CENTRE FOR
LANGUAGE
TECHNOLOGY

MACQUARIE UNIVERSITY - SYDNEY

Dependency-Based Semantic Interpretation
for Answer Extraction

Diego Molla-Aliod
Ben Hutchinson

Dependency-Based Semantic @%&‘c’.‘iﬁ(‘){’éﬁﬁ
Interpretation for Answer Extraction

* Dependency-based Parsing Systems
— Link Grammar
— Conexor

* Answer Extraction
— ExtrAns
* Semantic Interpretation

— Top-down
— Bottom-up
©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 2
. @ it @) i
Dependency-based Parsing Systems Dependency Structures

* Parsing systems
— Parser
— Comprehensive grammar of English

* Link Grammar and Conexor are dependency-based parsing
systems

—The output is a dependency structure

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 3

e Link Grammar

oS 70 1o

the mann that came v eats.v bananas.n and applesn with a forkn
* Conexor
main
> su.bj ins <
mod ee } peomp <
:-d-l-t subj ob] « \F adotq
(" 1 {

th\' man that came eats bananas |r1! apples with a fork

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 4

CENTRE FOR
LANGUAGE
TECHNOLOGY

Semantic Interpretation

* The Problem

— Given a dependency structure, how to build the logical
form?
— Building the logical form while parsing is not an option

* Two approaches:

Dependency-Based Semantic
Interpretation for Answer Extraction

CENTRE FOR
LANGUAGE
TECHNOLOGY

* Dependency-based Parsing Systems
— Link Grammar
— Conexor

 Answer Extraction
— ExtrAns

— Top-down : ;
* Semantic Interpretation
— Bottom-up
— Top-down
— Bottom-up
©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 5 ©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 6
CENTRE FOR CENTRE FOR
LANGUAGE LANGUAGE
. TECHNOLOGY TECHNOLOGY
Answer Extraction ExtrAns

* The Goal of Answer Extraction (AE) is ...
— ... to locate exact passages within text documents ...
— ... that answer a question worded in natural language.

* Answer Extraction is 7ot Information Retrieval (IR)
—We want answers, not pointers to documents/passages
* Answer Extraction is not Question Answering (QA)

— AE is less ambitious than QA
— The first editions of TREC-QA are about AE

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 7

* ExtrAns is an AE system that operates over UNIX manual pages
* WebExtrAns operates over Airbus maintenance manuals
— (SG| X)ML formatting

