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Abstract

Different parsers trained on the same cor-
pus deliver different results, both in terms
of overall performance and in terms of the
individual analyses they provide. In par-
ticular, for any given sentence, one parser
may provide a correct analysis, while an-
other will produce an incorrect analysis; but
when faced with a different sentence, the
first parser may be in error while the sec-
ond is correct. In this paper, we leverage
this observation by exploring how the re-
sults of a number of different parsers may
be combined to provide a better performance
than any single parser. The method involves
constructing a chart that contains edges con-
tributed by a collection of parsers, with a
simple voting mechanism to choose the most
preferred constituents; this provides a signif-
icant improvement in performance over any
individual parser. More sophisticated voting
mechanisms are also discussed.

1 Introduction

Parsers make mistakes. This is perhaps most appar-
ent when a parser trained on a given corpus is ap-
plied to data from a domain or genre different to that
of the training corpus. One can, of course, retrain
the parser on new data that is more representative of
the texts to be handled; but annotation is an expen-
sive process, and the literature does not provide a
great deal of guidance as to how much annotation is

1Scott Nowson is now at Appen Pty Ltd.

required in order to obtain an acceptable result (but
see Reichart and Rappoport (2007a) for some recent
interesting results in this area).

Unfortunately, parsers make mistakes even on the
corpora on which they are trained. Before we begin
to consider how we might adapt a parser to a new
domain, we are therefore interested in how we might
improve the performance of existing parsers on the
corpora used to derive their models.

We make the observation that different parsers
have different ‘error profiles’, by which we mean
that different parsers do not necessarily make the
same mistakes. Consider the following verb phrase
taken from our test corpus:

. . . lock in profits by buying futures when
futures prices fall

Figure 1 shows the analyses provided for this verb
phrase by three different parsers, as an illustration
of the kinds of disagreements that are common. In
the first analysis, in is misclassified as a preposition,
while in the second and third analyses it is correctly
analysed as a particle. However, the second parse
contains a misparse of the embedded VP buying fu-
tures, while this is correctly analysed in the first and
third parses.

This leads us to the hypothesis that, if we were
able to select for each parser those parts of individ-
ual parses that are more likely to be correct, then
the overall result would be an improvement upon the
analysis of any individual parser. We explore this
hypothesis in this paper, by providing a framework
within which the analyses of different parsers can be
combined, and the overall best parse selected.
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Figure 1: Three analyses by different parsers

The idea of combining the results of different
parsers is not in itself new, so in Section 2 we
briefly survey related work in this area. In Sec-
tion 3 we describe our approach, which takes ad-
vantage of the central ideas in chart parsing to pro-
vide a way of combining parse results, and we de-
scribe the parsers used in our experiments. Sec-
tion 4 describes the results achieved by our method,
demonstrating a significant improvement upon the
performance achieved by any individual parser. Sec-
tion 5 discusses how the simple voting mechanism
presented here can be made more elaborate, with
the prospect of even better improvements in perfor-
mance, and Section 6 concludes.

2 Background: Combining Parsers

The combination of the results of several differ-
ent components that carry out the same task—
sometimes referred to as the ensemble-based
approach—has been employed and shown to be suc-
cessful in a number of fields such as part-of-speech
tagging (Halteren et al., 1998), word sense disam-
biguation (Pederson, 2000) and question answering
(Chu-Carroll et al., 2003).

There are a number of approaches that have been
employed for parser combination. Henderson and
Brill (1999) describe experiments that fall within
two general approaches they label parse hybridiza-
tion and parse switching. The most basic form of
hybridization is constituent voting, whereby con-
stituents in a parse are included if they can be found
in the majority of contributing parses. A second ap-
proach is to use a naı̈ve Bayes classifier in order to
learn how much each parser should be trusted.

The alternative to this approach is to deal only
with complete parses. Henderson and Brill again ex-
perimented with two approaches: similarity switch-
ing, whereby the parse chosen is the one which
scores highest when judged for similarity to the re-
maining parses in the set; and a second naı̈ve Bayes
approach to selecting the parse with the highest
probability of being the best. All four of Henderson
and Brill’s approaches produced better results than
any of the contributing parsers achieved: their best
result was a 30% reduction of precision error rate, a
6% reduction of recall error rate and an absolute F-
score increase of 1.58%. These ideas have been ex-



tended to take into account more context in adapta-
tion to dependency based parsers with similarly suc-
cessful results (Zeman and Žabokrtský, 2005).

