

Graph-Based Question Answering

Diego Mollá-Aliod 30 August 2004

Outline

- Question Answering and AnswerFinder
- Conceptual Graphs
- Graph Comparison

©2004 Macquarie University

Graph-based QA

2/34

Architecture of AnswerFinder

Grammatical Relations

©2004 Macquarie University Graph-based QA

Grammatical Relations

- A man named Richard Sears has been playing a joke on shoppers.
 (detmod _ man a)
 (subj name man _) (dobj name richard_sears _)
 (detmod _ joke a) (subj play man _) (aux _ play have)
 (aux _ play be)
 (ncmod shopper play on) (dobj play joke _)
- Who played a joke on shoppers?
 (subj play who _) (dobj play joke _)
 (ncmod shopper play on) (detmod _ joke a)

Graph-based QA

Minimal Logical Forms

Called <u>Minimal Logical forms</u> because they encode the minimum information required for AE
 Flat expressions that use <u>reification</u>
 Example: *cp will quickly copy files* holds(e4), object(cp,o1,[x1]), object(s_command,o2,[x1]),
 evt(s_copy,e4,[x1,x6]), object(s_file,o3,[x6]), prop(quickly,p3,[e4]).
 Example: *the man that came ate bananas and apples with a fork* holds(e1), object(s_man,o2,[x2]), evt(s_come,e4,[x2]), evt(s_eat,e5,[x7]),
 x6@<x7, x8@<x7, object(s_banana,o6,[x6]), object(s_apple,o8,[x8]),
 prop(with,p9,[e5,x11]), object(s_fork,o11,[x11]).

©2004 Macquarie University

Minimal Logical Forms

 A man named Richard Sears has been playing a joke on shoppers.
 holds(o10), object('man',o2,[x2]),

evt('name',e3,[X3,x2,x4]), object('richard_sears',o4,[x4]), evt('play',e8,[x2,x10]), object('joke',o10,[x10]), prop('on',p11,[e8,x12]), object('shopper',o12,[x12])

- Who played a joke on shoppers? holds(e2), object('who',o1,[x1]), evt('play',e2,[x1,x4]), object('joke',o4,[x4]), prop('on',p5,[e2,x6]), object('shopper',o6,[x6])

©2004 Macquarie University

Graph-based QA

5/34

Outline

- Question Answering and AnswerFinder
- Conceptual Graphs
- Graph Comparison

Conceptual Graphs

Thematic Roles

• John is going to Boston by Bus Person: John Dest City: Boston Agnt Go Inst Bus ©2004 Macquarie University Graph-based QA 11/34

N-Ary Relations

• A person is between a rock and a hard place

Nested Conceptual Graphs

• Tom believes that Mary wants to marry a sailor

13/34

How does it Compare with AnswerFinder?

 John is going to Boston by bus holds(e3), prop('by',p6,[e3,x7]), prop('to',p4,[e3,x5]), object('john',o1,[x1]), evt('go',e3,[x1]), object('bus',o7,[x7]), object('boston',o5,[x5])

How does it Compare with AnswerFinder?

• A person is between a rock and a hard place

holds(e3), object('rock',o6,[x6]), evt('be',e3,[x2]), prop('hard',p9,[x10]), object('person',o2,[x2]), prop('between',p4,[e3,x7]), object('place',o10,[x10]), x2≤x7, x10≤x7

How does it Compare with AnswerFinder?

 Tom believes that Mary wants to marry a sailor holds(e2), evt('marry',e7,[x4,x9]), object('sailor',o9,[x9]), evt('believe',e2,[x1,e5]), object('tom',o1,[x1]), object('mary',o4,[x4]), evt('want',e5,[x4,e7])

Outline

- Question Answering and AnswerFinder
- Conceptual Graphs

Graph Comparison

©2004 Macquarie University

©2004 Macquarie University

Graph-based QA

Comparison of Conceptual Graphs

- Two steps:
 - 1. Find an overlap
 - Use domain knowledge: thesauri and *isa* hierarchies
 - 2. Compute the similarity in function of the overlap