> Knowledge Base

Semantic |

Interpreter |

A e

Horn Clause
Logic v

NL Query Display

—> Information flow

~~~® Resources
©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 8

Tokeniser Pruner Disambiguator

Parser Lemmatiser Anaphora




CENTRE FOR CENTRE FOR
LANGUAGE LANGUAGE
TECHNOLOGY TECHNOLOGY

ExtrAns’ Logical Forms ExtrAns’ Answer Extraction

* Goals of ExtrAns’ Logical Forms A “bag of predicates” approach

— Expressivity: Be able to express (part of) the meaning of * p wil quickly copy files

1. hol ds(e4)
of any sentence 2. object (cp, o1, [x1])
— Incrementally add more semantic contents if necessary 3.| obj ect (command, 02, [ x1])
B . . 4.| evt (copy, €4, [ x1, x6])
Robustness: Be able to get something out from 5.| obj ect (file. 03,[x6])
ungrammatical/unexpected sentences 6. prop(qui ckT'y, p3,Te4J])
— Computability: Be easy to build and to work with < which command copies files?
— Specially for Answer Extraction ?- ]
1. object(comuand, O1, [ X1]),
2. evt(copy, E4, [ X1, X2]),
3. object(file, @2,[X2]).
©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 9 ©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 10

Dependency-Based Semantic

CENTRE FOR CENTRE FOR
LANGUAGE LANGUAGE
TECHNOLOGY TECHNOLOGY

Interpretation for Answer Extraction

Semantic Interpretation

* Dependency-based Parsing Systems * Input:
— Link Grammar —" T L
. ne «
— mod < cc < poomp <
Conexor ‘ .'/ >det >zubi ok « cae >det
* Answer Extraction the man  that came  eats  bananas  and  apples  with  a fork
— ExtrAns Outnut
¢ vutput:

* Semantic Interpretation
— Top-down
— Bottom-up

©2002 Macquarie University

Dependency-Based Semantic Interpretation for Answer Extraction

holds(v_e5), object('man’,v_o02,[v_x2]), evt(‘come'v_e4,[v_x2]),

evt('eat',v_e5,[v_x2v_x7]), (v_x6<$v_x7), (v_x8<$v_x7),
object('banana’v_o6,[v_x6]), object(‘apple',v_o8,[v_x8]),
prop(‘with',v_p9,[v_X9,v_x11]), object(*fork'v_o11,[v_x11])

©2002 Macquarie University

Dependency-Based Semantic Interpretation for Answer Extraction




Semantic Interpretation: Top-Down

su.bj ins <
nod -c -: poomp <
dl-t subj = 5| < ( mdotq
\ fork

th\ man lhil came  eats  bananas lrh! Ii‘i‘h'\ with a

* Starting from the anchor symbol (“////["), follow the
dependencies in reversed direction

* The dependency label indicates the type of dependent

* The far end of the dependency points to the head of the
dependent

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction

Semantic Interpretation: Top-Down

CENTRE FOR

LANGUAGE

TECHNOLOGY
main <

> su.bj ins <
mod -: pcomp <
dl-t subj : ckbq < ( “d"tq

th\ marn lhil came  eals  bananas lrh! I[‘i‘h'\ with a fork

1. Find the head of the main sentence
—  follow the link “main” to find eats
2. Find the head of the subject
—  follow the link “subj” to find man
3. Build the logical form of the subject
—  follow the link “mod” to find the relative clause

—  find the logical form of the clause (recursive call)
—  but this time the subject is found by following “mod”

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction

CENTRE FOR
LANGUAGE
TECHNOLOGY

Semantic Interpretation: Top-Down

main <

> subj ins <
nod -c e < peomp <
d-t subj = \ﬁ \, |/ adot}
th\ marn lhil came eals  bananas  and  apples with a Tork

4. Build the logical forms of the other verb arguments
—  follow the link “obj” to find the head of the direct object
—  build the logical form of the direct object
5. Build the logical forms of other complements and adjuncts
—  follow the link “ins” to find the prepositional phrase
6. Add the logical form of the main event and the hol ds predicate

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction

CENTRE FOR
LANGUAGE
TECHNOLOGY

Semantic Interpretation

* Input:
main =
> subj ins <
‘ nod < -: poomp <
:-d-t >zubi >det
i =
the man  that came  eats e m s ml! lpi‘h\ with a fork
* Output:

holds(v_e5), object('man’,v_o02,[v_x2]), evt(‘come'v_e4,[v_x2]),
evt('eat' v_e5,[v_x2,v_x7]), (v_x6<$v_x7), (v_x8<$v_x7),
object('banana’v_o6,[v_x6]), object(‘apple',v_o8,[v_x8]),
prop(‘with',v_p9,[v_X9,v_x11]), object(*fork'v_o11,[v_x11])

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction




CENTRE FOR
LANGUAGE
TECHNOLOGY

Top-Down and Robustness

* If a dependency structure is incomplete or contains an unexpected
dependency, complete sentence constituents will be ignored

—  Some special syntactic structures are handled by the parsing
system but are not recognised by the semantic interpreter

*  Solution:

1. Collect the words that have not been covered by the top-down
algorithm

Follow the dependencies bottom-up until the heads are found
Use variants of the top-down algorithm starting from the heads
Repeat the procedure until no additional predicates are produced

Dependency-Based Semantic Interpretation for Answer Extraction 17

©2002 Macquarie University

®

