
AnswerFinder at TREC 2005
DIEGO MOLLÁ AND MENNO VAN ZAANEN

Centre for Language Technology, Macquarie University, Sydney, Australia
{diego, menno}@ics.mq.edu.au

ABSTRACT

AnswerFinder has been completely redesigned for TREC 2005. The new architecture allows for the
fast development of question-answering systems for their deployment in the TREC tasks and other
applications. The modules use XML to express the services they provide, and they can be queried
with XML for their services. In terms of the QA method, a major difference with respect to previous
years is the use of graph-based methods to compute the answerhood of a sentence and pin-point
the answer. The system uses a set of graph-based patterns that are learned automatically.

1 Introduction

AnswerFinder
• is a research oriented question answering system.
•has been completely redesigned and reimplemented since last year.
• incorporates symbolic information.
•uses automatically induced structural semantic information.
• incorporates flat logical forms and logical graphs (new!).

2 System overview

Process

0 Requests The user can ask the system what functionality it provides. This includes the datasets
that it knows about and all the algorithms with their parameters. Also, the user can request a
question to be answered.

1 Question analysis The first step is to analyse the question. During this phase, question type clas-
sification, which indicates what sort of answer we are looking for, such as location, person, etc. is
performed. Also, shallow semantics of the question are extracted.

2 Document selection Next, the most relevant documents are selected based on the information of
the question. Only the selected documents are considered in the following phases.

3 Sentence selection Using the information extracted during the question analysis phase, sentences
that are likely to contain the answer are extracted from the selected documents. Only these sen-
tences are processed further.

4 Answer selection The information taken from the question is matched against the selected sen-
tences and based on this, the answer is extracted.

Requirements

Flexibility The system should be flexible in several ways. Although it is being developed for the
TREC competition, it should also be possible to easily modify it to handle different situations.
For example, different input and output formats (of documents, questions, and answers), types
of questions and answers, and new algorithms (in all the phases) should be easily to integrate in
the system. This allows for easy testing of new ideas in different environments.

Configurability Having a system with many different algorithms that can be used in the phases,
it should be easy to configure the system to run using specific parameters. Parameters in this
case mean, not only the actual values needed in the algorithms, but also selecting a particular
algorithm in a phase.

Others Other requirements, such as accuracy, speed, memory usage, etc. are also considered.

Implementation

•AnswerFinder is implemented using C++. Some external tools (named entity recogniser, con-
nexor) are called as separate processes.

•The system is fully documented, which was done before development (requirements specification
and design documents) and during the system development.

•Not only is all data stored in classes, all different algorithms for each of the phases are also con-
tained in class hierarchies.

•Builders handle the class hierarchies. They can be used to query the functionality and also handle
the creation of the correct algorithms.

•XML requests are sent to the builders of the different parts of the system. They handle requests
for their own part of the system.

•Adding new functionality is done by simply adding a class to the correct hierarchy and registering
it with the builder.

3 Logical Graphs (LG)

•AnswerFinder uses a shallow representation of the semantics of the question and the sentences
to find relevant sentences.

•This year, LGs were tested. These are not only used to score sentences, but also to find actual
answers.

•LGs are similar to Sowa’s (1979) conceptual graphs, but LGs do not attempt to encode the full
semantics.

•LGs are computed from the logical forms, which were used in last years competition (Mollá and
Gardiner, 2004).

•Logical forms avoid representation of well-known problematic concepts such as quantification,
plurality, tense, and aspect.

LGs are directed, bipartite graphs with two types of vertices: concepts and relations:
Concepts For example, objects dog, table, events and states run, love, and properties red, quick.
Relations Relations act as links between concepts. Examples of relations would be grammatical

roles and prepositions. We use relation labels that are relatively close to the syntactic level, such
as subject, object, etc. In fact, we use numbers that represent verb arguments. 1 indicates the
first argument of a verb (that is, what is usually a subject). The relation 2 indicates the second
argument of a verb (direct object), and so forth.

john 1 go to boston

by

bus

person 1 be between

≤rock ≤ place

prop

hard

John is going to Boston by bus A person is between a rock and a hard place

tom 1 believe 2

want1mary 2

marry1 2

sailor

Tom believes that Mary wants to marry a sailor

4 Logical Graph Rules (LGR)

•LGRs can be used to extract precise answers from sentences by applying the question LG to the
sentence LG.