Overlap – The Intuition

Graph-based QA

Dice Coefficient

$$S_{D_1,D_2} = \frac{2n(D_1 \cap D_2)}{n(D_1) + n(D_2)}$$

• $n(D_i) =$ number of terms in D_i • $n(D_i \cap D_j) =$ number of terms that D_i and D_j have in common

Applying the Dice Coefficient

Calculation of Relational Similarity

Generalisation of a Conceptual Graph

- <u>Unrestrict</u> rule:
 - Replace the type label of a concept with a supertype
 - or
 - Replace an individual referent with a generic one
- <u>Detach</u> rule (??):
 - $-\operatorname{Split}$ a node into two with the same type and referent and
 - Distribute the relations of the original node between the two resulting nodes

©2004 Macquarie University

Graph-based QA

23/34

Projection

©2004 Macquarie University

- v is a generalisation of u ($u \le v$)
- we can define a projection $\pi: v \rightarrow u$

Fig. 2. Projection mapping π : $v \to u$ (the highlighted area is the projection of v in u).

24/34

Graph-based QA

Overlap with Graph Generalisations

- ν is a <u>common generalisation</u> of u_1 and u_2 iff $u_1 \le \nu$ and $u_2 \le \nu$
- A set of common generalisations of u_1 and u_2 is <u>compatible</u> iff they have projection maps such that the corresponding projections in G, u_1 and u_2 , do not intersect
- A compatible set of common generalisations {g₁...g_n} of u₁ and u₂ is <u>maximal</u> iff we cannot add a new common generalisation g≤ g₁ such that {g₁...g_ng} is compatible
- A set of common generalisations of u₁ and u₂ is an <u>overlap</u> iff it is compatible and maximal

Finding an Overlap

- There may be several overlaps
- Finding an overlap is NP-complete
- Still, workable for small graphs

© 2004 Macquarie University Graph-based QA 25/34 © 2004 Macquarie University Graph-based QA 26/34

One Overlap

©2004 Macquarie University

Graph-based QA

Another Overlap

Conceptual Similarity

Relational Similarity

$$\begin{split} S_{r} &= \frac{2 \times \sum_{r \in \bigcup o} weight_{o}(r)}{\sum_{r \in N_{o}(G_{1})} weight_{G_{1}}(r) + \sum_{r \in N_{o}(G_{2})} weight_{G_{2}}(r)} \\ N_{o}(G_{i}) &= \bigcup_{c \in O} N_{G_{i}}(\pi_{G_{i}}c), \text{ where } N_{G}(c) = \{r \mid r \text{ is connected to } c \text{ in } G\} \\ weight_{G}(r) &= \frac{\sum_{c \in N_{G}(r)} weight(c)}{|N_{G}(r)|}, \text{ where } N_{G}(r) = \{c \mid c \text{ is connected to } r \text{ in } G\} \end{split}$$

©2004 Macquarie University

The Similarity Measure

$$s = s_c \times (a + b \times s_r)$$

• The coefficients *a* and *b* reflect user-specified balance

$$0 < a, b < 1$$
 and $a + b = 1$

Example

Conditions	Overlap	S _c	S_p	S
<i>a</i> = 0.1, <i>b</i> = 0.9	$[candidate] \leftarrow (agt) \leftarrow [criticize] \rightarrow (pnt) \rightarrow [candidate]$	0.86	1	0.86
$w_E = w_V = w_A = 1$	[candidate:Bush] [criticize] [candidate:Gore]	1.00	0	0.10
<i>a</i> = 0.9, <i>b</i> = 0.1	$[candidate] \leftarrow (agt) \leftarrow [criticize] \rightarrow (pnt) \rightarrow [candidate]$	0.86	1	0.86
$w_{E} = w_{V} = w_{A} = 1$	[candidate:Bush] [criticize] [candidate:Gore]	1.00	0	0.90
a = 0.5, b = 0.5	$[candidate] \leftarrow (agt) \leftarrow [criticize] \rightarrow (pnt) \rightarrow [candidate]$	0.84	1	0.84
$w_E = 2$ $w_V = w_A = 1$	[candidate:Bush] [criticize] [candidate:Gore]	1.00	0	0.50

Graph-based QA

The Similarity

