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Abstract

Every teacher of logic knows that the ease with which a student
can translate a natural language sentence into formal logic de-
pends, amongst other things, on just how that natural language
sentence is phrased. This paper reports findings from a pilot
study of a large scale corpus in the area of formal logic educa-
tion, where we used a very large dataset to provide empirical
evidence for specific characteristics of natural language prob-
lem statements that frequently lead to students making mis-
takes. We developed a rich taxonomy of the types of errors
that students make, and implemented tools for automatically
classifying student errors into these categories. In this paper,
we focus on three specific phenomena that were prevalent in
our data: Students were found (a) to have particular difficulties
with distinguishing the conditional from the biconditional, (b)
to be sensitive to word-order effects during translation, and (c)
to be sensitive to factors associated with the naming of con-
stants. We conclude by considering the implications of this
kind of large-scale empirical study for improving an automated
assessment system specifically, and logic teaching more gen-
erally.
Keywords: errors; slips; misconceptions; natural language;
e-learning; human reasoning; automated assessment; educa-
tional data mining; first-order logic; propositional logic; Lan-
guage, Proof & Logic

Introduction
It seems obvious that the difficulty students face in translating
natural language statements into formal logic will, at least in
part, be due to characteristics of the natural language state-
ments themselves. For example, we would expect it to be
relatively easy to translate a natural language sentence when
the mapping from natural language into logical connectives is
transparent, as in the case of the mapping from and to ‘∧’, but
harder when the natural language surface form is markedly
different from the corresponding logical form, as in the trans-
lation of sentences of the form A provided that B. However,
evidence for this hypothesis is essentially anecdotal, and we
have no quantitative evidence of which linguistic phenomena
are more problematic than others.

This paper presents results from a pilot study using a large-
scale corpus in the area of first-order logic teaching at the un-
dergraduate level. The corpus consists of student-generated
solutions to exercises in Language, Proof and Logic (LPL;
Barwise, Etchemendy, Allwein, Barker-Plummer & Liu,
1999), a courseware package consisting of a textbook to-
gether with desktop applications which students use to com-
plete exercises.1 Students may submit answers to 489 of

1See http://lpl.stanford.edu.

LPL’s 748 exercises2 to The Grade Grinder (GG), a robust au-
tomated assessment system that has assessed approximately
1.8 million submissions of work by more than 38,000 individ-
ual students over the past eight years; this population is drawn
from approximately a hundred institutions in more than a
dozen countries. These submissions form an extremely large
corpus of high ecological validity which we wish to exploit in
order (inter alia) to gain insights into cognitive processes dur-
ing formal reasoning (such as those associated with natural-
to-formal language translation and interpretation), to extend
our research on individual differences in reasoning (e.g. Sten-
ning & Cox, 2006), to improve logic teaching, and, eventu-
ally, to enrich the Grade Grinder’s feedback to students. Un-
derstanding the nature of students’ errors is central to these
aims; the corpus offers considerable scope for analyses with
this in mind.

As a pilot study in how this rich data set might be used
to inform logic teaching, we selected a single exercise in-
volving the translation of twenty sentences from English into
propositional logic. We developed and validated a taxon-
omy for categorising students’ translation errors and used it
as the basis for an automated error-classification system. We
analysed several thousand solutions to the exercise and sin-
gled out three high-frequency types of error — antecedent–
consequent reversals, substitutions of connectives, and sub-
stitutions of constants — for in-depth followup. All three
demonstrate how particular aspects of the form of a natural
language sentence impact on the ease with which students
can translate this sentence into logic. Below, we describe this
analysis in detail, and provide some conclusions regarding the
implications of this work for improving an automated assess-
ment system specifically, and logic teaching more generally.

Sampling
For the purposes of initial exploration we selected a natural
language (NL) to first-order logic (FOL) translation exercise
of moderate difficulty, i.e. one that psychometrically discrim-
inates between students. Exercise 7.12 from Chapter 7 (which
introduces conditionals) was selected by computing the num-
ber of GG submissions per LPL exercise and rank ordering
them by the proportion of incorrect submissions of the exer-
cise. This exercise involves translating each of twenty En-
glish sentences into propositional logic (a subset of FOL). A

2The other exercises require that students submit their answers
on paper to their instructors.