Henderson and Brill (2000) followed their earlier
combination approach with one based on creating
an ensemble of complementary parsers. Each parser
was based upon the same underlying algorithm, but
trained on different data. By using bagging and
boosting approaches, their ensemble outperformed
all single parsers, with a 0.6% absolute improvement
in F-score. In a similar vein, Reichart and Rappoport
(2007b) generated a number of parsing models by
training one parser on slightly different training cor-
pora. The resulting outputs were compared in order
to judge the parse quality: the greater the number of
models in agreement, the higher the quality.

Clegg and Shepherd (2005) explored a number
of alternative approaches to ensemble parsing when
deploying trained parsers in a new domain. Using
basic constituent voting based on Brill and Hender-
son’s (1999) method, they report similar improve-
ments, mostly to precision but also to recall. They
achieved equally promising results from their vari-
ants of parse switching. The first of these was fall-
back cascades in which parsers are stacked in or-
der of decreasing levels of sophistication. When the
more complex model fails, the next parser attempts
to parse. The bottom parser may be less accurate,
but will be the least likely to fail. Their second
whole-parse approach they simply termed parse se-
lection, though it is similar to Henderson and Brill’s
similarity switching. Clegg and Shepherd varied this
by trying different similarity metrics, such as con-
stituent overlap or lineage similarity.

Sagae and Lavie (2006) apply a notion of re-
parsing to a two stage parser combination chart-
based approach. Once all single parses are com-
plete, the first stage is to store all possible con-
stituents in a chart with a label, start and end po-
sitions, and a weighting. Identical constituents from
different parses are merged by adding their weights.
The second stage of the process is to run a bottom-
up parsing algorithm, but rather than use a weighted
grammar, the parser is guided by the weighted set of
constituents. They experimented with different ap-
proaches to setting the initial weights of each non-
terminal label. By combining five parsers they were
able to achieve a error reduction of 44% for preci-

sion and 14% for recall, and an absolute F-score in-
crease of 1.1% (though it is worth noting each of
these are best improvements, made across a differ-
ent run made with different settings).

3 Our Approach

3.1 The Basic Idea
Our approach is based on the central idea in chart
parsing (Earley 1970; Kay 1980): for any ambigu-
ous string, the constituents derived from multiple
parses can be maintained in one data structure, so
that subsequent parses can reuse previously derived
partial analyses. The insight leveraged here is that
the same idea can be applied to multiple parsers: just
as the chart can contain multiple analyses for a string
as delivered by one parser, it can just as easily con-
tain multiple analyses delivered by several parsers,
thus providing a single unified view of all the dif-
ferent analyses, and allowing us to easily determine
where parsers agree and where they disagree.

This is a very simple idea, but one which enables
the development of a variety of approaches to choos-
ing which edges should be used in building a pre-
ferred parse; and, as we demonstrate below, even the
simplest methods provide good results.

Our approach to combination is built upon a basic
voting strategy, methodologically similar to Hender-
son and Brill (1999) and Sagae and Lavie (2006),
with implementational similarity to the latter. In its
purest form, voting is purely democratic: all nom-
inated constituents are considered equally suitable
candidates to fill a position in the parse, and the can-
didate with the most votes—i.e., the candidate pro-
posed by a majority of the parsers—is the winner.
The algorithm is simple:

1. Each sentence is parsed by multiple parsers.

2. The resulting Penn Treebank parse strings are
converted into a chart representation.

3. Starting with the root node, voting takes place
as to what the children of that node should be.

4. Step 3 is then repeated for each successful child
node.

5. When the tree is fully populated by terminal
nodes, the final chart is returned as a Penn Tree-
bank parse representation for evaluation.



We now describe these stages in more detail.

3.2 Parsing

The first stage in our process is to parse each sen-
tence with the individual contributing parsers. In
the experiments reported here, we use three parsers:
the Stanford lexicalised parser (Klein and Manning,
2003); Collins generative parsing model number 2
(Collins, 1999) as re-implemented by Bikel (2004);
and the OpenNLP parser (Baldridge et al., 2003).
These were chosen for two reasons:

• all three parsers output parses in the standard
Penn Treebank notation, making conversion to
our chart representation the same process for
all; and

• all three are provided with Java API functional-
ity making incorporation into one system more
straightforward.

