

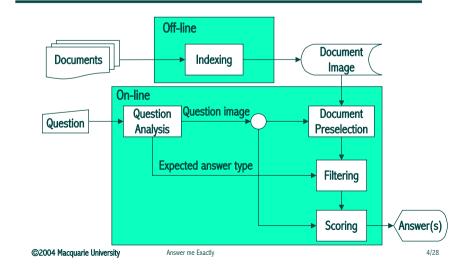
Answer me Exactly

Diego Mollá-Aliod 28 June 2004

Outline

- Extracting Exact Answers
- Techniques
- The Proposal

©2004 Macquarie University


Answer me Exactly

2/28

Extracting Exact Answers

- Information Retrieval Tasks
 - Document Retrieval
 - Passage Retrieval
 - Extracting Passages Containing an Answer
 - Extracting the Exact Answer

AnswerFinder in TREC-QA 2003

©2004 Macquarie University Answer me Exactly 3/28

Extracting Passages Containing an Answer

- Question Analysis
 - Determine the named entities of the expected answers
- Document Preselection
 - Use a third-party IR system
- Filtering
 - Preselect sentences containing a reasonable number of keywords
 - Reward sentences containing the right named entities
- Scoring
 - Sentence similarity measures

©2004 Macquarie University

Answer me Exactly

5/28

What is an Exact Answer?

- What is the longest river in the United States?
 - Correct and exact answers:
 - Mississippi
 - the Mississippi
 - the Mississippi River
 - Mississippi River
 - mississippi
 - Incorrect or inexact answers:
 - At 2,348 miles the Mississippi River is the longest river in the US.
 - 2,348 miles; Mississippi
 - the river Mississippi
 - Missipp
 - Missouri

©2004 Macquarie University

Answer me Exactly

6/28

Outline

- Extracting Exact Answers
- Techniques
- The Proposal

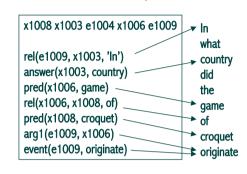
The Easiest Technique

- Return string that matches your expected NE type
- Problems
 - What if there are no NEs of the correct type?
 - What if there are several NEs of the correct type?
 - Depends on the accuracy of the NE recogniser

©2004 Macquarie University Answer me Exactly 7/28 ©2004 Macquarie University Answer me Exactly 8/28

The Winner of TREC-QA 2003

- Language Computer Corporation (LCC)'s QA system was (as usual) the best system in TREC-QA 2003
 - 70% accuracy for factoid questions
- Approach:
 - 1. Extract answers according to the built-in NE recogniser
 - 2. If the answer is not extracted as a NE, justify abductively
 - Use a logic tool


©2004 Macquarie University

Answer me Exactly

9/28

Using Logical Forms (Edinburgh University)

• Use of Discourse Representation Structures (DRSs)

- High scores for perfect matches
- Low scores if "relaxed" unification required
 - different semantic types
 - different argument order
 - symbols related according to WordNet
- Generate the answer by collecting the words pointed to by DRS conditions with discourse referents denoting the answer

©2004 Macquarie University

Answer me Exactly

10/28

A Combination of Methods (U. Southern California)

- Knowledge Based
- Pattern based
- Statistics-based
- Combined by maximum entropy based on 48 feature functions
 - Component-specific
 - Redundancy-specific
 - Qtarget-specific
 - Blatant-error-specific

Knowledge-based Method

• Determine the <u>answer type</u> or Qtarget

- 185 different types organised in classes

Question: How tall is Mt. Everest?

Qtarget: DISTANCE-QUANTITY

Answer candidates:

- Jack knows exactly how tall Mt. Everest is

- Jack climbed the $\underline{\textbf{29,028-foot}}$ Mt. Everest on 1984 and the $\underline{\textbf{7,130-foot}}$

Mt. Kosciusko in Australia in 1985

- Mt. Everest is 2.8% taller than K2

©2004 Macquarie University Answer me Exactly 11/28 ©2004 Macquarie University Answer me Exactly 12/28

Knowledge-based Method

Reward answers with the same semantic relations

Question: Who killed Lee Harvey Oswald? Text: Jack Ruby, who killed John F. Kennedy assassin Lee Harvey Oswald

Use <u>reformulation patterns</u>

Question: How deep is Crater Lake? Reformulation patterns:

- Crater Lake is <what distance> deep?
- depth of Crater Lake is <what distance>?
- Crater Lake has a depth of <what distance>?
- <what distance> deep Crater Lake?