Translate the following English sentences into FOL. Your transla-
tions will use all of the propositional connectives.

1. If a is a tetrahedron then it is in front of d.
2. a is to the left of or right of d only if it’s a cube.
3. c is between either a and e or a and d.
4. c is to the right of a, provided it (i.e. c) is small.
5. c is to the right of d only if b is to the right of c and left of e.
7. If b is a dodecahedron, then it’s to the right of b if and only if it

is also in front of b.
10. At least one of a, c, and e is a cube.
11. a is a tetrahedron only if it is in front of b.

Figure 1: An extract from Exercise 7.12

translation for a sentence (which we refer to here as a solu-
tion) is considered correct if it is equivalent to a reference so-
lution.3 Sample sentences from Exercise 7.12 are presented
in Figure ??.

The reference solution for Sentence 1 in Figure ?? is
Tet(a)→ FrontOf(a,d). The Grade Grinder’s response to an
erroneous submission of the form FrontOf(a,d)→ Tet(a), a
common error, takes the form:

*** Your first sentence, "FrontOf(a, d) ->

Tet(a)", is not equivalent to any of the

expected translations.

Further information on the Grade Grinder, and samples of
feedback reports, can be found on the GG website.4

A submission for Exercise 7.12 consists of a solution for
all twenty sentences, and is considered erroneous if the stu-
dent makes an error on at least one of the solutions. We
examined the corpus of submissions of Exercise 7.12 made
by students during the calendar years 2000–2007 — more
than 74,000 submissions, of which 42,416 submissions (57%)
were erroneous, with a total of 148,681 incorrect translation
solutions.5 These submissions were made by 11,925 different
students, representing an average of 12.47 incorrect transla-
tions per student.

Method: Developing an Error Taxonomy
We scrutinised a subsample of 296 erroneous solutions for
Sentence 1 in Exercise 7.12, and worked collaboratively to
develop a coding scheme for annotating students’ solutions.

The errors in a student’s answer are determined by com-
parison with the reference solution. Throughout this paper
we assume that this answer is the most natural solution, and
that it is this sentence that the student is aiming to produce.

The sentences Tet(a)→ FrontOf(a,d) and
¬Tet(a)∨FrontOf(a,d) are equivalent, correct transla-
tions for Sentence 1; here, the first of these is the reference

3There are infinitely many correct answers for any sentence, so a
theorem prover is employed to determine equivalence.

4See http://ggww2.stanford.edu/GUS/lpl/.
5Some or all of the translations may be empty and therefore er-

roneous, but we ignore these null solutions in this paper.

solution. A student submission of Tet(a)∨FrontOf(a,b)
will be classified as a connective substitution of ‘∨’ for ‘→’,
while it is equally plausible that the student was aiming at the
second answer, and committed the error of omitting the ‘¬’.

A framework, or set of guidelines, emerged following an
iterative, fairly systematic process based on the procedure ad-
vocated by Chi (1997) for developing protocols for the qual-
itative analysis of verbal data in educational research. We
identified, grouped and categorised broad classes of error
types, iteratively developed a coding scheme, and wrote op-
erational definitions of the error types. These processes were
cyclical and repeated at various levels of granularity. Eventu-
ally, a taxonomy of 45 error types emerged. Each of these is
identifiable in terms of surface-form characteristics: we also
explored the categorisation of the different errors in terms of
their possible causes, but decided that this left too much scope
for subjectivity, and that a categorisation based on observable
phenomena was most appropriate at this stage in the exer-
cise. We organised these 45 error types under three broad
categories, based on the representation of a FOL formula as a
tree:

1. Structural Errors: these are errors involving the structure
of the FOL tree—for example, switching of the antecedent
and consequent of an implication, or adding exclusivity
(e.g. giving a sentence of the form (A∨B)∧¬(A∧B) in-
stead of just (A∨B).

