Graph-Based Question Answering

Diego Mollá-Aliod
30 August 2004

Outline

- Question Answering and AnswerFinder
- Conceptual Graphs
- Graph Comparison

Architecture of AnswerFinder

Grammatical Relations

Grammatical Relations

```
- A man named Richard Sears has been playing a joke on
    shoppers.
    (detmod _ man a)
    (subj name man _) (dobj name richard_sears _)
    (detmod _ joke a) (subj play man _) (aux _ play have)
    (aux_ play be)
    (ncmod shopper play on) (dobj play joke _)
- Who played a joke on shoppers?
    (subj play who _) (dobj play joke _)
    (ncmod shopper play on) (detmod__ joke a)
```


Minimal Logical Forms

- A man named Richard Sears has been playing a joke on shoppers.
holds(010), object('man',o2,[x2]), evt('name',e3,[X3,x2,x4]) object('richard_sears',04,[x4]), evt('play',e8,[x2,x10]), object('joke',010,[x10]), prop('on',p11,[e8,x12]), object('shopper',012,[x12])
- Who played a joke on shoppers? holds(e2), object('who',01,[x1]), evt('play',e2,[x1,x4]), object('joke',04,[x4]), prop('on',p5,[e2,x6]), object('shopper',06,[x6])

Minimal Logical Forms

- Called Minimal Logical forms because they encode the minimum information required for AE
- Flat expressions that use reification
- Example: cp will quickly copy files holds(e4), object(cp,01,[x1]), object(s_command,o2,[x1]), evt(s_copy,e4,[x1,x6]), object(s_file,03,[x6]), prop(quickly,p3,[e4]).
- Example: the man that came ate bananas and apples with a fork holds(e1), object(s_man,02,[x2]), evt(s_come,e4,[x2]), evt(s_eat,e5,[x7]), x6@<x7, x8@<x7, object(s_banana,06,[x6]), object(s_apple,08,[x8]), prop(with,p9,[e5,x11]), object(s_fork,011,[x11]).
©2004 Macquarie University LG and Conexor FDG \| Intrinsic | ExTRINSIC | DiscussionGraph-based Q

Outline

- Question Answering and AnswerFinder
- Conceptual Graphs
- Graph Comparison

Conceptual Graphs

- Concept Node [Cat:Tom], [Mat]
- Entities, attributes, or events (actions)
- Concept nodes have two attributes:
- Type (e.g. Cat)
- Referent (e.g. Tom)
- Relation Node (On)
- The kind of relationship between two concept nodes

Thematic Roles

- John is going to Boston by Bus

Quantification

- Every cat is on a mat

N-Ary Relations

- A person is between a rock and a hard place

Nested Conceptual Graphs

- Tom believes that Mary wants to marry a sailor

How does it Compare with AnswerFinder?

- John is going to Boston by bus
holds(e3), prop('by',p6,[e3,x7]), prop('to',p4,[e3,x5]), object('john',o1,[x1]), evt('go',e3,[x1]), object('bus',07,[x7]), object('boston',05,[x5])

How does it Compare with AnswerFinder?

- Tom believes that Mary wants to marry a sailor holds(e2), evt('marry',e7,[x4,x9]), object('sailor',09,[x9]), evt('believe',e2,[x1,e5]), object('tom',01,[x1]), object('mary',04,[x4]), evt('want',e5,[x4,e7])

Outline

- Question Answering and AnswerFinder
- Conceptual Graphs
- Graph Comparison

Comparison of Conceptual Graphs

- Two steps:

1. Find an overlap

- Use domain knowledge: thesauri and isa hierarchies

2. Compute the similarity in function of the overlap

©2004 Macquarie University

Dice Coefficient

$$
S_{D_{1}, D_{2}}=\frac{2 n\left(D_{1} \cap D_{2}\right)}{n\left(D_{1}\right)+n\left(D_{2}\right)}
$$

- $n\left(D_{i}\right)=$ number of terms in D_{i}
- $n\left(D_{i} \cap D_{j}\right)=$ number of terms that D_{i} and D_{j} have in common

Applying the Dice Coefficient

- Conceptual Similarity
$-n(G)$ is the number of concept nodes of graph G

$$
S_{c}=\frac{2 n\left(G_{c}\right)}{n\left(G_{1}\right)+n\left(G_{2}\right)}
$$

- Relational Similarity
$-m(G)$ is the number of relations of graph G
$-m_{G_{1}}(G 2)$ is the number of relations in the immediate neighbourhood of G1 in G2, where G1 is a subgraph of G2

$$
S_{r}=\frac{2 m\left(G_{c}\right)}{m_{G_{c}}\left(G_{1}\right)+m_{G_{c}}\left(G_{2}\right)}
$$

Calculation of Relational Similarity

Generalisation of a Conceptual Graph

- Unrestrict rule:
- Replace the type label of a concept with a supertype
or
- Replace an individual referent with a generic one
- Detach rule (??):
- Split a node into two with the same type and referent and
- Distribute the relations of the original node between the two resulting nodes

Projection

- v is a generalisation of $u(u \leq v)$
- we can define a projection $\pi: v \rightarrow u$

Fig. 2. Projection mapping $\pi \cdot v \rightarrow u$ (the highlighted area is the projection of v in u).

