

AnswerFinder – Question Answering by Combining Lexical, Syntactic and Semantic Information

Diego Mollá-Aliod Mary Gardiner 8 December 2004

Outline

Question Answering and TREC						
• AnswerFinder						
Grammatical Relations						
Flat Logical Form Patterns						
Lessons Learnt and What's Next						
©2004 Macquarie University	Combining Lexical, Syntactic, and Semantic Information for QA	2/22				

TREC QA 2004

- Factoid, lists, definitions
 - 231 factoid questions
 - 62 list questions
 - 66 "other"
- Questions grouped in topics
 handling of context
- Combined evaluation

 - ½ factoid
 - 1⁄4 list
 - 1/4 "other"

Target 2 : "Fred Durst"

- Q 2.1 FACTOID: What is the name of Durst's group Q 2.2 FACTOID: What record company is he with? Q 2.3 LIST: What are titles of the group's releases? Q 2.4 FACTOID: Where was Durst born?
 - Q 2.5 OTHER: Other

Outline

- Question Answering and TREC
- AnswerFinder
- Grammatical Relations
- Flat Logical Form Patterns
- Lessons Learnt and What's Next

©2004 Macquarie University

3/22

AnswerFinder

Outline Question Answering and TREC AnswerFinder Grammatical Relations Flat Logical Form Patterns Lessons Learnt and What's Next

Grammatical Relations

Relation	Description
CONJ(type,head+)	Conjunction
MOD(type,head,dependent)	Modifier
CMOD(type,head,dependent)	Clausal modifier
NCMOD(type,head,dependent)	Non-clausal modifier
DETMOD(type,head,dependent)	Determiner
SUBJ(head,dependent,initial gr)	Subject
OBJ(head,dependent,initial gr)	Object
DOBJ(head,dependent,initial gr)	Direct object
XCOMP(head,dependent)	Clausal complement without an overt subject

Grammatical Relations

©2004 Macquarie University

Grammatical Relation Overlap – GRO

Q: How far is it from Mars to Earth? (ncmod how be far) (subj be it) (ncmod from be mars) (ncmod to be earth) A: It is 416 million miles from Mars to Earth. (subj be it) (obj be mile) (ncmod million 416) (ncmod mile million) (ncmod from be mars) (ncmod to be earth)		Q: How far is it from Mars to Earth? (subj be it _) (xcomp from be mars) (ncmod _ be far) (ncmod _ far how) (ncmod earth from to)			
			A: It is 416 million miles from Mars to Earth. (ncmod earth from to) (subj be it _) (ncmod from be mars) (xcomp _ be mile) (ncmod _ million 416) (ncmod _ mile million)		
©2004 Macquarie University	Combining Lexical, Syntactic, and Semantic Information for QA	9/22	©2004 Macquarie University	Combining Lexical, Syntactic, and Semantic Information for QA	10/22

Grammatical Relation Overlap – GRO

Q: What is the Population of Iceland? (subj be what _) (obj be population _) (ncmod of population iceland) (detmod _ population the)

A: Iceland has a population of 270000. (subj have iceland _) (obj have population _) (detmod _ population a) (nemod of population 270000)

Outline

• Question Answering and TREC

Grammatical Relation Overlap – GRO

- AnswerFinder
- Grammatical Relations
- Flat Logical Form Patterns
- Lessons Learnt and What's Next

11/22

Flat Logical Forms

- Avoid the use of nested expressions
 - $\mbox{ Conjunction of predicates with all variables existentially bounded}$
 - Reify objects, events, and properties
- Also called <u>minimal logical forms</u> because they encode minimal information for the task of question answering
 - Incremental extensibility

©2004 Macquarie University Combining Lexical, Syntactic, and Semantic Information for QA 13/22 Combining Lexical, Syntactic, and Semantic Information for QA 14/22

Flat Logical Form Patterns

What is X of Y? object(ObjY,VobjY,[VeY]), object(what,_,[VeWHAT]), object(ObjX,VobjX,[VeWHAT]), prop(of,_,[VeWHAT,VeY]) Y has a X of ANSWER dep(ANSWER,ANSW,[VeANSW]), prop(of,_,[VeX,VeANSW]), object(ObjY,VobjY,[VeY]), evt(have,_,[VeY,VeWHAT]), object(ObjX,VobjX,[VeWHAT])

Logical Form Overlap – LFO

Q: What is the population of Iceland? object(iceland, 06, [X6]) object(population, 04, [X1]) object(what, 01, [X1]) prop(of, P5, [X1, X6]) A: Iceland has a population of 270000 dep(270000, d6, [x6]) object(population, 04, [x4]) object(iceland, 01, [x1]) evt(have, e2, [x1, x4]) prop(of, p5, [x4, x6]) Unification: 04 = o4 X1 = x4P5 = p5 X6 = x6

QA with FLF Patterns

Q: What is the population of Iceland? dep(ANSWER,ANSW,[VeANSW]) prop(of,_,[VeY,VeANSW]) object(iceland,O6,[X6]) evt(have,_,[X6,X1]) object(population,O4,[VeY])

A: *lceland has a population of 270000* dep(270000, d6, [x6]) object(population,o4,[x4]) object(iceland,o1,[x1]) evt(have,e2,[x1,x4]) prop(of,p5,[x4,x6])

Sentence Rescoring

• 3gro+lfo

3 times the grammatical relation overlap score added to the flat logical form pattern overlap score.

• Ifo

The flat logical form pattern overlap score.

Exact Answer Extraction

- Use information from the FLF patterns and the named entities
 - $\mbox{ Use the score of the sentence an answer candidate is found in$
 - $-\operatorname{Double}$ the score if from an FLF pattern and NE
 - $-\operatorname{Merge}$ (add up) scores of repeated answers

©2004 Macquarie University	Combining Lexical, Syntactic, and Semantic Information for QA	17/22	©2004 Macquarie University	Combining Lexical, Syntactic, and Semantic Information for QA	18/22

Outline

- Question Answering and TREC
- AnswerFinder
- Grammatical Relations
- Flat Logical Form Patterns
- · Lessons Learnt and What's Next

©2004 Macquarie University

TREC Evaluation

- Our preliminary evaluation:
 - Correct top-ranking sentence: 20%
 - Correct and exact answer: 5%
- TREC evaluation:
 - $-\operatorname{Correct}$ and exact answer: 10%
 - List F-score: 0.08
 - "Other" F-score: 0.09

Lessons Learnt

• The development of FLF patterns is time-consuming • Refine sentence scoring - Difficult for humans to understand logical forms - Assign weights to the FLF terms - Consider methods to help development of patterns - Use graph-based comparison - Learning methods • Improve exact answer scoring • The similarity measures are still very crude - Development of FLF patterns - Look at the structure inside GRs and LF terms - Machine learning of FLF patterns • Enhance readability of FLFs - Use of graph structures ©2004 Macquarie University ©2004 Macquarie University Combining Lexical, Syntactic, and Semantic Information for QA 21/22 Combining Lexical, Syntactic, and Semantic Information for QA 22/22

To Do