2. Connective Errors: errors involving labels on the interior
nodes of the FOL tree: using one connective in place of
another.

3. Atomic Errors: errors involving the structure of an atomic
subformula; these are of two subtypes:

(a) Predicate Errors, where one predicate symbol is used
in place of another; and

(b) Argument Errors, where one argument is used in place
of another, or the wrong number of arguments is present.

Each of the categories cover a collection of different kinds of
error. For example, Connective Errors can be the substitu-
tion of a connective for any other (‘∧’ in place of ‘→’, say),
for an out-of-vocabulary (unknown) symbol, or for the empty
symbol (omission). For Argument Errors, we distinguish
the situation where a constant has been substituted for the
correct symbol in the wrong orthographic case (‘A’ instead
of ‘a’, say) from substitutions of one constant for another.

Additional error types derive from stereotypical patterns of
lower-level errors. For example, a substitution of one con-
stant for another throughout the formula is categorised as a
‘uniform’ substitution, while substitution in some places and
not others is categorised as ‘sporadic’. We also introduce a
‘waste-basket’ class covering cases where students have in-
troduced unnecessary or unmatching parentheses; inclusion
of periods at the end of strings; and examples so radically
different from the solution that it is not clear how to charac-
terise them.



Table 1: Examples of errors, (n.b. ACREV = Antecedent-Consequent Reversal)

# Reference solution Errored solution Type Subtype
1 Tet(a)→ FrontOf(a,d) FrontOf(a,d)→ Tet(a) 1 ACREV
2 Tet(a)→ FrontOf(a,d) FrontOf(a,b)→ Tet(a) 1, 3ii ACREV, Incorrect Constant
3 Tet(a)→ FrontOf(a,d) Tet(a)∨FrontOf(a,d) 2 Disjunction for Conditional
4 ¬Cube(e)→ (Large(b)∨Large(d)) ¬Cube(e)→ Large(b)∨Large(d) 1 Missing Parens
5 Large(e)→ Large(a) e→ Large(a) 2 Elided Predicate
6 Tet(a)→ FrontOf(a,d) Tet(a)→ InFrontOf(a,d) 3i Incorrect Predicate
7 Tet(a)→ FrontOf(a,d) Tet(a)→ FrontOf(a,b) 3ii Incorrect Constant
8 Tet(a)→ FrontOf(a,d) Tet(a)→ FrontOf(d) 3ii Arity Error

Table ?? shows examples of each of the higher-level er-
ror types, each labelled with the more specific error category
assigned in our taxonomy. Note that some solutions, as in
example 2 here, contain more than one error.

Reliability of the Coding Scheme
For manageability in annotation, we identified and charac-
terised eight error types that serve as intermediate nodes in the
error taxonomy between the three top level types and the 45
leaf-node categories. Two independent annotators used this
categorisation to code 296 student solutions to Sentence 1 of
Exercise 7.12. Each solution contained between one and three
errors. We computed Cohen’s kappa (κ) statistic for inter-
annotator reliability; kappa can be used to verify that agree-
ment exceeds chance levels (e.g. Viera & Garrett, 2005). κ

was computed separately for each of the categories; values
are shown in parentheses after each category: Antecedent–
Consequent Reversal (κ=.97); Incorrect Constants (κ=.98);
Incorrect Predicates (κ=.74); Incorrect Connectives (κ=.94);
Parenthesis Errors (κ=.76); Case Errors (κ=.66); Arity Errors
(κ=1.00); Other Errors (κ=.52). Kappa values all showed
substantial, almost perfect or perfect agreement for all cat-
egories except ‘Other’, for which there was only moderate
agreement.