Overlap with Graph Generalisations

- v is a common generalisation of u_{1} and u_{2} iff $u_{1} \leq v$ and $u_{2} \leq v$
- A set of common generalisations of u_{1} and u_{2} is compatible iff they have projection maps such that the corresponding projections in G, u_{1} and u_{2}, do not intersect
- A compatible set of common generalisations $\left\{g_{1} \ldots g_{n}\right\}$ of u_{1} and u_{2} is maximal iff we cannot add a new common generalisation $g \leq g_{i}$ such that $\left\{g_{i} \ldots g_{n} g\right\}$ is compatible
- A set of common generalisations of u_{1} and u_{2} is an overlap iff it is compatible and maximal

Finding an Overlap

- There may be several overlaps
- Finding an overlap is NP-complete
- Still, workable for small graphs

One Overlap

Another Overlap

Conceptual Similarity

©2004 Macquarie University
Graph-based QA

Relational Similarity

$$
\begin{gathered}
S_{r}=\frac{2 \times \sum_{r \in \bigcup_{o}} \text { weight }_{o}(r)}{\sum_{r \in N_{o}\left(G_{1}\right)} \text { weight }_{G_{1}}(r)+\sum_{r \in N_{O}\left(G_{2}\right)} \text { weight }_{G_{G_{2}}}(r)} \\
N_{o}\left(G_{i}\right)=\bigcup_{c \in 0} N_{G_{i}}\left(\pi_{G_{G}} c\right) \text {, where } \mathrm{N}_{G}(c)=\{r \mid r \text { is connected to } c \text { in } G\} \\
\text { weight }_{G}(r)=\frac{\sum_{c \in N_{G}(r)} \text { weight }(c)}{\left|N_{G}(r)\right|}, \text { where } N_{G}(r)=\{c \mid c \text { is connected to } r \text { in } G\}
\end{gathered}
$$

The Similarity Measure

$$
s=s_{c} \times\left(a+b \times s_{r}\right)
$$

- The coefficients a and b reflect user-specified balance

$$
0<a, b<1 \text { and } a+b=1
$$

Example

Conditions	Overlap	s.	s,	s
$\begin{aligned} & a=0.1, \boldsymbol{b}=0.9 \\ & w_{E}=w_{v}=w_{A}=1 \end{aligned}$	[candidate] \leftarrow (agt) $\leftarrow[$ criticize $] \rightarrow$ (pnt) \rightarrow [candidate]	0.86	1	0.86
	[candidate:Bush] [criticize] [candidate:Gore]	1.00	0	0.10
$\begin{aligned} & \boldsymbol{a}=0.9, b=0.1 \\ & w_{E}=w_{V}=w_{A}=1 \end{aligned}$	[candidate] $\leftarrow($ agt $) \leftarrow[$ criticize $] \rightarrow$ (pnt $) \rightarrow$ [candidate]	0.86	1	0.86
	[candidate:Bush] [criticize] [candidate:Gore]	1.00	0	0.90
$\begin{gathered} a=0.5, b=0.5 \\ w_{E}=2 \\ w_{V}=w_{A}=1 \end{gathered}$	[candidate] $\leftarrow($ agt $) \leftarrow[$ criticize $] \rightarrow$ (pnt $) \rightarrow$ [candidate $]$	0.84	1	0.84
	[candidate:Bush] [criticize] [candidate:Gore]	1.00	0	0.50

Example with AnswerFinder

©2004 Macquarie University

The Similarity

- $W_{E}=W_{V}=W_{A}=1$:

$$
\begin{aligned}
& S_{c}=\frac{2 \times\left(\frac{2 \times 1}{2+2}+1+1+1\right)}{6+4}=0.7 \quad S_{r}=\frac{2 \times\left(\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\right)}{\left(\frac{2}{2}+\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\right)+\left(\frac{2}{2}+\frac{2}{2}+\frac{2}{2}\right)}=0.857 \\
& -\mathbf{a}=\mathbf{b}=0.5:
\end{aligned}
$$

$S=0.7 \times(0.5+0.5 \times 0.857)=0.65$
$-\mathrm{a}=0.9, \mathrm{~b}=0.1$:
$S=0.7 \times(0.9+0.1 \times 0.857)=0.69$
$-\mathrm{a}=0.1, \mathrm{~b}=0.9$
$S=0.7 \times(0.1+0.9 \times 0.857)=0.61$