This latter advantage also reduces computation
times by enabling just a single parser initialisation
step before parsing all sentences.

3.3 Chart Representation

Once each sentence has been parsed, the result-
ing Penn Treebank parse strings are converted into
charts. In the standard approach, a chart is a collec-
tion of vertices that span sequences of one or more
words of the input, with pairs of vertices that are
connected by grammatically labeled edges; where
a sequence of words is amenable to more than one
analysis, each analysis is represented by a separate
edge. Subsequent decisions, or some other choice
mechanism, then determine which of the multiple
analyses should be chosen.

In the implementation used here, vertices are de-
fined in terms of character positions, while edges are
defined by the start and end positions and given a
grammatical label. As a step towards efficient imple-
mentation, each edge contributed by a given parser
also indicates the constituent edges—the grammati-
cal children—contained within the span of that edge.
By example, consider the sentence the cat sat, which
is analysed as follows:

(S (NP (DT the) (NN cat)) (VP (VBD
sat)))

and is spanned thus:

t h e c a t s a t
0 1 2 3 4 5 6 7 8 9 10 11

This analysis would be represented as a chart con-
sisting of edges:

(0, 12, S, {(0,7,NP), (8,11,VP)}}
(0, 7, NP, {(0,3,DT), (4,7,NN)})
(0, 3, DT, {(0,3,the)})
(4, 7, NN, {(4,7,cat)})
...

3.4 Chart Voting

The fundamental difference between our approach
and those of Henderson and Brill (1999) and Sagae
and Lavie (2006) described earlier is in the strat-
egy used when selecting constituents. Previous ap-
proaches have considered constituents in isolation:
Sagae and Lavie’s charts contain all possible con-
stituents, each assigned a weight based on their
presence across individual parsers, and these are
merely used to inform a second stage, bottom-up re-
parsing. By comparison, our system could be de-
scribed as a single-stage, top-down process which
operates across the prior parses. Similar to Sagae
and Lavie, we employ simple voting to determine
the choice of constituents, but we consider only
the nominated children of each already-decided con-
stituent. Since each such set of children corresponds
to a valid parse, we can ensure there will not be any
crossing brackets, and that the resulting parse will
be grammatically sound.

Each grammatical constituent is defined by an
edge within the chart. For each edge that cov-
ers the same span of words1 across the individual
parser outputs, the set of potential analyses can be
retrieved. Each such solution provides a poten-
tial constituent analysis with which to continue the
parse, and for whom votes can be tallied. So, in
a democratic manner, any child nominated by all
contributing parsers is unanimously voted into the
parse. Similarly, any constituents that obtain a ma-
jority vote also succeed. In the case of a tie, we
resort to arbitrarily choosing between the potential
solutions. The only restriction is that children are
chosen so that the entire span is accounted for and a
complete tree is created.

1Matching edges are defined by the tuple <start pos,
end pos, label>.



Of course pure democracy, at least in the case of
parser combination, is quite naı̈ve. It treats all candi-
dates as equal and does not take past performance of
parsers into consideration; nor does it take into ac-
count the possibility that some parsers may perform
better in specific situations. Clearly a sensible step
forward here is to move towards a more meritocratic
approach, as discussed in Section 5 below.

3.5 An Example
As introduced earlier, Figure 1 illustrates how three
different parsers can construct parses that differ or
are similar in different ways. In this section, we walk
through the combination of these parses to provide
an example of how our approach works. To save
space and to aid clarity, we represent the span of any
node simply by listing the words contained in that
span.

In our example, we begin part-way through the
parse, where the the current node of interest is the
VP which spans from lock to futures. The analyses
of this node are retrieved from the charts delivered
by the three parsers, and votes are calculated across
the children:

VBP (‘lock’) 3 votes
PRT (‘in’) 2 votes
NP (‘profits’) 2 votes
PP (‘by . . . futures’) 2 votes
PP (’in . . . futures’) 1 vote

Three votes represents a unanimous decision,
while two is a majority; so, the decomposition of
the VP node that is common to the second and third
analyses is chosen.