Automating the Coding Process
We used the full taxonomy to inform the design of an au-
tomated solution coding system. We developed a simple
pattern-matching program, based on regular expressions, and
used it to classify automatically each of the sentences in the
complete corpus. The classifier identifies fragments of the
submitted answer that appear to correspond to the atomic sub-
formulae of the reference sentence, and requires that the cor-
rect number of such subformulae are present before proceed-
ing to classify the errors within the answer. This approach
allows us to analyse those answers which are syntactically
incorrect, although it does not have the flexibility that a tok-
enizer or chart-parser based analyser might have.

On average the classifier was able to classify 85% of the
submissions within the corpus. The classification rate var-
ied with sentence and ranged from 62% (Sentence 7) to 99%
(Sentence 11). The classifier was able to code for each of the
errors in the taxonomy, but the presence of some errors pre-
vents the coding for some others. For example, if a submis-

Table 2: Error frequencies

Error Type Count %age of All
Antecedent–Consequent Reversal 25084 25.86%
Biconditional for Conditional 17518 18.06%
Conditional for Biconditional 11362 11.71%
Negation Error 8954 9.23%
Incorrect Scope 5422 5.59%
Failure to Scope 4701 4.85%
Argument Error 4474 4.61%
Conjunction for Conditional 3187 3.29%
Conditional for Conjunction 2091 2.16%
Biconditional for Conjunction 1514 1.56%

sion contains the wrong predicate (Incorrect Predicate error),
we do not subsequently check that the arity of that predicate
is correct (Arity Error).

Applying the Taxonomy to Data
We ran the student’s FOL translation solutions to the twenty
Exercise 7.12 sentences through the regular expression-based
coding software. We first produced a list of frequencies of er-
rors for all 20 sentences, and focussed our attention on the 10
most frequent errors for each sentence. The results of this
analysis are shown in condensed form in Table ??, which
shows the number of instances of each of the ten most fre-
quent error types across all 20 sentences, along with the per-
centage of total errors accounted for by these instances.

Below, we illustrate the application of the taxonomy to the
data with one example from each of the three broad categories
mentioned earlier (Structural Errors, Connective Errors and
Atomic Errors): Antecedent–Consequent Reversal and Incor-
rect Substitution of the Biconditional for the Conditional are
the two most frequent errors overall, and Argument Errors are
the most common Atomic Errors.

Reversal of Antecedent and Consequent
Clement, Lochhead and Monk (1981) studied translation
difficulties in mathematics. Students talked aloud as they
worked on a simple algebra problem (“Write an equation:
‘There are six times as many students as professors at this uni-
versity.’ Use S for the number of students and P for the num-
ber of professors”.). The predominant error consisted of re-



versing the variables in the equation. Of 150 ‘calculus level’
students, 37% manifested reversal errors of the form 6S = P.
The rate was 57% in another sample. Two sources for the er-
ror were identified. The first was termed ‘word-order match-
ing’ in which the student orders terms in their equation in a
way that matches the order of keywords in the problem state-
ment. The process is superficial and syntactic. Another strat-
egy Clement et al. (1981) termed ‘static comparison’. This is
one in which the student does not understand S as a variable
representing the number of students, but as a label attached
to a number, in this case ‘6’. The student places a multiplier
adjacent to the letter associated with the larger group. This er-
ror is based on an interpretation of the equals sign as express-
ing comparison or association rather than equality. Clement
(1982) reports that the static comparison strategy is a ‘deep-
seated, intuitive symbolization strategy . . . ’ which can co-
exist with formally taught contradictory schemes and which
can ‘take over’ in some problem solving situations (p.28). We
were interested to investigate whether evidence for strategies
akin to word-order matching and static comparison in word
algebra problem solving can also be found in the FOL domain.