©2004 Macquarie University

Answer me Exactly

13/28

Knowledge-based Method

· Possibility of reformulation chains

```
:anchor-pattern "SOMEBODY_1 is a student at COLLEGE_2"
:answers "Where does SOMEBODY_1 go to college?" :answer COLLEGE_2
:anchor-pattern "SOMEBODY_1 was a student at COLLEGE_2"
:can-be-inferred-from "SOMEBODY_1 dropped out of COLLEGE_2"
:anchor-pattern "SOMEBODY_1 dropped out of COLLEGE_2"
:is-equivalent-to "SOMEBODY_1 is a COLLEGE_2 dropout"
```

Text corpus: Bill Gates is a Harvard dropout

Original question: Where did Bill Gates go to college?

Reformulations:

- Bill Gates was a student at <which college>
- Bill gates dropped out of <which college>
- Bill Gates is a <which college> dropout

Answer: Harvard

©2004 Macquarie University

Answer me Exactly

14/28

Pattern-based Method

- Idea: try to obtain as many patterns as possible
- · Method: automatic learning of patterns

Given a Qtarget (a relation such as BIRTHYEAR), instantiated by a QA pair such as (NAME_OF_PERSON, BIRTHYEAR), extract from the web all the different patterns (TEMPLATEs) that contain this QA pair, and also determine the precision of each pattern

Extracting the Patterns

- 1. Submit a sample to a search engine
 - e.g. to learn the patterns for a pair (NAME_OF_PERSON BIRTHYEAR) submit "Gandhi 1869"
- 2. Retrieve the top 1,000 documents
- 3. Split the documents into sentences
- 4. Select only the sentences that contain both the question and the answer
- 5. Count phrases and sub-phrases
- 6. Retain phrases that contain both the question and the answer

©2004 Macquarie University Answer me Exactly 15/28 ©2004 Macquarie University Answer me Exactly 16/28

Calculating the Precision of Each Pattern

- 1. The question term alone (without the answer) is given to a search engine
- 2. Retrieve the top 1,000 documents
- 3. Split the documents into sentences
- 4. Keep the sentences that contain the question terms
- 5. Select the sentences obtained in previous slide that match (pattern matching) the sentences obtained in step 4
- 6. Compute:

patterns matching the answer (step 4 above)

Precision =----
total # patterns (see previous slide)

©2004 Macquarie University Answer me Exactly 17/28

Statistics-based Method

- Use a noisy channel model
 - How can a given sentence S_A that contains the answer A be rewritten into the question Q?
- Like statistical Machine Translation
- But:
 - answer sentences are much longer than typical questions
 - answer sentences contain redundant information
- Approach:
 - Set a "cut" on the parse tree of the answer sentence

Integrating the Patterns into the QA System

- · What happens if the user question has no Qtargets?
- Solution: use Maximum Entropy to score the patterns
 - Linear combination of the values of feature functions
- Features used:

- Pattern

 $P(a \mid \{a_1 a_2 ... a_A\}, q) = \frac{\exp[\sum_{m=1}^{M} \lambda_m f_m(a, \{a_1 a_2 ... a_A\}, q)]}{\sum_{a'} \exp[\sum_{m=1}^{M} \lambda_m f_m(a', \{a_1 a_2 ... a_A\}, q)]}$

FrequencyQtarget

- Question word absent
- Word match

©2004 Macquarie University

Answer me Exactly

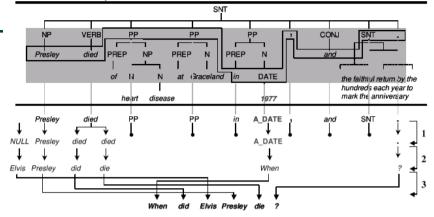
18/28

Statistical QA: Approach

- 1. Make a cut in the answer parse tree so that:
 - every word in the answer sentence or one of its ancestors belongs to the "cut", and
 - no two nodes on a path from a word to the root of the tree are in the "cut"
- 2. Mark one of the elements in the "cut" as the answer string
- 3. Match the elements of the cut with the question
 - assign fertility values to the cut elements
 - replace answer words with question words
 - permute the question words in order to obtain the grammatical question

©2004 Macquarie University Answer me Exactly 19/28 ©2004 Macquarie University Answer me Exactly 20/28

What is the best cut?


