand MOOD SUBJECT: SUBJECT is a functional constituent of MOOD

 \odot Robert Dale 1995 107 ESSLLI August 1995

© Robert Dale 1995 108 ESSLLI August 1995

Topic 2 Linguistic Realization

Realization Operators

Order FINITE SUBJECT: FINITE must immediately precede SUBJECT

Partition FINITE SUBJECT: FINITE must precede SUBJECT

OrderAtFront SUBJECT: SUBJECT must be the first constituent in the structure being built

OrderAtEnd SUBJECT: SUBJECT must be the last constituent in the structure being built

© Robert Dale 1995 109 ESSLLI August 1995

Realization Operators

Topic 2

Lexify AGENTMARKER by: AGENTMARKER must be realized by the lexical element by

Classify PROCESS StateVerb: PROCESS must be realized by the lexical category StateVerb

OutClassify PROCESS StateVerb: PROCESS must not be realized as a StateVerb

Preselect LOCATIVE PrepositionalPhrase: specific that the lower level constituent LOCATIVE must bear the feature PrepositionalPhrase

© Robert Dale 1995

110

ESSLLI August 1995

Linguistic Realization

Linguistic Realization

Topic 2 Linguistic Realization

Realization Operators

Operator	Abbreviation
Insert F	+F
Conflate F G	F/G
Expand F G	F(G)
Classify F L	F!L
Preselect F P	F:P
Lexify F L	F = L
Order F G	$\mathrm{F}{\uparrow}\mathrm{G}$
OrderAtEnd F	$\mathrm{F}{\uparrow}$
OrderAtFront F	$\uparrow \mathrm{F}$

2

Nigel At Work

The sentence to be generated:

In Greenwich, in South East London, there is a small brick gazebo. This gazebo was built by Sir Christopher Wren. It is a rather undistinguished structure, which might have been a task set for homework when he was at school.

© Robert Dale 1995

11

ESSLLI August 1995

© Robert Dale 1995

The Function Association Table

ONUS is the function corresponding to hub that is the environment's name for the plan to generate the sentence:

Hubs Grammatical Functions WREN-GAZEBO ONUS

The FAT provides a correspondence between the environment's symbols and the grammar's symbols. The Rank System

The resulting Selection Expression: [Clauses]

Hubs		Grammatical Functions	
	WREN-GAZEBO	ONUS	
	WRFN-GAZEBO-STATEMENT	SPEECH-ACT	

If the object has an illocutionary force it will be realized by a clause.

© Robert Dale 1995

113

ESSLLI August 1995

© Robert Dale 1995

114

ESSLLI August 1995

Topic 2 Linguistic Realization

The Grammar

Do we need a major or a minor clause?

The resulting Selection Expression: [Clauses, Clause]

Hubs	Grammatical Functions
WREN-GAZEBO	ONUS
WREN-GAZEBO-STATEMENT	SPEECH-ACT
NOW	SPEAKING-TIME

Topic 2

Linguistic Realization

The Grammar

How complex is the plan: one process or many?

The resulting Selection Expression: Clauses, Clause, ClauseSimplex

The Function Association Table

The same chooser then gets some other information for the FAT:

Hubs	Grammatical Functions
WREN-GAZEBO	ONUS
WREN-GAZEBO-STATEMENT	SPEECH-ACT
NOW	SPEAKING-TIME
GAZEBO-BUILDING	PROCESS
HISTORIC-TIME	EVENT-TIME

The chooser asks what words are denotationally appropriate for the PROCESS in question:

The initial TERMSET for PROCESS:

build	create	construct
builds	creates	constructs
built	created	${\rm constructed}$
built	created	${\rm constructed}$
building	creating	constructing

 \odot Robert Dale 1995 117 ESSLLI August 1995

Realization Statements

+Predicator

+Process

+LexVerb

Process/Predicator LexVerb/Predicator

© Robert Dale 1995 118 ESSLLI August 1995

Topic 2 Linguistic Realization

The Grammar

Topic 2 Linguistic Realization

Agentivity

+Agent

+Actor

Actor: Nominal Group

Actor/Agent

+ Agent Marker

AgentMarker = by

AgentMarker ↑ Agent

+Passive

Passive!BeAux

+PassParticiple

PassParticiple!EnParticiple

 \odot Robert Dale 1995

ESSLLI August 1995

120

Topic 2 Linguistic Realization Topic 2 Linguistic Realization

The Final Function Association Table

Hubs	Grammatical Functions
WREN-GAZEBO	ONUS
WREN-GAZEBO-STATEMENT	SPEECH-ACT
NOW	SPEAKING-TIME
GAZEBO-BUILDING	PROCESS
HISTORIC-TIME	EVENT-TIME
HISTORIC-TIME	RELEVANT-TIME
SIR-CHRISTOPHER	CAUSER
MEDIOCRITY	MANNER
THE-GAZEBO	GOAL
THE-GAZEBO	MEDIUM
SIR-CHRISTOPHER	ACTOR
SIR-CHRISTOPHER	AGENT
GR-REGION	PARAGRAPH-THEME
WREN-GR-REGION-PATH	AGENT-THEMATIC-PATH
GAZEBO-GR-REGION-PATH	MEDIUM-THEMATIC-PATH
THE-GAZEBO	SUBJECT
THE-GAZEBO	THEME
GAZEBO-BUILDING-POLARITY	POLARITY