Note that the PRT daughter of the VP node re-
ceives two votes in total, and subsequently so in turn
does it’s daughter, the RP. However, though the NP
node also received just two votes, the NNS node at
the next level of analysis receives three votes. This is
because in the case of one of these analyses the NP
node is buried deeper in the tree. Similarly, though
the PP in buying futures was voted twice for its po-
sition in the tree, it can be found in all three parses
at some level.

However, we have a disagreement as to the de-
composition of the PP:

IN (‘by’) 3 votes
S (‘buying futures’) 2 votes
NP (‘buying futures’) 1 vote

Parser P R F
Stanford 87.0 85.7 86.4
OpenNLP 88.1 87.7 87.9
Collins 72.9 88.9 80.1
Combined 90.7 89.5 90.1

Table 1: Precision, Recall and F-score for individual
parsers and their combination; sentence length <=
40 words (n = 2245).

Parser P R F
Stanford 86.4 85.0 85.7
OpenNLP 87.4 87.0 87.2
Collins 72.7 88.3 79.7
Combined 90.2 88.9 89.5

Table 2: Precision, Recall and F-score for individual
parsers and their combination; all sentences (n =
2416).

Consequently, the chosen analysis of the PP is that
proposed in the first and third trees.

3.6 Evaluation

We evaluate the results of our approach using the
PARSEVAL standard Evalb (Sekine et al., 2006).
The input to the system is Section 23 of the
Wall Street Journal (WSJ). All sentences are pre-
tokenised to ensure standard input, though each
parser executes its own part-of-speech tagging. The
system outputs four sets of parse strings: one for
each of the three constituent parsers, and one for the
final combined result. The sets of parses are com-
pared against the gold standard.

4 Results

We report the bracketing precision, recall and F-
score for sentences of length less than 40 words in
Table 1, and for all sentences in Table 2.

It is clear that the combined system performs the
best. Considering all sentences, we have achieved an
error reduction of 22% for precision and 5% for re-
call, along with an absolute F-score increase of 2.3%
over the best single contributor. In order to compare
our results with those of previous studies, we repro-
duce the results of Henderson and Brill (1999) and
Sagae and Lavie (2006) alongside our own in Ta-



ble 3. Our results are comparable directly with those
of Henderson and Brill; Sagae and Lavie’s scores
are a compilation of their best scores across three
separate systems tuned to maximise each dimension,
hence the high increase in precision and recall.

As a further investigation, we employed a simple
measure of confidence in a parse as a function of the
number of parsers in the system, the total number of
edges in the final chart and the total number of votes
cast over just those successful edges:

confidence =
∑

votes∑
edges ×

∑
parsers

Confidence will be highest if all the parsers
agreed on each edge (had the same parse through-
out) and will be lower the less they agree. Average
confidence across our output is 0.88, which suggests
that overall there was a high degree of agreement
across parsers. The confidence measure also shows a
significant correlation (p < .001) with the precision
and recall scores across all sentences. This suggests
that the system is most likely to be wrong when it
is least confident in its output, and so the confidence
metric is a good one.

5 Discussion

The performance values reported in Tables 1 and 2
show that the combined system produces more ac-
curate results than the original individual parsers, as
we had hoped. By simply taking a majority vote on
constituents, our system results in more correct con-
stituent analyses than those proposed by the individ-
ual parsers. However, the combined result is not a
huge improvement over the highest performing of
its contributing proposals.

It is of course possible that for the most part, all
parsers get the same things wrong — the rare and in-
frequent syntactic constructions. This would present
a simple voting system with no way to select the cor-
rect analysis. However, it is likely that systems that
get the same things wrong do so in the same way.
Such agreement on incorrectness still represents an
agreement, which would provide a high level of con-
fidence in the incorrect choice. However, looking at
our confidence scores, this incorrect agreement does
not appear to be the case: errors appear to follow a
lack of confidence — where there is most disagree-
ment.

The biggest weakness in our approach lies in the
arbitrary decision-making procedure used in break-
ing tied situations. In such tied situations, if the
wrong result is chosen, then all the constituent anal-
yses below that point have a high likelihood of be-
ing incorrect. This is a particular weakness of our
top-down approach, in contrast to Sagae and Lavie’s
bottom-up method.