There are two kinds of sentence for which element order-
ing matters (i.e. where the connective is the non-commutative
‘→’). For some, the correct solution preserves the word or-
dering in the posed NL sentence (e.g. Sentence 1: If a is a
tetrahedron then it is in front of d≈Tet(a)→ FrontOf(a,d)).
For others, the correct solution requires re-ordering (e.g. Sen-
tence 4: c is to the right of a, provided it (i.e., c) is small
≈ Small(c)→ RightOf(c,a)). Twelve of our reference sen-
tences involve implication; eight of them preserve word or-
der and four do not. Our prediction was that Antecedent–
Consequent Reversal would occur more frequently on sen-
tences for which the correct solution requires re-ordering than
would be observed for sentences that preserve the posed word
order in the solution. We calculated the number of erroneous
solutions submitted to Grade Grinder which demonstrated
Antecedent–Consequent Reversal for each sentence and ex-
pressed that as a fraction of the total number of solutions for
that sentence. The total number of solutions submitted across
the 12 sentences in the analysis ranged from 318 to 8361.

For the four sentences in which word order is not preserved
during translation from posed NL sentence to FOL solution,
the percentage of antecedent and consequent reversals was
66%. This means that one basis for the students’ error was a
tendency to preserve the original word order for this type of
sentence. In contrast, for the eight sentences in which word
order is preserved during translation, the antecedent and con-
sequent reversal rate was 43%. This difference was signif-
icant under a directional hypothesis (i.e. that sentences re-
quiring re-ordering during translation would produce more
Antecedent–Consequent Reversals).

The t-test values were (t = 2.23, df(10), p = .05, 2-tailed).
It therefore seems that word order in the NL posed sentence
does tend to ‘drive’ term order in the FOL translation for many
students, though this effect is probably conflated with dif-

Table 3: Biconditional for Conditional Errors

Frequency Percentage Surface Form
13214 75.43% S only if S.

1777 10.14% S unless S.
1146 6.54% S provided S.
725 4.14% S if S.
367 2.09% If S then if S then S.
289 1.65% If S then S.

ficulties in distinguishing the biconditional from the condi-
tional, as discussed in the next section.

In future studies we plan to look at correlations of error pat-
terns within and between students; this may help to establish
the relative contribution of each phenomenon. Consequently,
they provide an interesting means by which the effect of natu-
ral language presentation upon connective substitution errors
can be investigated.

Connective Substitutions
Sentences 1 and 11 have quite different NL forms, but their
FOL translations are identical modulo the use of a different
constant.
1. If a is a tetrahedron then it is in front of d,

Tet(a)→ FrontOf(a,d);
11. a is a tetrahedron only if it is in front of b,

Tet(a)→ FrontOf(a,b)

Of the 10 most common errors for these two sentences, six
are shared by both: Antecedent–Consequent Reversal, Bicon-
ditional for Conditional substitution, Argument Reversal, In-
correct Argument, Incorrect Predicate, and Arity Error. The
frequency of occurrence of each of the six shared error types
were rank-ordered 1–6 separately for each of Sentences 1 and
11.

Whereas for Sentence 1 Biconditional for Conditional sub-
stitution ranked fourth out of the six and represented 12% of
1361 solutions, for Sentence 11 it ranked first — the most
common error of all, with 58% of 8981 solutions of this kind.
This strongly indicates that there is something about the sur-
face structure of the two NL sentences that elicit very different
error patterns from students. More generally, we can consider
the propensity for students to make the Biconditional for Con-
ditional substitution error when faced with a variety of differ-
ent natural language renderings of the conditional. Table ??
shows the number and percentage of Biconditional for Con-
ditional errors per surface form across the 20 sentences. This
demonstrates that students find it significantly more difficult
to translate the only if form than other natural renderings of
the conditional.

Substitution of Constants
Incorrect Constant errors, where one constant is substituted
for another, are a significant form of error for specific sen-
tences. For example, four out of the top 10 error forms
for Sentence 10 (At least one of a, c, and e is a cube ≈
Cube(a)∨Cube(c)∨Cube(e)) involve this type of error:



Cube(a)∨Cube(b)∨Cube(c) n = 758
Cube(a)∨Cube(b)∨Cube(e) n = 227
(Cube(a)∨Cube(b)∨Cube(c)) n = 53
Cube(a)∨Cube(c)∨Cube(b) n = 45