© Robert Dale 1995 121 ESSLLI August 1995

Final Set of Realization Statements

+Predicator +Process Process/Predicator +LexVerbLexVerb/Predicator Process!Effective +MediumProcess!DoVerb +GoalGoal/Medium Process!Creation Goal:NominalGroup +Actor +Agent Actor: Nominal Group Actor/Agent +AgentMarker AgentMarker = by+Passive AgentMarker[↑]Agent Passive!BeAux +PassParticiple PassParticiple!EnParticiple LexVerb/PassParticiple Subject[†]Finite Medium/Subject +Mood+Finite Finite!PastForm Finite/Passive Mood:Subject +Subject Theme:Topical +Topical ↑Theme Topical[↑] Subject:Nominative Topical/Subject Subject:Singular Finite!Singular Finite!ThirdPerson

© Robert Dale 1995 122 ESSLLI August 1995

Topic 2 Linguistic Realization

The Final Selection Expression

Clauses, Clause, ClauseSimplex;
NoNonDeicticPresent, NoZNonDeicticTense;
Effective, MediumInserted, NonLocation, NonManner, Material;
GoalInsertedConflated, Creative;
Receptive, Agentive;
LexVerbPassPart;
IndependentClause, Indicative;
Declarative, Untagged;
UnmarkedDeclarativeTheme;
Temporal, Past;
Positive, UnmarkedPositive;
NonConsciousSubject, SingularSubject;
LexicalVerbTermResolution

Topic 2 Linguistic Realization

Default Ordering Functions

(Topical Subject Goal Medium)
(Finite Passive)
(PassParticiple Predicator LexVerb Process)
AgentMarker
(Actor Agent)

Result:

Topical + Subject + Goal + Medium was built by Actor + Agent

ESSLLI August 1995

© Robert Dale 1995 123 ESSLLI August 1995 © Robert Dale 1995 124

The Final Utterance

Theme	(Topical ^) ^Theme				
Mood	Subject ^ [Singular, Nominative] Mood	Finite [Singular, PastForm, ThirdPerson]	Predicator		
Transitivity	Goal [NominalGroup] Medium		Process [Effective, DoVerb, Creation] LexVerb	AgentM by	arker ^ Actor [NG] Agent
Verbal Voice		Passive [BeAux]	PassParticiple [EnParticiple]		
	This gazebo	was	built	by	Sir Christopher Wren

© Robert Dale 1995 125 ESSLLI August 1995

Copic 2 Linguistic Realization

Systemic Grammar

What systemic grammars do:

- the networks of a systemic grammar are organized by major syntactic categories
- grammaticality is ensured by forcing the generation process to stay within predefined paths in the systemic network
- the paths define dependencies between abstract text characteristics

The important point:

• individual choices are not simultaneously commitments to the actual utterance, and need not be made in surface order

Inquiries

Not just semantic—also pragmatic: for example

Linguistic Realization

- Is it preferable to mention the causative relation between the CAUSER and the PROCESS?
- What is the most salient aspect of the knowledge represented by PROCESS?
- What symbol represents the most salient chain of relationships in the reader's attention and knowledge between MEDIUM and THEME?

© Robert Dale 1995 126 ESSLLI August 1995

Topic 2 Linguistic Realization

Systemic Grammar in Other NLG Systems

- Davey's Proteus [1972, 1978]: first significant implementation
- Patten's SLANG [1985, 1988]: using AI problem-solving techniques for efficient navigation of systemic networks
- Fawcett's COMMUNAL [1988, 1990]: more explicitly oriented to semantics
- McCoy and Yang [1991]: systemic grammar used to choose TAG structures

 \odot Robert Dale 1995 127 ESSLLI August 1995

© Robert Dale 1995 128 ESSLLI August 1995

Topic 2 Linguistic Realization ${\rm Topic}\ 2$

Systemic Grammar as a Formalism

- Patten and Ritchie [1986]: a rigorous formal model of systemic grammar
- Mellish [1988]: implementing systemic classification using unification
- Brew [1991]: the computational complexity of systemic classification
- Bateman, Emele and Momma [1991], Carpenter [1991]: implementation of systemic grammar in typed feature structure formalisms

Linguistic Realization

KPML

• Implementation of SFG derived from the Penman/Nigel system

• Available from John Bateman bateman@darmstadt.gmd.de

129 © Robert Dale 1995 ESSLLI August 1995

130 © Robert Dale 1995 ESSLLI August 1995

Topic 2 Linguistic Realization

Overview

- The Nature of the Input
- Unification-based Approaches to Realisation
- Data-driven Approaches to Realisation
- Systemic Functional Grammar
- Towards a Synthesis

Topic 2 Linguistic Realization

FUG and SFG

- Many shared assumptions about language and grammar
- Grammatical descriptions organised around feature choices
- Functions of constituents represented explicitly