There are a variety of ways in which the basic
model developed here could be extended. Of course,
one could extend the mechanism beyond the three
parsers that we use to incorporate a larger number of
parsers. However, a more interesting direction is to
improve the voting mechanism. The greatest num-
ber of errors appears to stem from situations of low
agreement, when voting is tied.2

One approach to resolving deadlocked situations
such as these might be to employ a lookahead ap-
proach. As illustrated in our example in section 3.5
upon voting across the top level VP, the NP receives
two votes. However, this is only because it was di-
rectly under the VP in two cases; the NP was in fact
still present in the third analysis, but buried further
down in the tree. In a tied situation, this fact would
have argued for one analysis over the other.

Another approach is to observe that, while
democracy is fair other things being equal, parsers
are more akin to experts to be consulted. For exam-
ple, we might think of each parser as having partic-
ular areas of expertise, in the sense that its perfor-
mance on some kinds of constituents might be bet-
ter than others. If a given parser has a track record of
performing well in the analysis of particular kinds of
constituents or substructures, then that parser’s vote
should carry more weight.

There are a number of approaches we might take
to developing a more meritocratic decision proce-
dure.

Track Record on This Parse: This is a general if
superficial measure of performance. It assumes
no external knowledge, and all parsers begin
with an equal weighting. Weightings are in-
creased automatically for every successful vote
that a parser casts. If all parsers always agree,
weights will remain equal. The more others in

2Note that these situations are even more likely to occur if
the system were to employ an even number of parsers.



P % decrease R % decrease F % increase
Henderson and Brill, best individual 89.6 89.7 89.7
Henderson and Brill, combination 92.4 26.9 90.1 3.9 91.3 1.6
Sagae and Lavie, best individual 91.3 90.6 91.0
Sagae and Lavie, combination 95.1 43.7 91.9 13.8 92.1 1.1
Nowson and Dale, best individual 87.5 88.3 87.2
Nowson and Dale, combination 90.2 21.6 88.9 5.1 89.5 2.3

Table 3: Precision, Recall and F-score for parsers; The best individual parser from each study, plus the best
combined results, and the differences between them.

the system agree with a parser, the more pop-
ular it becomes, and the heavier its weight-
ing. The downside, however, is that should
one system perform well early on, its weight-
ing may be so much that a local maxima may
be reached.

Previous Track Record: This is also a general
measure of performance, but is static and re-
lies on external information. Weightings are
set based on the prior performance of a parser:
those that have previously produced most accu-
rate results will be trusted more and weighted
higher. One source for this data would be pre-
viously published, preferably comparable, re-
sults. However, as we noted at the start of
the paper, good performance in one domain or
genre does not guarantee similar results in an-
other.

Two other measures, as suggested by Henderson
and Brill (1999), take context into account:

Constituent-Level Track Record: The previous
approach gives higher weighting to the parsers
that have previously performed best overall,
but this does not mean they were the best
at everything. In this approach, we narrow
the focus to performance over individual
constituent types: higher weighting is given
to a parser’s vote, if upon prior evaluation it
has proven successful at selecting the specific
nominated constituent. The prerequisite to
this is that performance analysis must have
been carried out at the level of individual
constituents. Alternatives might include using
machine learning techniques to automatically

determine which parsers do best in which
situations.

Structural-Level Track Record: The approach
above could be further extended to take ac-
count of a larger amount of syntactic context;
for example, it might be the case that some
parers are better at subject NPs but less good
at object NPs. Here we would need to com-
pute weights based on past performance on
correct annotation of subtrees in an analysis;
clearly this could be done at varying levels of
granularity, modulo the problem of sparse data.

6 Conclusion

This paper reports work concerned with combining
parsers using a chart based representation and voting
scheme. It has introduced the methodology we will
employ in our future parsing work: the outputs from
multiple parsers are transformed into a chart repre-
sentation; by voting over children these charts are
combined into a single chart combining those con-
stituents for which there is the strongest evidence.

The combination process pursued here is based
on the simplest interpretation of evidence, where we
pursue a purely democratic approach. This approach
is most obviously deficient when we have to deal
with ties. Nonetheless, the resulting parses prove
more accurate than the single nominees that con-
tributed to their creation, and performance compares
well to previous studies that employ more complex
and sophisticated methods. This suggests our ap-
proach has considerable scope for subsequent im-
provement, some possible directions for which we
have outlined in the latter part of this paper.
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