•Computing graph overlap and paths between subgraphs indicates relevance and finds possible
answers. (Mollá and van Zaanen, 2005)

•Each rule r contains three components:
ro overlap between a question and its answer sentence;
rp path between the overlap and the answer in the sentence;
ra graph representing the exact answer.

•LGRs are learned from questions and sentences that are annotated with the answer.

bear peter where1 2 prop peter birthplace be parisgen 1 2

Q:Where was Peter born? A:Peter’s birthplace was Paris

peter birthplace be parisgen 1 2

ro=regular, rp=dashed, ra=thick
•Rules are generalised by making concepts wildcards (relations stay fixed).
• “Stop concepts” are not generalised.
• Scoring of rules (W(r)) is done using the following formula that is computed on the training data:

W(r) =
correct answers found

answers found

Acknowledgements

This research is funded by the Australian Research Council, ARC Discovery Grant no. DP0450750.

5 Graph-based Question Answering

•All LGRs are applied to the sentences. A LGR triggers if ro is a subgraph of the question. The LG
of the question is then extended with rp.

•The expanded LG is used to compute overlap with the sentences.
•The new LG has a higher overlap with LGs of relevant sentences and indicates possible answers.
•Possible answers are ranked using A(s) = W(r) × size(ovl(Q, S)) where size(ovl(Q,S)) is the size

of the overlap between the expanded LG of the question and the sentence.
•The size of a graph overlap is computed as the weighted sum of all concepts and relations in the

overlap. The weight Wi of a concept or relation i in the overlap is determined using a variant
of the Inverse Document Frequency (IDF) measure used in document retrieval. Wi = 1

log N
log N

n

where n is the number of sentences using the concept (or relation) i and N is the total number of
sentences.

• Sometimes, the overlap between the GLs of the expanded question and the sentence do not con-
tain the complete answer. Answer expansion is then performed by adding all concepts that are
accessible from the answer.

For example, when using rule be
gen 1 2 with ro in regular lines, rp in dashed lines, ra

in thick lines on

bear andrew where1 2 prop

andrew birthplace be city

frankfurt

gen 1 2

of

Where was Andrew born? Andrew’s birthplace was the city of Frankfurt

bear andrew where

be

1 2 prop

gen
1 2

andrew

birthplace be city
gen

1 2

Question expanded with rule Resulting overlap between expanded question and sentence

This says that city is the answer. This is now expanded to:

city

frankfurt
of

6 Parameters

af run 1 af run2
document selection PRISE (NIST) best 50 PRISE (NIST) best 50
question classification regular expressions regular expressions
sentence selection word overlap best 100 word overlap best 5
possible answer generation flat logical forms LG
named entity recogniser LingPipe LingPipe

7 Results

af run1 af run2
factoid accuracy 0.028 10/362 0.014 5/362
factoid precision no answ 0.077 3/39 0.075 4/53
factoid recall no answ 0.176 3/17 0.235 4/17
list average f 0.008 0.000
other average f 0.000 0.000

• Implementation is too slow: only a very limited number of sentences can be handled.
•The system needs further testing and bugs need to be fixed.
•Tokenisation of sentences and words should be implemented as offset annotation.
• Similar, possibly overlapping answers need to be grouped.

8 Conclusions

•AnswerFinder is completely redesigned and reimplemented.
•The system is highly modular and therefore easy to extend.
•LGs are a new way of describing shallow semantics of questions and sentences.
•LGs and LGRs seem to work well in theory, but the implementation needs to be improved.
•Additional implementation problems need to be fixed.