We noted that this kind of error seemed to interact with (1) the
use of the constant a in a sentence; (2) whether the use of a
as a constant was the first mentioned constant in the sentence;
and (3) whether or not the letters used as constant names were
alphabetically adjacent (e.g. 〈a, b, c〉) versus whether the sen-
tence’s constant letters were alphabetically ‘gappy’ (e.g. 〈b,
e, d〉). Visual inspection of the data suggested at least two
trends: the first was for constant substitutions to be more fre-
quent when the letters used as constants were not alphabet-
ically adjacent, and the second was for this effect to appear
to be magnified when the letters used as constants were not
alphabetically adjacent and the first constant letter name men-
tioned in the sentence was a.

To investigate these issues, we binary-coded each of the
sentences in terms of these factors (present/absent). These
were used as independent variables in analyses with the con-
stant substitution frequency data as the dependent variable.
An independent t-test comparing the normalised mean fre-
quencies of constant substitutions for ‘gappy’ versus ‘non-
gappy’ sentences revealed a highly significant difference (t =
3.58, df(13.4), p < .005). Non-gappy sentences (n = 6) aver-
aged 4% constant substitution errors, whereas 20% of the er-
rors on gappy sentences (n = 14) were constant substitution
errors, usually of the 〈a, b〉 for 〈a, d〉 variety. On Sentence
1, for example (see Figure ??), 85% of constant substitutions
were of b for d, compared to only 25% for d for b substitu-
tions on Sentence 11.

We also compared sentences in which the constant name
a was used with those in which it was not, and whether or
not it was mentioned as the first constant in the NL sentence.
The effect of this factor was also significant under a 1-tailed t-
test (t = 2.00, df(8), p < .05). Twenty-four percent of errors
on sentences with a mentioned as first constant name were
constant substitution errors, compared to only 9% for other
sentences. The interaction of the gappy and ‘a-first’ factors
approached statistical significance and suggested a tendency
for the gap effect to be magnified in sentences in which a is
the first mentioned constant name (Table ??).

Discussion
The results of the analyses presented here provide support for
the hypothesis that properties of the surface form of a natural
language sentence negatively impact translation performance
when the surface form differs markedly from the correspond-
ing logical form. As we have demonstrated, automated anal-
ysis of a very large data set allows the exploration of specific
hypotheses regarding the effects of particular aspects of sur-
face form. We have shown that surface features such the or-
dering of antecedent and consequent terms (discussed above),
the use of particular connectives, and the way in which con-

Table 4: Constant substitution errors as %s of all errors for
sentences in which first mentioned constant was/was not a vs.
whether or not constant names were alphabetically adjacent
letters (‘gappyness’).

Mean constant
Begins with ‘a’? Gappy? N substitution error (%)

no no 4 4.5%
no yes 8 11%
yes no 2 2%
yes yes 6 32%

stants are named affect translation performance. In this sec-
tion we discuss the latter two features in more detail.

Connective Substitution
It seems plausible to suggest that the use of only if in Sen-
tence 11 cues the phrase if and only if in the student’s mind.
The meaning of the term is introduced in the LPL textbook
(p.180) as follows: “. . . the expression only if introduces . . . a
necessary condition”. The text provides an illustration in-
volving an instructor saying to the class that “you will pass
the course only if you turn in all the homework assignments”,
pointing out that this does not imply that if all homework is
handed in passing is guaranteed. The biconditional is intro-
duced and illustrated in a similar vein. One source of the
difficulty that students appear to have with distinguishing the
conditional and the biconditional may stem from the way in
which if is used in natural language. For example, Stenning
and van Lambalgen (2001), citing Geis and Zwicky (1971),
argue that conditionals are often naturally interpreted as bi-
conditionals in everyday contexts especially where conditions
are implied or ultimatums are issued (deontics). They suggest
that a statement such as “if you read this, I’ll buy you lunch”
‘drops a heavy hint that no reading, no lunch’ (p. 287). Sten-
ning and van Lambalgen (2001) also point out that this kind
of interpretation is akin to the Gricean maxim of relevance
(Grice, 1975) under which, if the hearer assumes that if his
interlocutor was going to buy lunch anyway, then why would
she make the promise conditional upon the performance of
some task?