Semantic Interpretation: Bottom-Up

CENTRE FOR

LANGUAGE
TECHNOLOGY

* The error recovery from the top-down method has a bottom-up
component

* Why not do everything bottom-up?
* Three stages in the bottom-up approach
— Introspection

— For each word, build the corresponding predicate
— Some information in the resulting predicates may be missing

— Extrospection

— For each word, examine its head and fill the missing information
— Reinterpretation

— Do some final adjustments to the logical form

Dependency-Based Semantic Interpretation for Answer Extraction

©2002 Macquarie University

CENTRE FOR
LANGUAGE
TECHNOLOGY

Bottom-Up — Example

main

v_ch
/v subj \/' /v neg

/2 do not  run
* Introspect(cats): object(cat,02,[x2])
* Introspect(not): object(cat,02,[x2]), log_op(not,|4,[?])
* Introspect(run): object(cat,02,[x2]), log_op(not,l4,[?]), evt(run,e5,[?])
* Extrospect(cats): object(cat,02,[x2]), log_op(not,14,[?]), evt(run,e5,[x2])
* Extrospect(not): object(cat,02,[x2]), log_op(not,|4,[e5]), evt(run,e5,[x2])
* Extrospect(run): object(cat,02,[x2]), log_op(not,|4,[€5]), evt(run,e5,[x2]),

holds(eb)
* Re-interpretation: object(cat,02,[x2]), log_op(not,l4,[€5]), evt(run,e5,[x2]),
holds(14)
©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 19

®

Bottom-up and Robustness

CENTRE FOR

LANGUAGE
TECHNOLOGY

* The logical form contains all the basic predicates

— The introspection stage explores all words in the sentence

* Missing/unexpected dependencies translated into
unconnected variables

— The extrospection stage may fail to follow the
dependencies
The bottom-up approach is robust by nature

©2002 Macquarie University

Dependency-Based Semantic Interpretation for Answer Extraction

20




Logical Forms and Semantic
Interpretation

CENTRE FOR
LANGUAGE
TECHNOLOGY

* “Bag of predicates” nature of ExtrAns’ flat logical forms
— Introspection stage: Introduce the bag of predicates
— Extrospection stage: Add dependency information

* Bottom-up approach:
—Suitable to ExtrAns’ format of logical forms
— Robust by nature

These conclusions are independent from the dependency-based
parsing system

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 21

CENTRE FOR
LANGUAGE
TECHNOLOGY

ExtrAns’ Answer Extraction

* The text retrieved is not always a logical answer to the
question

* The question ...
— which command copies files?
* ... retrieves the following “answers”:
— ¢p will quickly copy the files
— Ifthe user types y, then ¢p copies the files
— ¢p refuses to copy a file onto itself
— rm does not copy files

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 22

CENTRE FOR
LANGUAGE
TECHNOLOGY

Semantic Interpretation: Top-Down

Wd Be 3 Q" o JE W
B T s [
/ the mann that came. v eats v bananas.n and applesn with a forkn

1. Find the head of the main sentence
—  follow the links VWil and Ss to find eats

2. Find the head of the subject
—  follow the link Ss to find man

3. Build the logical form of the subject
—  follow the link Rto find the relative clause

—  find the logical form of the clause (recursive call)

—  but this time the subject is found by following Bs

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 23

CENTRE FOR
LANGUAGE
TECHNOLOGY

Semantic Interpretation: Top-Down

Wd Be i Q" e JE W
rEEs | o 8
/ the man.n that came v eatsv bananas.n and applesn with a forkn
4,  Build the logical forms of the other verb arguments
—  follow the link O" to find the head of the direct object
—  build the logical form of the direct object
5. Create an entity for the main eventuality
—  the entity created is named, say, €2
6. Build the logical forms of other complements and adjuncts
—  follow the link MVp to find the prepositional phrase
7. Add the logical form of the main event and the hol ds predicate

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 24




Answer Extraction over Limited cenne rox
Domains TECHNOLOGY

* Current IR and QA techniques are based on large volumes of
data

— Bag of words approaches
— Question classification and named-entity extraction
— Use of patterns

* Small and technical domains have different requirements
— Little data redundancy: high recall is important!

— A more comprehensive linguistic analysis is possible and
required
— Full parse
— Use of logical forms

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 25

CENTRE FOR
LANGUAGE
TECHNOLOGY

ExtrAns’ Logical Forms

* Use a conjunction of predicates
— No nested expressions
* Only express what is necessary: use underspecification

* Use reification as a means to represent nested expressions
— objects
— events, states (“eventualities”)
— properties

* By default, all variables are existentially quantified

— Some of the entities may be asserted to exist (“hold”) in the world of
Unix manual pages

©2002 Macquarie University Dependency-Based Semantic Interpretation for Answer Extraction 26