- Terms overlapping with the question are preserved
- The answer is reduced to its semantic or syntactic class prefixed with "A_"
- Non-leaves that don't have any question term or answer offspring are reduced to their semantic or syntactic class
- All remaining nodes (leaves) are preserved as surface text

©2004 Macquarie University Answer me Exactly 21/28

Results of the Three Approaches

Metric	Knowledge-Based		Pattern-Based		Statistical-Based		Base from	Base from
	Base	Base followe d by ME re- ranking	Base	Base followe d by ME re- ranking	Base	Base followe d by ME re- ranking	all systems followed by ME re- ranking (no feature selection)	all systems followed by ME re- ranking (with feature selection)
Top answer	35.83%	45.03%	25.18%	30.50%	21.30%	32.20%	46.37%	47.21%
Top 5	57.38%	56.41%	35.59%	43.09%	31.23%	40.92%	57.62%	57.62%
MRR	43.88	49.36	28.57	35.37	24.83	35.51	51.07	51.27

- Q: When did Elvis Presley die?
- S_A: Presley died of heart disease at Graceland in 1977, and the faithful return by the hundreds each year to mark the anniversary.

- Fertility: n(1 | Presley) n(2 | died) n(0 | PP)...
- 2) Translation: t(Elvis | NULL) t(When | DATE)...
- 3) Distortion: d(1|5) d(2|3) d(3|1)...
- ©2004 Macquarie University
- Answer me Exactly

22/28

Outline

- Extracting Exact Answers
- Techniques
- The Proposal

©2004 Macquarie University Answer me Exactly 23/28 ©2004 Macquarie University Answer me Exactly 24/28

What do we Have in AnswerFinder?

```
· Question classifier
```

- a what-question
- expected answer: ??
- · Named entity recogniser
 - what do we have in PRODUCT-NAME?
- Grammatical relations
 - (subj have we _) (aux inv have do) (ncmod answerfinder have in) (dobj have what _)
- · Flat logical forms

25/28

The Approach

- 1. Use the standard process to preselect select 100 sentences
- 2. Select the answer candidates
 - 1. NE of the expected type
 - 2. patterns based on logical forms
- 3. Group similar answer candidates (substring match)
- 4. Combine the scores of the members of a group of answer candidates
 - 1. NE, answer patterns
 - 2. score of the host sentence

©2004 Macquarie University

Answer me Exactly

26/28

Logical Form Patterns

```
% generic "what"
 answer_pattern_for_question_pattern(ANSWER,
           [object('what',_,[XWho])],
           [ [object(_,ANSWER,[XWho])] ]
 ).
 % Q: When did International Volunteers Day begin?
 % A: ``Cold Mountain'' began rising to the top of best-seller
 % lists in 1997...
 answer pattern for question pattern(ANSWER,
     [evt(EvtY, VeventY, ArgsY),
      prop(when,_VpropWHEN,[VeventY])],
          [evt(EvtY, VeventY, ArgsY),
          prop(P,_VpropIN,[VeventY,VexistANSWER]),
          object(_Word,ANSWER,[VexistANSWER])],
          [evt(EvtY, VeventY, ArgsY),
          prop(P,_VpropIN,[VeventY,VexistANSWER]),
          dep(_ANSWER,ANSWER,[VexistANSWER])]
 ):-
©2004 Macquarie University
                       Answer me Exactly
                                                                   27/28
```

The Big Problems

- · The NE recogniser does not mark the exact answer
 - Approaches to solve this:
 - return the most popular answer
 - try to normalise the NE output
 - use a customised NE recogniser
- · Poor coverage of the patterns
 - Difficult to develop the patterns
 - Approaches to solve this:
 - simplify the patterns
 - develop a tool to facilitate discovery of patterns
 - automatic learning of patterns
 - · Genetic approaches
 - Given a corpus of QA pairs

©2004 Macquarie University

Answer me Exactly

28/28