Constant Substitution as a Capture Error
We hypothesise that constant substitution is sometimes a slip6

of the ‘capture error’ type, in which a more frequent be-
haviour ‘captures’ a less frequent behaviour. For example,
we sometimes might dial a frequently-dialled number when
we intended to dial a number beginning with the same prefix.
Under our hypothesis, the more frequent behaviour is the use
of alphabetical names in order: 〈a, b, c, . . .〉, and that this be-
haviour is capturing the required usage: 〈a, c, e〉 for Sentence
10. The data presented in table ?? support this hypothesis.
The presence of a as the initial constant appears to prime the

6A term used in the human error literature. e.g. Reason (1990)



familiar behaviour, which results in a high level of constant
substitution when ‘gaps’ too are present.

Future Work
Our initial explorations of this large data set have produced a
plethora of interesting directions to pursue.

In the foregoing, we have explored the correlation be-
tween specific surface forms and specific error types. There
are more complex language-related aspects worthy of explo-
ration. For example, we might characterise the NL sentences
in terms of their ‘naturalness’ or ‘paraphrase distance’ from
their FOL translated form. Sentence 12 (b is larger than both
a and e) seems quite ‘everyday’ in its phrasing compared to
sentence 10 (at least one of a, c and e is a cube), for example.

We can also consider the complexity of the natural lan-
guage forms in terms of factors such as: the number of clauses
they contain; whether or not these clauses are embedded;
whether there is scope for ambiguity in pronominal reference
resolution or the resolution of elided elements; whether the
sentences contain conjunction, negation, or other signals of
syntactic complexity. A better understanding of the impact
of these factors on the difficulty of translation could lead, for
example, to the automatic generation of natural language sen-
tences that test a student’s specific weaknesses. We also seek
to clarify what cognitive processes give rise to the types of
errors that we observe. The translation findings we report
represent comprehension processes rather than full deductive
inferential processes. We feel that the theoretical implica-
tions of our findings for abstract rule versus mental model
theories must await analyses of ‘deeper’ deductive inferen-
tial reasoning (e.g. across several sentences), a focus of our
current work.

Another aim is to investigate what interventions are most
appropriate for instances of the different kinds of errors
within the taxonomy. Instead of responding to all incorrect
answers with a bald statement of fact as currently delivered
by the Grade Grinder, we might instead report on the pres-
ence of substitution errors in a different way to antecedant–
consequent reversal, for example.

In addition to cross-subject analyses such as those pre-
sented here, the Grade Grinder error corpus affords us the
opportunity to examine within-subject effects, since we can
identify sequences of attempts by a single student to solve an
exercise, or sequence of exercises. As an intervention, we
may be able to present a student with a profile of the errors
that they are prone to commit, together with appropriate ad-
vice for avoiding those errors.

Conclusion
Our results have illustrated how it is possible to use empirical
data gathered on a large scale to gain insights into the diffi-
culty that students have when learning to translate sentences
from FOL into NL. We believe that these insights can improve
the standard of logic teaching (with or without the use of LPL,
or software support) and other related areas such as mathe-
matics and computer science. General observations such as

those concerning the cooperative stance of natural language
vs. the more adversarial stance required in these more for-
mal fields will have wide application. If educators are trained
to expect and recognize errors stemming from these causes,
and have appropriate interventions available, then the quality
of education in these areas may be improved. The poten-
tial value of greater understanding here is not limited to the
teaching of logic - it is also an important component of ‘com-
putational thinking’ (Wing, 2006). She defines it as ‘a univer-
sally applicable attitude and skill set that everyone . . . would
be eager to learn and use” (p33); it includes, among many
others, skills in problem decomposition and heuristic reason-
ing. An understanding of logic can facilitate these skills—
abilities which are becoming ever more important if individ-
uals are to benefit from technological developments in the
modern world.
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