© Robert Dale 1995

ESSLLI August 1995

© Robert Dale 1995

132

Topic 2

Linguistic Realization

Topic 2 Linguistic Realization

SFG in FUG

Representing SFG in FUG

- Each SFG unit—eg, clause or group—corresponds to a functional description
- Each Fug attribute corresponds to the description of an SFG feature or function
- Most—but not all—of SFG's elements can be represented in FUG without additional machinery

• a systemic choice is represented as a disjunction

- each disjunct contains an attribute with one of the feature choices of that system as its value
- ullet delicacy is represented by embedding

© Robert Dale 1995 133 ESSLII August 1995

© Robert Dale 1995 134 ESSLLI August 1995

Topic 2 Linguistic Realization

Representing SFG in FUG

135

ESSLLI August 1995

Topic 2 Linguistic Realization

Representing SFG in FUG

MoodType and IndicativeType Systems

Rank | Clause | Mood | Type | Indicative | Indicative | Type | Interrogative |

© Robert Dale 1995 137 ESSLLI August 1995

Realisation Operators in Fug

Insertion: a pattern containing the name of the inserted function; no constraint placed on order with respect to other constituents

Preselection: specification of an FD for the given function; constrains one attribute of the function so that it must have the value of the preselected feature

Classify: since there's no formal distinction between lexical features and grammatical features in FUG, preselection and classification are represented in the same way

Order: a pattern that contains the names of the functions in the required order

Conflation: encoded by unification

© Robert Dale 1995 138 ESSLLI August 1995

Fopic 2 Linguistic Realization

Realisation Operators in Fug

SFG realization	FUG description
Insert +SUBJECT	pattern = (SUBJECT)
Preselect SUBJECT : Nominative	SUBJECT = [Case = Nominative]
Classify FINITE! Singular	FINITE = [Number = Singular]
Lexify $FINITE = has$	FINITE = [Lex = has]
Conflate SUBJECT / AGENT	$SUBJECT = \langle AGENT \rangle$

Topic 2 Linguistic Realization

Order in Fug

Realization Operator	FUG Pattern
Order SUBJECT ∧ FINITE	(SUBJECT FINITE)
Partition FINITE POLARITY	$(\dots FINITE \dots POLARITY \dots)$
OrderAtFront \$^THEME	(THEME)
OrderAtEnd TOPICAL^\$	(TOPICAL)

140

Differences Between SFG and FUG

• purpose: formalism vs theory

Linguistic Realization

MoodType and IndicativeType Realisations

```
 \begin{bmatrix} Rank = Clause \\ MoodType := Imperative \\ pattern = (... NONFINITIVE ...) \\ NONFINITIVE = [Form = Stem] \end{bmatrix}   \begin{bmatrix} MoodType := Indicative \\ pattern = (... SUBJECT ...) \\ pattern = (... FINITE ...) \\ SUBJECT = [Case = Nominative] \\ \left\{ \begin{bmatrix} IndicativeType := Declarative \\ pattern = (... SUBJECT FINITE ...) \end{bmatrix} \right\}   \begin{bmatrix} IndicativeType := Interrogative \\ IndicativeType := Interrogative \end{bmatrix}
```

• notational differences:

Topic 2

- system names are used as attribute labels
- order operators are expressed as pattern configurations
- encoding of features and functions

© Robert Dale 1995 141 ESSLLI August 1995

© Robert Dale 1995 142 ESSLLI August 1995

Fopic 2 Linguistic Realization

Complex Input Conditions


```
 \begin{bmatrix} Rank = Clause \\ Agency = Effective \\ ProcessType = Material \\ \left\{ \begin{bmatrix} DoingType := Creative \\ PROCESS = \begin{bmatrix} Type = Creative \end{bmatrix} \end{bmatrix} \right\} \\ \left\{ \begin{bmatrix} DoingType := Dispositive \\ PROCESS = \begin{bmatrix} Type = Dispositive \end{bmatrix} \end{bmatrix} \right\} \\ \left\{ \begin{bmatrix} Agency = NOT \ Effective \end{bmatrix} \\ \begin{bmatrix} ProcessType = NOT \ Material \end{bmatrix} \right\} \\ DoingType := none \end{bmatrix}
```

Topic 2 Linguistic Realization

Complex Input Conditions


```
\begin{bmatrix} Rank = Clause \\ Agency = Effective \\ ProcessType = Material \end{bmatrix}
\longrightarrow \begin{bmatrix} DoingType := Creative \\ PROCESS = [Type = Creative] \\ DoingType := Dispositive \\ PROCESS = [Type = Dispositive] \end{bmatrix}
```

© Robert Dale 1995 143 ESSLLI August 1995

© Robert Dale 1995

Topic 2 Linguistic Realization

Conclusions

- Parsing grammars are best indexed by surface structures
- Realisation grammars are best indexed by underlying function or data types
- Different approaches to linguistic realisation are closer than they might at first seem

Topic 2 Linguistic Realization

What's Coming Next ...

- 1. An Overview of NLG
- 2. Linguistic Realization
- 3. Text Planning
- 4. Generating Referring Expressions

© Robert Dale 1995 145 ESSLLI August 1995

© Robert Dale 1995 146